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Autoionizing states of atomic boron
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We present a B-spline K-matrix method for three-active-electron atoms in the presence of a polarizable core,
with which it is possible to compute multichannel single-ionization scattering states with good accuracy. We
illustrate the capabilities of the method by computing the parameters of several autoionizing states of the boron
atom, with 2

S
e, 2

P
e,o, and 2

D
e symmetry, up to at least the 2p2( 1

S) excitation threshold of the B II parent
ion, as well as selected portions of the photoionization cross section from the ground state. Our results exhibit
remarkable gauge consistency, they significantly extend the existing sparse record of data for the boron atom,
and they are in good agreement with the few experimental and theoretical data available in the literature. These
results open the way to extend to three-active-electron systems the spectral analysis of correlated wave packets
in terms of accurate scattering states that has already been demonstrated for two-electron atoms in Argenti and
Lindroth [Phys. Rev. Lett. 105, 053002 (2010)].
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I. INTRODUCTION

Accurate records for photoexcitation and photoionization
atomic spectra, obtained either from measurements or from
state-of-the-art calculations, are instrumental in monitoring
the properties of matter in extreme conditions, such as high-
temperature plasma in laboratory [1], in stellar coronas [2,3],
and in black-hole accretion disks [4,5] or the rarefied gases in
galactic halos [6] and in the intergalactic medium [7], which
are traversed by ionizing radiation [8,9]. Such atomic records
are also essential to test new models for correlated electron
dynamics in finite many-body systems.

On the experimental side, information on atomic spectra
has been initially provided by classical spectroscopy and
subsequently by photoionization experiments conducted with
synchrotron radiation [10,11]. Thanks to the technical ad-
vancements in the synchronization of light pulses [12] and
in the detection methods for the charged fragments that
emerge from the interaction region, the energy resolution of
measurements conducted at synchrotron facilities has steadily
increased [13–15]. Measurements of the autoionizing series
in rare gases with a resolving power as high as 106 were
recently reported [16]. Velocity-map imaging apparatuses [17]
simplified the measurement of angularly resolved photoelec-
tron spectra, while multiple detection techniques such as
COLTRIMS [18] permit to do so for several charged fragments
in coincidence. Furthermore, using lasers in association with
synchrotron beamlines, it is possible to measure photoabsorp-
tion spectra from excited states [19,20]. Recently, the study of
photoionization processes has gained new momentum thanks
to the advent of attosecond light sources [21], which opened
the way to the time-resolved study of electron photoemission
and of correlated electron dynamics in atoms and molecules
at its natural time scale [22–24].

Most experimental measurements, however, concern rare
gases or highly volatile elements. For other elements, which
still represent a challenge due to the difficulty of preparing
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gaseous samples with sufficient optical density, theoretical
calculations are a convenient alternative. In fact, computational
methods are now able to provide theoretical spectra with an
accuracy that is competitive with experiment [25]. Widely
used codes for atomic photoionization implement the R-matrix
method [26]. The Belfast atomic codes [27], in particular,
have been used to compile extensive databases of spectral
data of astrophysical interest, such as the opacity project
[28–32] and the Chianti project [33,34]. The B-spline R-
matrix code [35–37], a more recent example of this approach,
has already been used to accurately reproduce several fully
differential collisional and photoionization observables [38].
An alternative general-purpose atomic package, which makes
use of exterior complex scaling instead of the R-matrix
method, and which is based on a B-spline close-coupling (CC)
extension of the multiconfiguration Hartree-Fock (MCHF)
Fröse-Fischer’s ATSP2K libraries [39,40], is currently under
development in Stockholm [41].

The literature now reports theoretical discrete transition
probabilities and photoionization cross sections for most of
the light atoms of the second period, as well as for some
of their ions. In the case of a neutral boron atom, however,
the photoionization cross sections record is still rather scant.
Various studies examined in detail the ground-state energy,
the discrete spectrum [42–59], the electron affinity [60,61],
the electron impact excitation and ionization [62–66], and the
1s core excitation [67] and core photoionization [68,69] of
the boron atom. Discrete and photoionization spectra of the
B+ parent ion have also been computed [70–75]. To date,
however, we are aware of only two sources for the theoretical
photoionization spectrum of boron from the valence shell: a
work of the multichannel photoionization cross sections up to
∼100 eV above threshold [76], which only accounts for the
background signal, without reporting any resonant or other
high-resolution feature of the spectrum, and the opacity project
[32], which focuses on the high end of the energy spectrum
and only provides total photoionization cross sections on an
energy grid too sparse to resolve any resonant structure.

Part of the reason why the photoionization of boron failed
to attract larger interest is possibly its peculiar nucleogenesis,
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which takes place through spallation of heavier elements in
the interstellar medium [77] rather than by nuclear fusion
in a stellar interior, where, in fact, it is consumed [78].
Furthermore, boron’s most characteristic spectral features,
at 209 and 250 nm [79], are not easily observable from
Earth, requiring an orbiting telescope instead. Since the recent
commissioning of a UV spectrometer on the Hubble telescope,
however, the situation may change, with boron becoming
more relevant for diagnostics of astrophysical processes [78].
Boron is interesting also from a purely theoretical perspective,
since it is the simplest atomic system that features already in
its ground state three valence electrons with similar binding
energies and thus arguably strongly interacting with each other.
In comparison with two-active-electron atoms, which have
been the subject of a staggering amount of theoretical studies
[80], the continuum of three-active-electron systems is still,
on the whole, a scantly explored territory [81]. Indeed, the
large size of the configuration space hampers calculations
in the continuum at a full-configuration-interaction (full-CI)
level.

In this work we contribute to fill this gap by presenting
comprehensive sets of parameters (position, width, branching
ratios) for the autoionizing states of the neutral boron atom
with 2

S
e, 2

P
e,o, and 2

D
e symmetry, within ≈16 eV from

the first ionization threshold, computed with the B-splines
K-matrix method [82]. Within the autoionizing series, several
intruder states appear. We also present few selected portions
of the photoionization cross sections of the atom from the 2

P
o

ground state, as a way of discriminating between resonances
with different character. Good gauge invariance of the cross
sections indicates that the present results are well converged.
This is also confirmed by the agreement between the results
of the present work and the few theoretical and experimental
data available in the literature. Finally, explicit calculation
of scattering states for two-electron systems has proved
useful to analyze the asymptotic properties of the correlated
electron wave packets generated in time-resolved simulations
of photoionization events triggered by femtosecond and
attosecond light pulses [83–88]. This work demonstrates that
such approach can be extended to more complex systems,
for which the representation of scattering states in terms of
orthogonal single partial-wave channels is not possible, due
to the correlated character of the parent ions, thus laying the
foundations for a time-resolved study of the correlated motion
of three electrons in the continuum.

The paper is organized as follows. Section II summarizes
the K-matrix method and illustrates its implementation for
a three-active-electron atom with a polarizable core. Section
III describes the details of the calculation for the boron
atom, presents bound-state energies and resonance parameters,
and compares them with the theoretical and experimental
values available in the literature. Finally, Sec. IV draws the
conclusions.

II. THEORETICAL METHOD

In the K-matrix method, the multichannel single-ionization
scattering states at a given energy E of an N -electron atom are
sought as solutions of the Lippmann-Schwinger equation in

stationary form [89], fulfilling assigned boundary conditions,

∣∣�P
αE

〉 = |φαE〉 +
∑

γ

∑∫
dε|φγε〉 P

E − ε
Kγε,αE. (1)

In this expression, |φγE〉 are partial-wave channel (PWC)
functions defining ionization states, in the LS-coupling ap-
proximation, in which the coupled parent ion and free electron
have well-defined asymptotic quantum numbers. The PWCs
are defined as

φαE(x1, . . . ,xN ) = Â
∑
Mam

∑
�aσ

CLM
LaMa,	m

CS�

Sa�a,
1
2 σ


a,Ma�a

× (x1, . . . ,xN−1)2χσ (ζN )Y	m(r̂N )
fα,ε(rN )

rN

,

(2)

where an eigenstate 
a of the (N − 1)-electron parent ion,
HN−1|
a〉 = |
a〉Ea , target state, with angular momentum
La and spin Sa , is coupled to an electron with well-defined
asymptotic energy ε = E − Ea and angular momentum 	. In
the previous expression, Â is the N -electron antisymmetrizer,
C

	12m12
	1m1,	2m2

are Clebsch-Gordan coefficients, Y	m(r̂) are spher-
ical harmonics, the variable xi ≡ (�ri,ζi) indicates the pair
of spatial and spin coordinates for the ith electron, while
lowercase greek indexes represent collectively all the total
quantum numbers, besides energy, needed to fully characterize
the state asymptotically. These comprise, on the one hand, the
good total quantum numbers, such as the angular momentum
L, its projection M , the total spin S, its projection �, and
parity π , which identify the total symmetry of the system,
indicated here as � = (S,L,π,�,M), and, on the other hand,
the (unoriented) state a of the parent ion and the orbital angular
momentum 	 of the N th electron, α = (�; a,	). In Eq. (1),
γ runs over all channels within an assigned symmetry �.
The CC expansion coefficients in (1), which are expressed
in terms of the off-shell reaction matrix Kγε,αE , are uniquely
determined by requiring |�P

αE〉 to be an eigenstate of the
total Hamiltonian H,(H − E)|�P

αE〉 = 0. When projected on
a complete set of L2 basis functions, the time-independent
Schrödinger equation for the continuum provides a system of
linear integral equations for Kγε,αE , which can be discretized
and solved with standard numerical methods. It should be
noticed that in the K-matrix method, in contrast to Feshbach
formalism [90], PWCs are not required to be orthogonal, their
possible overlap being consistently taken into account in the
K-matrix equations. To improve convergence, the CC basis is
supplemented with a set of N -electron functions, built from
orbitals localized in the vicinity of the nucleus, that accounts
for short-range electron correlation and which is called here the
localized channel (LC). The numerical technique employed
to solve the K-matrix equations in the extended CC space
defined by the PWCs and the LC is fully described in previous
publications ([82,91–94]) and will not be repeated here.
Once the expansion coefficients in (1) have been determined,
the on-shell reaction matrix, K(E), is obtained interpolating
Kαε,βE on the energy shell, Kαβ(E) = KαE,βE . The solutions
|�P

E〉 = (|�P
αE〉,|�P

βE〉, . . .), for all open channels, form a
complete, nonorthogonal set of stationary scattering states
at energy E, 〈�P

E′ |�P
E〉 = δ(E − E′)[1 + π2K2(E)]. The
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scattering states |�±
E〉 = (|�±

α,E〉,|�±
β,E〉, . . .) that fulfill out-

going (+) or incoming (−) boundary conditions are obtained
from the stationary solutions |�P

E〉 through the transformation
|�±

E〉 = |�P
E〉/[1 ± iπK(E)], so that the scattering matrix

S(E) can be computed as

S(E) = [1 − iπK(E)][1 + iπK(E)]−1. (3)

The scattering matrix is unitary and, for time-reversal in-
variant systems such as those examined here, it is also
symmetric. Therefore, it can be expressed as S(E) =
O(E) exp[2iϕ(E)]Ot (E), where {ϕα(E)} are the so-called
eigenphases, whereas the real orthogonal vectors {O•α(E)}
are the corresponding eigenchannels. Resonances are as-
sumed to be the rank 1 poles of the scattering matrix. In
particular, they are simple poles of its determinant |S(E)|.
Their position Ẽa = Ea − i�a/2, therefore, can conveniently
be determined by fitting |S(E)| with products of uni-
tary Breit-Wigner factors, |S(E)| = exp[2iϕbg(E)]

∏
a(E −

Ẽ∗
a )/(E − Ẽa), where ϕbg(E) is a nonresonant background

phase. Equivalently, one can directly fit the total phase
shift ϕtot(E) = 1

2 arg |S(E)| as ϕtot(E) = ϕbg(E) + ∑
a{π/2 +

arctan [2(E − Ea)/�a]}. In this work, we follow this second
approach, which is well established and proved able to yield
robust results [95]. Apart for their position Ea and width �a ,
autoionizing states are also characterized by the partial widths
�α,a , with which they decay to individual open channels.
In principle, the partial widths �α,a can be obtained from
the residuals of the scattering matrix at the pole Ẽa [96],
�α,a = i limz→Ẽa

(z − Ẽa)Sαα(z). The analytic continuation to
the complex plane of the full matrix (E − Ẽa)S(E), however,
is numerically problematic. Here, therefore, we follow an
alternative approximate procedure. In the vicinity of an
isolated resonance, the scattering matrix can be represented
as S(E) = Sbg(E) − iγ aγ

t
a/(E − Ẽa) [96], where γ a is the

vector of partial-width amplitudes, �α,a = |γα,a|2. By taking
the derivative at Ea , one finds S′(Ea) = S′

bg(Ea) − iγ aγ
t
a/�2

a .
If the background changes slowly compared with the resonant
term, then the largest eigenvalue of |S′(Ea)|2 is very close
to 16/�2

a , and the corresponding eigenvector ua is a good
estimator of the partial-width amplitudes.

A. Polarizable-core model

In this work we are interested in the autoionizing states of
boron at energies much smaller than that required to excite an
electron out of the 1s2 core, which is of the order of 10 a.u.
Under these conditions, it is convenient to consider as active
only the three valence electrons, whereas the core is treated
as a frozen single-determinant shell. To make theoretical
predictions that are accurate enough to be compared with the
experiment, nevertheless, it is still important to account for the
dynamical correlation between core and valence electrons. A
large part of this correlation manifests itself as a polarization
of the core electrons in response to the electrostatic field
generated by the electrons in the valence shell. A convenient
way to account for this effect is to include in the core-
valence interaction Hamiltonian, beyond the usual Coulomb
and exchange terms, a regularized semiempirical core-
polarization potential given by the sum of a one-particle and
a two-particle effective component, Vp = V (1)

p + V (2)
p , defined

as [97]

V (1)
p = −αc

2

∑
i	

g(ri,R	) π	(i), (4)

V (2)
p = −αc

2

∑
ij

∑
	1−	4

√
g
(
ri,R̄	1	3

)
g
(
rj ,R̄	2	4

)
×π	1 (i)π	2 (j ) r̂i · r̂j π	3 (i)π	4 (j ), (5)

where αc is the core static polarizability, π	(i) = ∑
μ |	μ〉〈	μ|

is the projector on the subspace with orbital angular mo-
mentum 	, for electron i, and g(r,R) = r−4{1 − exp[(r/R)6]}
is a regularized polarization potential that smoothly turns
off when the electron penetrates the core region, where the
static-polarization model is not applicable. The 	-dependent
cutoff radii R	, beyond which the polarization interaction is
switched on, are adjustable parameters of the model. In the
two-electron term, the average R̄		′ = (R	 + R	′)/2 is used.
The core-valence polarization potential (4), (5) is known
to reproduce well the effects of long-range core-valence
electron correlation [98–102] and to give results equivalent
to those obtained with more rigorous approaches [103]. In
the case of boron, in particular, due to the clear separation
between the spatial distribution of core and valence electrons,
both the switch off of the polarization potential and the
orthogonality constraint are well justified. In this work,
the core static polarizability, αc = 0.0193 a.u., is computed

as αc = 2
∑

n|〈g 1S|z1 + z2|n 1Po〉|2/(E
1Po

n − E
1S
g ), where the

eigenstates and energies of B3+ (g is the ∼1s2 ground
state) are obtained from a full-CI calculation with maximum
orbital angular momentum 	 = 4. The cutoff parameters R	 =
0.7 a.u., for 	 �= 1, and R1 = 0.71 a.u., give excitation energies
for the B2+ ion in good agreement with the experiment. In the
polarizable frozen-core model, the states of the boron atom
or ion are represented as functions of valence electrons only,
with single-particle factors orthogonal to the 1s core orbital,
governed by the effective Hamiltonian

Heff = Ec + H + Jc − Kc + Vp, (6)

where H is the electrostatic Hamiltonian of either the B2+ or
the B3+ ion, whereas Jc and Kc are the Coulomb and exchange
operator due to the 1s2 core. Neglecting core correlation does
not have any major impact on the relative energies of valence-
excited states.

B. Three-electron close-coupling states

In the B-spline K-matrix method, all the radial parts of
the electron orbitals, and in particular the reduced radial
wave function of the N th electron, are expanded in terms
of a set of B splines [82,104,105] defined in a quantization
box. To achieve satisfactory accuracy while keeping the
configuration space within manageable proportions, we use
two different sets of B splines: a localized one, {B loc

i }, defined
by a series of knots with increasing spacing and spanning
a radial range up to a few tens of Bohr radii, to describe
interacting electrons bound at short range, and a diffuse one,
{Bwav

i }, with constant spacing up to large distances, which
can exhibit rapid oscillations and describe asymptotically
free electrons. To build the two-electron basis functions for

042503-3



LUCA ARGENTI AND ROBERTO MOCCIA PHYSICAL REVIEW A 93, 042503 (2016)

the parent ion, as well as the three-electron LC, we first
solve the Hartree-Fock equations for the neutral atom in
the space defined by the localized B splines, thus obtain-
ing a set of self-consistent-field (SCF) orbitals φ	mn(�r) =
φ	n(r)Y	m(r̂),φ	n(r) = ∑

i B
loc
i (r)r−1ci,	n. The two-electron

bases with symmetry �a = (Sa,La,πa,�a,Ma) are constructed
from the SCF orbitals as

φ�
	1	2n1n2

= �Sa�a
[1(−)Saσ12]

[
φ	1n1 ⊗ φ	2n2

]
LaMa

,

where �Sa�a
is a singlet or triplet spin function, σ12 is the

permutation of the two electrons, and we used the notation
[Ma ⊗ Nb]cγ ≡ ∑

αβ C
cγ

aα,bβMaαNbβ for the coupling of irre-
ducible spherical tensors. Diagonalization of the Hamiltonian
(6) in a two-electron full-CI basis, Heff
a = Ea
a , provides
accurate target states 
a , which are exactly factorizable as

a = �Sa�a

Fa . In this case, the PWC (2) can be written in the
compact form

φαn = Â�S�;Sa
[Fa ⊗ ϕn	]LM, (7)

where �S�;Sa
= [�Sa

⊗ 2χ]S� and [Fa ⊗ ϕn	]LM are the
coupled spin and spatial components of the parent ion with
the third electron, whose radial part is expressed in the
diffuse B-spline basis. The spin components for a given
S,�S�;Sa

belong to the irreducible representation γs of the
S3 symmetric group, with γ 1

2
= {2,1} and γ 3

2
= {3} [106]: for

σ ∈ S3,σ�S�;τ = ∑
ς �S�;ςD

γs
ςτ (σ ). Using group theory, it

is possible to evaluate the effect of Â on the spin functions in
Eq. (7), obtaining the expression

φαn = n−1
γs

∑
ς

�S�;ς ρ̂
γ̄s

ςSa
[Fa ⊗ ϕn	]LM, (8)

where ρ̂
γ̄s
ςτ = nγs

3!

∑
σ∈S3

sgn σ D
γs
ςτ (σ )σ is the Wigner op-

erator for the dual representation of γs [107], D
γ̄s
ςτ (σ ) =

sgn σD
γs∗
ςτ (σ ), with n 1

2
= 2 and n 3

2
= 1. From Eq. (8) it is

easy to derive the expression for the reduced matrix elements
of any spin-free operator O symmetric under permutations,

〈φαi‖O‖φβj 〉 = n−1
γs

〈[
Fa ⊗ ϕi	α

]
Lα

∥∥Oρ̂
γ̄s

SaSb

∥∥[
Fb ⊗ ϕj	β

]
Lβ

〉
.

This formulation, which does not assume orthogonality
between single-particle wave functions, permits us to take
advantage of the sparsity of the primitive matrix elements built
using the B-spline radial basis. The angular part of the spatial
integrals in the last expression can be computed using standard
techniques of angular momentum algebra. In the Appendix we
report the contraction formulas for arbitrary one-body tensor
operators and for scalar two-body operators.

The diagonalization of the Hamiltonian (6) projected on
a given PWC yields a Rydberg series of discrete states with
energy below that of the PWC parent ion and a set of states with
energy above that of the parent ion, which provide a discretized
representation for the continuum states of an asymptotically
free electron in the field of the parent ion. When the PWCs
are allowed to interact, within any assigned total symmetry,
the Rydberg series converging to the parent ion with the
lowest energy, among those available, form the backbone of
the bound states of the neutral atom in that symmetry, while the
Rydberg series bound to more excited parent ions gives rise

to autoionizing states that decay to the channels with lower
thresholds by emitting an electron.

Since the CC approach already describes well the electronic
correlation of the B+ + e− pair at intermediate distances,
the LC configurations must only account for the residual
short-range correlation, and are thus built using localized
orbitals only,

φ�
�n,s12	12

= Â�S�,S12

[[
φn1	1 ⊗ φ	2n2

]
	12

⊗ φ	3n3

]
LM

.

Even with this restriction, however, the full-CI three-electron
space is still too large to be entirely included in the LC.
Luckily, a comparatively small number of configurations can
already improve significantly the results obtained with the
PWC CC basis alone. The set of configurations included in the
LC is selected with an iterative procedure as follows. The LC
initially comprises only a small number of the configurations
with the lowest energies. Taking an assigned set of target CI
states as a reference, a second-order perturbative criterion is
used to assess which other configurations would improve the
results the most, as well as which configurations already in
the LC can be eliminated. The Hamiltonian is diagonalized
in the new LC set and the procedure is repeated until the
marginal improvement of the energy of the target states is
below a preestablished threshold.

III. RESULTS FOR THE BORON ATOM

In this section we illustrate the capabilities of the procedure
described in Sec. II by using it to compute bound and
autoionizing states of the neutral boron atom with 2

S
e,

2
P

e,o, and 2
D

e symmetry, oscillator strengths between bound
states, as well as photoionization cross sections from the
2s22p ground state to selected energy regions of the even
manifolds. Whenever possible, the present theoretical results
are compared with experimental and theoretical data from the
literature.

A. Target B II states

The B II parent-ion states needed to define the CC expansion
for the neutral boron atom are obtained by diagonalizing
the two-active-electron effective Hamiltonian of the ion [see
Eq. (6)] on the full-CI basis generated from a set of localized
orbitals. In the present case, a maximum orbital angular
momentum 	 = 6 is employed, whereas the orbital radial
component is expressed in terms of a linear combination
of B splines of order 8 [104], defined by a nonuniform
grid of 30 nodes, spanning a radial range of 120 Bohr
radii. The CI space comprises a few thousands configurations
for each symmetry. The energy for the 2s2 ground state
calculated in this basis is −24.304 540 a.u., which exceeds the
experimental value of −24.353 148 a.u. [108] by 0.048 608 a.u.
This difference is in good agreement with the theoretically
estimated value for the K-shell correlation energy in the
neutral, �E′

c(2,5) = 0.044 735 a.u. (compare with Eq. 12 in
[109]). While not included in the present calculations, core
correlation is not expected to significantly influence the energy
difference between valence-excited states. Table I reports
the absolute energy, in a.u., of the first 20 parent-ion states
computed in this work, alongside their relative energies with
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TABLE I. Energies of B II bound states.

E − E2s2 (eV) �E

Configuration Symmetry This work (a.u.) This work Exp. (J ) [74] (meV)

2s2 1
S −24.3045403 0.00000 0.00000 0

2s2p 3
P −24.1340457 4.63916 4.629017 (0) 10

4.631777 (2) 7
2s2p 1

P −23.9694165 9.11872 9.1000074 19
2p2 3

P −23.8529647 12.28737 12.263448 (0) 24
12.266161(2) 21

2p2 1
D −23.8375559 12.70665 12.6913659 15

2p2 1
S −23.7225600 15.83569 15.827970 8

2s3s 3
S −23.7130298 16.09500 16.089904 5

2s3s 1
S −23.6772255 17.06924 17.062984 6

2s3p 3
P −23.6482411 17.85790 17.852478 (0) 5

17.852994 (2) 5
2s3p 1

P −23.6476403 17.87425 17.866487 8
2s3d 3

D −23.6179836 18.68121 18.678180 3
2s3d 1

D −23.5995313 19.18330 19.178634 5
2s4s 3

S −23.5464303 20.62818 20.624138 4
2s4s 1

S −23.5392220 20.82431 20.821325 3
2s4p 1

P −23.5270406 21.15577 21.150629 5
2s4p 3

P −23.5227275 21.27313 21.268988 4
2s4d 3

D −23.5112449 21.58557 21.582342 3
2s4f 3

F −23.5074603 21.68855 21.685249 3
2s4f 1

F −23.5073747 21.69088 21.687550 3
2s4d 1

D −23.5045055 21.76895 21.765055 4

respect to the 2s2 ground state in electron volts, computed as

Ēi(bound) = RB̄

(
Eth

i − Eth
2s2

)
, (9)

where the factor RB̄ = μB̄

me
R∞ = 27.210 004 eV takes into

account the reduced mass of the B2+ − e− system, using
for the B2+ ion an average of its natural isotopes (R∞ =
27.211 385 eV, μB̄/me = 0.999 949 26). In the same table, the
latter theoretical values are also compared with the correspond-
ing experimental quantities taken from the literature, with
which they are in excellent agreement. For the first five excited
states, which have either 2s2p or 2p2 dominant configuration,
the discrepancy between the theoretical and the experimental
energy is comprised between 7 and 24 meV. For the more
excited states, however, which have all a single dominant
configuration of the form 2s3	 or 2s4	, the agreement is
significantly better. To ascertain the convergence of the parent-
ion states, we have repeated the CI calculation with two other
basis. In one case, the orbital angular momentum was reduced
to 	 = 5, which leads to results differing from those reported
in Table I by at most 3 meV, but more often by only a fraction
of this value. In the other case, nine additional nodes were
added at small radii to improve the radial representation of the
wave function. The energies obtained in this second case did
not differ from those in Table I, within the reported precision.

B. Close-coupling space

In the present calculation, the nodes defining the diffuse
B splines used for Rydberg satellites and asymptotically free
electrons have a maximum uniform spacing of 1 a.u., up to a
total distance from the nucleus of approximately 300 a.u.,

where interchannel coupling is assumed to be negligible.
Indeed, selected calculations in larger grids show that, in
the energy region of interest here, the results are converged
with respect to this parameter. After this point, the spacing
between consecutive nodes increases rapidly to accommodate
the long-range tails of Rydberg states.

In the present work we examine the autoionizing states with
either 2

P
o symmetry, i.e., the same symmetry as the 2s22p

ground state of the neutral atom, or a symmetry that can be
reached from the ground state by means of the absorption
of a single photon, within the dipole approximation, namely,
the 2

S
e, 2

P
e, and 2

D
e manifolds. In particular, we focus our

attention on the energy region up to the 2p2 ( 1
S) threshold for

the natural symmetries and up to the next closest threshold,
2s3p ( 3

P ), in the case of the 2
P

e symmetry. In order to
represent correctly the continuum degeneracy and the resonant
structure, the CC space must comprise at the very least all
the PWCs that open, or whose bound satellites can fall, in
this energy region. The essential PWCs for the symmetry
and energy region of interest are schematically represented
in Fig. 1, alongside the discrete component of each PWC
spectrum. This representation already gives an indicative
idea of the resonant structure of the ionization continuum.
Single-channel bound states located above the first ionization
threshold [with the exception of the 2s2p2( 1S) state; see
discussion below] give rise to autoionizing resonances. States
falling below the threshold that precedes the limit of the series
they belong to give rise to intruder states and are tagged with
an asterisk. The figure also singles out redundant states, i.e.,
those bound states of a PWC that are already approximately
represented by a bound state that belongs to a channel with a
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FIG. 1. Energy-level schemes of the single-ionization continuum of the boron atom for the four doublet symmetries examined in this work.
The figure shows only the set of channels that are essential to the representation of the autoionizing states of up to the 2p2( 1

S) threshold
for the natural symmetries and up to the 2s3p(3P ) threshold for the 2

P
e symmetry. The actual CC calculation normally comprises other

virtual PWCs, which do not qualitatively alter the resonant structure in the energy region of interest, but which improve the description of the
parent-ion polarization induced by the outer electron. Each PWC is represented with a vertical stripe starting at the corresponding threshold,
representing the PWC ionization continuum, and with the PWC Rydberg series below threshold. Each parent ion is identified by its dominant
configuration and symmetry. The PWC states are colored according to the orbital angular momentum 	 of the satellite or free electron: red,
blue, green and magenta for s, p, d , and f waves, respectively. Horizontal dashed lines identify redundant states that should not be considered
when interpreting the spectrum. For example, in 2

P
o symmetry the first bound states in the 2s2εp and 2s2p(3P )εs channels both give an

approximation to the 2s22p ground state. When the PWC channels are allowed to interact, the PWC Rydberg series converging to the lowest
threshold gives rise to the bound states of each symmetry, whereas the Rydberg series converging to a limit above the first ionization threshold
gives rise to autoionizing states. The terms that fall below the threshold preceding the limit of the series they belong to give rise to intruder
states and have been indicated with an asterisk. In the case of the 2s2p2( 1

S) state, the first of the 2s2p(3P )np( 1
S) series, the energy of the

PWC state is actually above the first ionization threshold. However, the double occupancy of the 2p orbital in the main configuration of the
first term in the series causes a substantial relaxation of the 2p orbital, if compared to the 2s2p(3P ) parent ion, which results in the energy of
the term to drop below threshold, thus giving rise to an intruder in the 2s2ns bound-state series.

lower threshold. For example, in the case of the 2
P

o symmetry,
the ground states of both the 2s2p(3P )εs and the 2s2p(1P )εs

channels are just slightly different approximations of the 2s22p

ground state of the atom, already represented by the first
bound state of the 2s2( 1

S)εp channel. When estimating the
location of bound and resonant states, all such redundant
states must be ignored. In the CC expansion, beyond the
essential PWCs shown in Fig. 1, we also include a few
additional virtual channels that improve the description of
the parent-ion polarization induced by an electron at short-
and mid-range distances: the 2s3d( 3,1

D)εd, 2s4s( 3,1
S)εs , and

2s4p( 1,3
P )εp channels in 2Se symmetry; the 2s3p( 1,3

P )εs,d

channels in 2
P

o symmetry; the 2s4p( 1,3
P )εp, 2s4d(1,3D)εd ,

and 2s4f ( 1,3
F )εf channels in 2

P
e symmetry; and, finally, the

2s3d(3D)εs,d,g channels in 2
D

e symmetry. The LC, selected
with the iterative procedure described in Sec. II from the full-CI
space generated by localized orbitals with maximum orbital
angular momentum 	 = 6, counts 5706, 4376, 8582, and 5413
configurations for the 2

S
e, 2

P
o, 2

P
e, and 2

D
e symmetry,

respectively. In all the tests we conducted, further expansion
of the LC basis to sizes larger than the original selected value
by a significant fraction yielded improvements of only few
cm−1 for the final energies and equally negligible changes in
other quantities such as polarizability, transition probabilities,
resonance positions, and widths.

C. Bound states of B I

The literature reports several theoretical results for the
bound states of B I and related properties calculated by various
techniques [49,55–59,109–115] and with an accuracy that,
in some cases, is very high. A comprehensive set of the
experimental bound-state properties of the neutral boron atom
are collected, alongside the most reliable theoretical results,
in the review by Fuhr and Wiese [116], which comprises
results published across several years. Here we report extensive
bound-state properties computed with the method illustrated
above to check their accuracy in comparison with published
experimental and theoretical benchmarks, as well as to expand
the existing database.

The bound states for the 2
P

o, 2
S

e, 2
D

e, 2
P

e manifolds are
obtained by diagonalizing the Hamiltonian on the same basis
used to compute the continuum states. The results are listed
in Table II, together with their corresponding term energies,
defined as the energy relative to the 2s2 ionization threshold. In
this case, the term energy is expressed in wave numbers, using
the conversion formula (9), with 1 eV = 8065.544 cm−1, and
compared with the weighted average of the available multiplet
experimental values. Additional values are provided in the
Supplemental Material [117]. Similarly to what was observed
in the case of the parent ion, the present ground-state energy for
the 2

P
o symmetry differs from the most accurate theoretical
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TABLE II. Energies of the first 2
P

o, 2
S

e, 2
D

e, and 2
P

e bound states of the neutral boron atom. Term energies, T = E2s2 − E, are expressed
in cm−1. The experimental term energies, which are reported in the second row of each entry and are taken from [108], have been rounded to
the first decimal digit. The experimental energies of ten additional 2

D
e states that are also available in the literature differ from the theoretical

data obtained in this work by 0.2 cm−1 or less.

2
P

o 2
S

e 2
P

e 2
D

e

Eth (a.u.) n∗ T Eth (a.u.) n∗ T Eth (a.u.) n∗ T Eth (a.u.) n∗ T

−24.6092411 1.281 −66877.7 −24.4270491 2.020 −26886.2 −24.2782652 1.862 −31650.9 −24.39098575 2.405 −18971.6
−66928.4 −26888.4 −31768.8 −19071.0

−24.3879622 2.448 −18308.1 −24.3588371 3.035 −11916.2 −24.2131735 2.514 −17365.7 −24.35989854 3.005 −12149.1
−18315.0 −11917.8 −17436.4 −12160.2

−24.3461810 3.465 −9138.6 −24.3354263 4.024 −6778.4 −24.1758605 3.458 −9176.8 −24.33612596 3.979 −6931.9
−9141.2 −6781.6 −8849.4 −6935.0

−24.3295651 4.470 −5492.0 −24.3247445 4.975 −4434.1 −24.1593297 4.447 −5548.9 −24.32477710 4.971 −4441.2
−5494.5 −4445.9 −5377.9 −4442.5

−24.3212405 5.472 −3665.1 −24.3196524 5.752 −3316.6 −24.1509227 5.443 −3703.9 −24.31858401 5.967 −3082.1
−3664.8 −3367.4 −3618.5 −3082.7

−24.3164752 6.473 −2619.3 −24.3170193 6.330 −2738.7 −24.1460975 6.441 −2644.9 −24.31484818 6.965 −2262.2
−2619.7 −2772.0 −2262.7

−24.3134936 7.473 −1964.9 −24.3142393 7.180 −2128.6 −24.1430785 7.440 −1982.4 −24.31242497 7.964 −1730.4
−1963.7 −2136.0 −1730.8

−24.3115045 8.473 −1528.4 −24.3120817 8.143 −1655.1 −24.1410660 8.440 −1540.7 −24.31076507 8.963 −1366.1
−1657.9 −1366.4

−24.3101116 9.474 −1222.7 −24.3105416 9.128 −1317.1 −24.1396579 9.439 −1231.7 −24.30957879 9.962 −1105.8
−1318.7 −1105.9

−24.3090984 10.474 −1000.3 −24.3094224 10.120 −1071.4 −24.1386344 10.439 −1007.0 −24.30870180 10.962 −913.3
−913.5

nonrelativistic result reported in the literature, −24.653 93
a.u. [115], by 0.044 65 a.u., which is in excellent agreement
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FIG. 2. Quantum defect μ of the bound 2
S

e states (top) and 2
D

e

states (bottom) converging to the 2s2 threshold, as a function of the
effective quantum number n∗ (green solid dots). Both series feature
an intruder state with 2s2p2 character. Experimental data are shown
as open orange circles. Energies (E), widths (�), and reduced widths
(�̄) are all expressed in atomic units.

with the estimated K-shell correlation energy �E′
c(2,5) =

0.044 735 a.u. [109]. Regarding the comparison with the
experimental term energies, in most cases the agreement is
within a few cm−1. Only in a couple of instances does the
separation between theoretical and experimental value exceed
100 cm−1. As expected, the agreement between experimental
and theoretical term energies is better for the most excited
states, since in that case one of the three electrons is mainly
localized out of the L shell. In particular, the calculated
energies correctly reproduce the ordering observed in the
experiment, with the sole exception of the almost degenerate
2s26s and 2s25d states.

A closer look at the quantum defect μn ≡ n − n∗
n of

the 2
S

e and 2
D

e bound states, where n∗
n is the effective

principal quantum number with respect to the first ionization
threshold, n∗

n = [2(E2s2 − En)]−1/2, reveals that in both cases
μn deviates from the approximately constant value that would
be expected for a series of states well approximated by
a regular sequence of 2s2ns or 2s2nd configurations (see
Fig. 2). This phenomenon is due to the strong mixing of these
main-series configurations with the 2s2p2( 1

S) and 2s2p2(1D)
configurations, respectively, which are approximated by the
first bound term of the 2s2p(3P )εp channels. Such mixing
can be construed as the first examples of an intruder state
within a Rydberg series (see, e.g., Sec. 3.2.4 in [118]). In
2
S

e symmetry, the first bound state of the 2s2p(1P )εp PWC
is located above the 1s2εs threshold. In principle, therefore,
this state could appear as the first term of the 2s2p(3P )np

autoionizing series. As a result of the interchannel coupling,
however, the energy of this state drops below the ionization
threshold, where it gives rise to an intruder of the 2s2ns
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TABLE III. Oscillator strength of selected 2
P

o → 2
S

e , 2
D

e , 2
P

e bound-bound transitions. The notation 7.87[−2](3.29) stands for 7.87 ×
10−2 in length gauge, whereas the value in velocity gauge is 3.29% larger.

2P o → 2
S

e

2s22p 2s23p 2s24p

2s23s 7.87[1−2] (−3.29) −1.05 (−0.87) −2.67[−3] (−5.51)
7.83[−2]a −1.05b −3.21[−3]b

2s24s 1.63[−2] (−3.88) 2.02[−1] (−0.76)
1.54[−2]b 2.03[−1]b

2s25s 1.06[−2] (−3.80) 2.05[−2] (−0.89) 3.33[−1] (−0.25)
8.20[−3]b 2.07[−2]b 3.35[−1]b

2s26s 1.48[−2] (−3.61) 6.14[−3] (−0.05) 2.44[−2] (−0.14)
1.08[−2]b 6.71[−3]c 2.77[−3]c

2s27s 3.53[−2] (−3.34) 6.78[−4] (−7.19) 5.32[−4] (−8.87)
1.64[−2]b 3.22[−3]b 8.98[−3]c

2s28s 1.78[−2] (−3.10) 9.57[−4] (−8.47) 5.36[−3] (−3.60)
7.4[−3]b 1.57[−3]b 3.03[−3]c

2s29s 2.38[−3] (−2.70) 1.48[−3] (−4.29) 5.03[−3] (−2.24)
1.[−2]b

2P o → 2P e

2s22p 2s23p 2s24p

2s2p2 5.98[−1] (4.41) 1.51[−3] (−0.48) 5.18[−4] (0.19)
5.85[−1]c 1.6[−3]c 6.6[−4]c

2s2p(3P )3p 4.06[−2] (10.22) 3.96[−3] (2.70) 1.68[−3] (1.79)
5.8[−2]c 3.5[−3]c 1.52[−3]c

2s2p(3P )4p 1.70[−3] (22.61) 1.70[−3] (3.46) 4.86[−4] (2.94)
3.5[−3]c 1.7[−3]c 5.1[−4]c

2s2p(3P )5p 1.69[−4] (47.23) 8.11[−4] (3.38) 1.98[−4] (2.65)
2P o → 2De

2s22p 2s23p 2s24p

2s2p2 4.58[−2] (12.24)
4.71[−2]a

2s23d 1.70[−1] (1.48) 8.32[−1] (0.08)
1.70[−1]a 8.35[−1]a

2s24d 7.02[−2] (0.84) 9.93[−6] (14.82) 1.26(0.18)
7.22[−2]b 6.6[−6]b 1.26b

2s25d 3.48[−2] (0.68) 2.84[−3] (0.72) 9.78[−3] (0.37)
3.58[−2]b 2.57[−3]b 1.08[−2]b

2s26d 1.97[−2] (0.75) 2.74[−3] (0.97) 1.08[−4] (−0.48)
2.06[−2]c 2.60[−3]c 1.72[−4]c

2s27d 1.23[−2] (0.75) 2.09[−3] (0.94) 7.70[−5] (1.04)
1.27[−2]c 2.01[−3]c

2s28d 8.14[−3] (0.73) 1.54[−3] (0.91) 1.87[−4] (0.66)
8.46[−3]c 1.49[−3]c 1.57[−4]c

aTachiev and Froese-Fischer [49].
bFernley et al. [112].
cOpacity Project [32].

series, located around n∗
s = 6.02. The interchannel interaction

is strong enough to mix the state with several terms of the 2s2ns

Rydberg series. From the μn values, it is possible to extrapolate
a position E

2s2p2(
2
S)

and a width �
2s2p2(

2
S)

for the intruder

state as if it were a resonance interacting with the discretized
continuum realized by the 2s2ns Rydberg series. This is
done by fitting the quantum defect with the function μ(E) =
c0 + 1/2 + π−1 arctan[2(E − E

2s2p2(
2
S)

)/�
2s2p2(

2
S)

], where

c0, E
2s2p2(

2
S)

, and �
2s2p2(

2
S)

are free parameters. The energy

and width estimated in this way are E
2s2p2(

2
S)

� −24.3183

a.u. and �
2s2p2(

2
S)

= 0.0034(3) a.u., which correspond to an

effective quantum defect with respect to the 2s2p(3P ) thresh-
old n∗

2s2p2(
2
S)

= 1.647 and to a reduced width �̄
2s2p2(

2
S)

=
�

2s2p2(
2
S)

(n∗
2s2p2(

2
S)

)3 = 0.015 a.u. The effective quantum

defect for this state, μ = 2 − 1.647 = 0.353, is reasonably
close to the value ∼0.267 observed for the higher terms in the
2s2p(3P )np autoionizing series (compare with Table VIII). A
slightly larger value for the quantum defect of the first term in
the series is justified since the two outer electrons occupy the
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TABLE IV. Oscillator strength of 2
D

e →2 P o, 2
D

e →2

Do, 2Se →2 P o, and 2
D

e →2 F o bound-bound transitions.

Initial Final f

2s2p2 2s23p 4.26[−3] (24.76)
4.42[−3]a

′′ 2s24p 3.00[−5] (57.51)
3.2[−5]a

′′ 2s2p(3P )3d(2D) 4.28[−3] (−17.65)
5.5[−3]a

′′ 2s24f 3.49[−2] (0.17)
4.84[−2]b

′′ 2s25f 1.50[−2] (0.58)
2.1[−2]a

′′ 2s26f 7.82[−3] (0.35)
1.1[−2]a

′′ 2s27f 4.63[−3] (0.54)
6.2[−3]a

′′ 2s28f 2.98[−3] (0.59)
4[−3]a

2s23d 2s2p(3P )3d(2D) 9.02[−4] (−11.82)
1.3[−3]a

′′ 2s24f 9.60[−1] (0.23)
9.6[−1]b

′′ 2s25f 1.36[−1] (0.24)
1.3[−1]a

′′ 2s26f 4.45[−2] (0.29)
4.18[−2]a

′′ 2s27f 2.05[−2] (0.50)
1.90[−2]a

′′ 2s28f 1.13[−2] (0.57)
1.03[−2]a

2s24d 2s2p(3P )3d(2D) 2.79[−4] (−9.60)
3.7[−4]a

′′ 2s25f 8.55[−1] (0.21)
8.92[−1]a

′′ 2s26f 1.82[−1] (0.32)
1.84[−1]a

′′ 2s27f 7.09[−2] (0.50)
7.08[−2]a

′′ 2s28f 3.60[−2] (0.57)
3.57[−2]a

2s25d 2s26f 7.88[−1] (0.12)
8.26[−1]a

′′ 2s27f 1.91[−1] (0.29)
1.95[−1]a

′′ 2s28f 7.97[−2] (0.37)
8.05[−2]a

2s26d 2s27f 7.60[−1] (0.12)
8[−1]a

′′ 2s28f 1.95[−1] (0.21)
1.99[−1]a

2s27d 2s28f 7.52[−1] (0.12)
7.9[−1]a

aOpacity Project [32].
bFernley et al. [112].

same subshell and their mutual screening is therefore smaller.
The reduced width �̄n of the 2s2p(3P )np resonance series,
extrapolated to the energy of the 2s2p2 intruder state, gives

the value �̄ � 0.0137 a.u., which, again, is in line with the
effective width �̄

2s2p2(
2
S)

found earlier. The good agreement

between the present calculations and the experimental values,
also shown in Fig. 2, is clearly visible in this representation. In
the experimental case, it appears that the 2

S intruder is centered
at a slightly lower energy compared with the calculation. The
energy difference is of the order of 6 meV, which is perfectly in
line with the theoretical overestimation, by 7 meV (for J = 2),
of the E2s2p3P − E2s2 gap already seen in Sec. III A (compare
with Table I).

Entirely similar considerations can be repeated for
2
D

e 2s2nd bound states, in relation to the 2s2p2(2D) intruder
state (see bottom panel in Fig. 2). In this case, the fitting
parameters are E2s2p2(2D) = −24.3916 a.u. and �2s2p2(2D) =
0.015 a.u., which correspond to an effective quantum number
and a reduced width, with respect to the 2s2p( 3

P ) threshold, of
n∗

2s2p2(2D) = 1.393 and �̄2s2p2(2D) = 0.0405 a.u., whereas the

values extrapolated from the 2s2p(3P )np(2D) autoionizing
series are 1.568 and 0.0451 a.u., respectively (compare with
Table XII). Also in this case, the fitted values are in reasonable
agreement with the ones extrapolated from above the threshold
and in very good agreement with the experimental measure-
ments.

The good agreement between the theoretical and exper-
imental intruderlike features of the 2

S
e and 2

D
e bound-

state series is a strong indication that the present CC + LC
bases represent accurately not only the states associated with
the closed-shell 2s2 parent ion, but also those associated
with the open-shell states as well as their interchannel
coupling.

Table III lists the values of the oscillator strength between
selected bound states with 2

P
o and with 2

S
e, 2

P
e, or 2

D
e

symmetry and compares them with the values available in the
literature. For completeness, in Table IV we also report other
transitions for which a comparison with existing literature
data is possible: 2

D
e -2P o,2Se-2P o, 2

D
e -2Do and 2

D
e -2Fo.

So far, we have not discussed the 2Do and 2Fo symmetries,
since their resonant structure is beyond the scope of this
work. To compute the 2

D
e -2Do and 2

D
e -2Fo transitions,

the bound states for these two symmetries have also been
obtained from a CC + LC space. Oscillator strengths have
been computed both in velocity and in length gauge. The
present results are compared with the data in Fuhr and Wiese
[116], which compile results from multiple sources and with
unequal levels of accuracy [49]. The agreement with the
available data, especially with the most accurate ones [47],
is overall very satisfactory, despite the CC + LC approach
not being specifically tailored to bound states. For the two
transitions 2s22p(2P o) → 2s2p(3P )4 − 5p(2P e), the differ-
ence between the oscillator strength in length and velocity
gauge, ∼23% and ∼47%, respectively, is uncharacteristically
large. However, it looks like these specific transitions are
very sensitive to the accuracy of the states involved, since
transitions to the same 2

P
e final states from excited 2

P
o states,

or, conversely, from the 2
P

o ground state to bound states in 2
S

e

or 2
D

e symmetries, all exhibit a much better gauge agreement.
In all the other cases, the gauge agreement is of the order of
10% and oftentimes much better than that.

042503-9



LUCA ARGENTI AND ROBERTO MOCCIA PHYSICAL REVIEW A 93, 042503 (2016)

FIG. 3. Density of states ρ(n∗), between selected pairs of consecutive thresholds, E1 < E2, as a function of the effective principal
quantum number n∗ = [2(E2 − E)]−1/2, for the four symmetries considered here: 2P o, 2Se, 2P e, and 2

D
e (for threshold numbering, compare

with Fig. 1). The density of states is defined here as ρ(n∗) = π−1∂n∗ϕtot. Each resonance i appears as an almost-Lorentzian peak that
integrates to 1 and whose position and width is determined by the effective quantum number ni and by the reduced width �̄i , respectively,
∂n∗ϕi � 1

2 �̄i/[4ci (n∗ − ni)2 + (�̄i/2)2], where ϕi is the contribution of the ith resonance to the total phase shift, while the factor ci =
[n∗/ni(1 + n∗/ni)/2]2 rapidly approaches 1 as n∗ → ∞. Each resonant contribution is separately highlighted with a shaded area, colored with
an RGB code in which the red (r), blue (b), and green (g) weights are proportional to the s, p, and d character of the electron wave emitted
in their decay. A resonance that entirely decays by emitting a p electron, therefore, will appear as blue, one decaying entirely by emitting an
s electron will appear as red, one decaying partly in an s and partly in a p wave will appear as magenta, and so on. Finally, the opacity of the
shade is proportional to the weight of the s + p + d decay channels with respect to the total (a resonance that decays predominantly emitting
s, p, or d waves is almost entirely opaque, while one that predominantly emits f or g waves is almost transparent). Vertical gray lines indicate
the positions of the Rydberg states, in the single-PWC approximation, that give rise to the autoionizing states. Interchannel coupling often
shifts the resonance energy considerably. A better predictor of intruder-state energies, therefore, is obtained by extrapolating the parameters of
the corresponding series of autoionizing states from the next energy interval (see text for examples).

D. Autoionizing states

In this section we present the results for the autoionizing
states within the 2Se, 2P e, 2P o, and 2

D
e manifolds, up to the

2p2( 1
S) threshold, for the natural symmetries, and up to the

2s3p(3P ) threshold for the 2
P

e symmetry. As shown in Fig. 1,
all four symmetries have rich resonant structures, with both
single and multiple Rydberg series decaying to multichannel
continua and interspersed by several intruder states. Most of
the autoionizing states examined in this work are associated
with excited parent ions, whose energy with respect to the
2s2 B+ ground state is systematically, if slightly, overestimated
compared with the experimental value (compare with Table I).
To better predict the location of the resonances above the first
ionization threshold, therefore, alongside the absolute energy
position in atomic units, we also report their energy above the
first ionization threshold, using as a reference the energy of the
2s3s( 1

S) parent ion, which is not split by spin-orbit interaction,
it only has a singly occupied 2s orbital, as is the case for most
of the autoionizing states, and whose experimental elevation
above the 1s2 threshold is accurately known, Ēi(res) = [Eth

i −
Eth

2s3s(
1
S)

]μB̄/me + E
exp

2s3s(
1
S)

− E
exp
2s2 . In numbers, the con-

version formula reads Ēi(eV) = [Eth
i (a.u.) + 23.677 225 5] ×

27.210 004 eV + 17.062 984 eV. Figure 3 shows the density
of states ρ(n∗), for the four symmetries under examination
here, between selected pairs of consecutive thresholds, where
each resonance is visible as a quasi-Lorentzian peak. Apart for
its position and width, a resonance can also be characterized
by its branching ratios, bα,a = �α,a/�a . To better highlight the
differences between resonances, Fig. 3 shows their individual
contribution to ρ(n∗) colored according to the proportion
with which they decay emitting an s, p, or d electron.
Regular autoionizing Rydberg series, which are characterized
by an almost constant quantum defect μi = i − n∗

i � μ∞
and reduced partial widths �̄α,i � �̄α,∞, appear in Fig. 3
as periodic sequences of identical, equally colored peaks,
spaced by �n = 1. Resonances give rise to asymmetric Fano
profiles in the photoionization cross section from a bound state
[119], which may also be used to characterize them. In the
following, we examine the individual symmetries in each of
the energy intervals between consecutive thresholds. In most
cases, we assign to the resonances a configuration based on
the single-particle approximation. While the given assignment
does indicate the dominant configuration, it is to be understood
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TABLE V. Parameters of the 2
P

o resonances between the 2s2 and
the 2s2p(3P ) threshold.

State E (a.u.) E (eV) � (a.u.) n∗ �̄ (a.u.)

2s2p(3P )3d −24.189206 3.13198 5.53[−5] 3.011 1.51[−3]
2s2p(3P )4d −24.165337 3.78148 2.77[−5] 3.997 1.77[−3]
2s2p(3P )5d −24.154135 4.08628 1.52[−5] 4.989 1.89[−3]
2s2p(3P )6d −24.148012 4.25288 9.18[−6] 5.983 1.97[−3]
2s2p(3P )7d −24.144310 4.35362 5.95[−6] 6.980 2.02[−3]
2s2p(3P )8d −24.141904 4.41909 4.06[−6] 7.977 2.06[−3]
2s2p(3P )9d −24.140253 4.46400 2.90[−6] 8.975 2.09[−3]
2s2p(3P )10d −24.139072 4.49613 2.14[−6] 9.973 2.12[−3]

2s2p(3P )3s −24.243232 1.66195 5.73[−3] 2.140 5.62[−2]
2s2p(3P )4s −24.184225 3.26751 1.59[−3] 3.157 5.01[−2]
2s2p(3P )5s −24.162927 3.84705 6.69[−4] 4.161 4.82[−2]
2s2p(3P )6s −24.152808 4.12238 3.44[−4] 5.162 4.73[−2]
2s2p(3P )7s −24.147210 4.27470 2.00[−4] 6.163 4.68[−2]
2s2p(3P )8s −24.143790 4.36775 1.27[−4] 7.163 4.66[−2]
2s2p(3P )9s −24.141549 4.42874 8.54[−5] 8.163 4.64[−2]
2s2p(3P )10s −24.140001 4.47087 6.03[−5] 9.163 4.64[−2]
2s2p(3P )11s −24.138886 4.50119 4.42[−5] 10.163 4.64[−2]
2s2 p(3 P) −24.134046 4.63290

that an autoionizing state can occasionally exhibit a significant
contamination from other configurations. This is most often the
case when an intruder state is close in energy to one or more
terms in a main series.

To confirm the parameters of boron autoionizing states
computed in this work, it would be useful to have reliable
experimental values to compare with. To the best of our
knowledge, however, there is only one experimental paper,
from 1976, claiming to have determined the position of
autoionizing states of boron in symmetries of interest here
[120]. In that work, the authors reported a value for the
wavelength of the transition between both the 2s2p( 3

P )3p 2
S

state and the 2
D state with the ground 2s22p state. The paper,

which also reports measurements for the stronger transitions to
the 2

P
e manifold, specifies, on the one hand, that the transition

to the 2s2p( 3
P )3p states are much weaker, and, on the other

hand, provides for both of them spin-orbit-resolved values,
with differences between the multiplets that are orders of
magnitude smaller than the autoionization width computed
here for those resonances. These puzzling circumstances, and
the lack of any further details on how the transitions in question
were identified or assigned, suggest that new experimental
investigations are in order. In any case, in the following the
comparison between these two experimental values and the
ones computed here is discussed in detail.

1. 2P o autoionizing states

The main field-free parameters of the 2
P

o resonances—
position, width, and branching ratios, up to the sixth
threshold—are listed in Tables V, VI, and VII, together with
orientative assignments of their dominant configuration (see
first panel in Fig. 1). The first energy interval, between the
2s2 and the 2s2p( 3

P ) threshold, features two main resonance
series, which can be identified by comparison with the energy
of the bound states in the corresponding PWC. These are the

2s2p( 3
P )ns series and the narrower 2s2p( 3

P )nd series, both
of which are regular; i.e., their quantum defect and reduced
partial widths are stable across the series (compare with Table
V).

The second energy interval, up to the 2s2p(1P ) threshold,
comprises again two main resonant Rydberg series, decaying
to three open channels, and perturbed by one clear intruder,
with 2p3 dominant configuration. The two 2s2p(1P )ns and
2s2p(1P )nd series have comparable asymptotic reduced
widths, 1.06 × 10−2 and 1.01 · 10−2 a.u., respectively, and
they both decay preferentially to the 2s2εp channel (see Table
VI). In contrast to the main series, the 2p3 intruder state
has a strong coupling to the 2s2p( 3

P )εd channel, which,
with a prevalence of almost 90%, completely dominates its
branching ratio, and which imparts to the resonance a width
more than one order of magnitude larger than that of any other
autoionizing state in this interval. The first terms of the two
main series, the 2s2p(1P )3s and 2s2p(1P )3d states, partly
mix with the 2p3 state, thus acquiring a noticeably larger
decay component to the εd channel. It is interesting to notice
that the staggering prevalence of the decay of the 2p3 state
to the 2s2p(3P )εd channel is not replicated by the higher
terms of the 2p2(3P )np autoionizing series in the next energy
region. This circumstance suggests that the 2p3 configuration
in the intruder state is accompanied to secondary components
that account for the large angular correlation between the three
degenerated electrons. The density-of-state plot for this energy
interval is shown in the top panel in Fig. 3. The upper edge
of the 2p3 intruder state is visible in green, on the left, owing
to its preferential decay through emission of a d electron,
while the periodic pairs of narrower peaks represent terms of
the two main series. The 2s2p(1P )ns series, which is less
affected by the interference of the intruder, exhibits a uniform
blue color, while the 2s2p(1P )nd terms switch gradually from
green to blue, due to their partial mixing with the 2p3 intruder
configuration.

The third energy interval, between the 2s2p(1P ) and the
2p2( 3

P ) thresholds, harbors at least five intruders from the
series converging to the next threshold, 2p2(1D), which is very
close in energy to the upper limit of this interval. Four intruder
states are clearly visible in the second panel of Fig. 3. Their
positions can be estimated by extrapolating their effective
principal quantum numbers from those of the terms in the main
series from which they supposedly originate. In particular, for
the 2p2(1D)4f − 5f and 2p2(1D)3p − 5p, we guess the n∗

values, relative to the 2p2(1D), 4.032, 5.032, 2.580, 3.572,
and 4.565, respectively, which correspond to the apparent
n∗ values, relative to the 2p2( 3

P ) threshold, 5.708, 10.736,
2.894, 4.586, and 7.632, respectively. These values should
be compared with those actually observed in the calculation:
5.716, 10.749, 2.895, 4.404, and 7.352. In the first three cases,
the position estimated by extrapolating the parameters of the
regular series is extremely good. In the last two cases, while the
assignment is still qualitatively accurate, a significant deviation
is observed. This is because the extrapolated position of the
2p2(1D)4p and 2p2(1D)5p intruder states, n∗,Guess

2p2(1D)4p
= 4.586

and n
∗,Guess
2p2(1D)5p

= 7.632, happen to be very close to the effective

quantum numbers, n
∗,Guess
2p2(3P )5p

� 4.64 and n
∗,Guess
2p2(3P )8p

� 7.64,
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TABLE VI. Parameters of the 2
P

o resonances between the second, 2s2p( 3
P ), and the fifth, 2p2( 1

D), thresholds. The six channels that
open in these first four energy intervals are, in order, 2s2εp , 2s2p(3P )εs , 2s2p(3P )εd , 2s2p(1P )εs , 2s2p(1P )εd , and 2p2(3P )εp .

Branching ratios (%)

State E (a.u.) E (eV) � (a.u.) n∗ �̄ (a.u.) ch1 ch2 ch3 ch4 ch5 ch6

2s2p(1P )3d −24.025619 7.58319 3.99[−4] 2.983 1.06[−2] 29.3 2.4 68.2
2s2p(1P )4d −24.001114 8.24997 1.51[−4] 3.972 9.44[−3] 51.9 8.6 39.4
2s2p(1P )5d −23.989687 8.56089 7.81[−5] 4.966 9.56[−3] 59.9 11.9 28.2
2s2p(1P )6d −23.983475 8.72993 4.59[−5] 5.964 9.73[−3] 63.4 13.7 22.9
2s2p(1P )7d −23.979732 8.83177 2.92[−5] 6.962 9.86[−3] 65.2 14.8 20.0
2s2p(1P )8d −23.977306 8.89779 1.97[−5] 7.961 9.96[−3] 66.3 15.5 18.3
2s2p(1P )9d −23.975645 8.94300 1.39[−5] 8.960 1.00[−2] 67.0 15.9 17.1
2s2p(1P )10d −23.974457 8.97531 1.02[−5] 9.959 1.01[−2] 67.4 16.3 16.3
2p3 −24.084162 5.99025 2.50[−2] 2.087 2.27[−1] 3.0 8.4 88.6
2s2p(1P )3s −24.090972 5.80494 1.56[−3] 2.028 1.30[−2] 63.1 4.5 32.4
2s2p(1P )4s −24.023319 7.64577 3.47[−4] 3.046 9.81[−3] 86.6 13.1 0.3
2s2p(1P )5s −23.999847 8.28445 1.52[−4] 4.054 1.01[−2] 87.8 11.6 0.5
2s2p(1P )6s −23.988971 8.58039 8.00[−5] 5.057 1.03[−2] 88.4 11.0 0.7
2s2p(1P )7s −23.983039 8.74179 4.70[−5] 6.058 1.05[−2] 88.6 10.6 0.8
2s2p(1P )8s −23.979450 8.83946 2.99[−5] 7.059 1.05[−2] 88.8 10.4 0.8
2s2p(1P )9s −23.977113 8.90304 2.02[−5] 8.060 1.06[−2] 88.9 10.2 0.9
2s2p(1P )10s −23.975507 8.94673 1.43[−5] 9.060 1.06[−2] 89.0 10.2 0.9
2s2p(1P )11s −23.974356 8.97805 1.04[−5] 10.061 1.06[−2] 89.0 10.1 0.9
2s2 p(1 P) −23.969417 9.11247

2p2(3P )3p −23.930391 10.17436 1.53[−3] 2.541 2.50[−2] 1.5 27.2 28.4 2.9 40.0
2p2(1D)3p −23.912628 10.65768 1.50[−3] 2.895 3.65[−2] 0.4 16.5 48.0 16.8 18.4
2p2(3P )4p −23.890986 11.24655 1.06[−3] 3.626 5.07[−2] 0.8 29.7 35.3 0.2 34.0
2p2(1D)4p −23.878745 11.57965 9.63[−5] 4.404 8.23[−3] 1.8 9.8 1.6 69.0 17.7
2p2(3P )5p −23.874831 11.68614 5.88[−4] 4.782 6.43[−2] 0.4 25.7 41.0 9.2 23.7
2p2(3P )6p −23.868655 11.85420 3.03[−4] 5.645 5.46[−2] 0.6 33.2 32.7 0.8 32.7
2p2(1D)4f −23.868270 11.86465 7.94[−6] 5.716 1.48[−3] 0.1 13.1 61.3 2.0 23.6
2p2(3P )7p −23.864517 11.96679 1.30[−4] 6.579 3.71[−2] 0.8 35.7 25.4 0.7 37.3
2p2(1D)5p −23.862215 12.02941 2.99[−5] 7.352 1.19[−2] 1.7 2.5 10.6 77.6 7.6
2p2(3P )8p −23.861026 12.06178 1.46[−4] 7.876 7.15[−2] 0.3 24.0 41.6 15.9 18.3
2p2(3P )9p −23.859550 12.10194 1.12[−4] 8.714 7.38[−2] 0.4 31.5 36.6 4.2 27.4
2p2(3P )10p −23.858313 12.13559 7.32[−5] 9.669 6.62[−2] 0.5 33.8 33.6 1.8 30.3
2p2(3P )11p −23.857381 12.16095 4.79[−5] 10.640 5.77[−2] 0.7 36.8 29.0 1.2 32.4
2p2(1D)5f −23.857292 12.16336 4.82[−6] 10.749 5.99[−3] 0.2 8.0 68.9 4.6 18.2
2 p2(3 P) −23.852965 12.28111

2p2(1D)6f −23.851298 12.32646 2.78[−6] 6.032 6.10[−4] 1.3 3.2 41.1 11.7 3.0 39.7
2p2(1D)7f −23.847670 12.42519 2.25[−6] 7.031 7.81[−4] 1.8 4.6 34.7 14.0 2.4 42.4
2p2(1D)8f −23.845309 12.48943 1.75[−6] 8.031 9.08[−4] 2.2 5.0 33.1 16.5 2.3 40.9
2p2(1D)9f −23.843688 12.53354 1.38[−6] 9.030 1.02[−3] 2.6 5.3 32.0 18.7 2.2 39.2
2p2(1D)10f −23.842526 12.56515 1.10[−6] 10.030 1.11[−3] 3.0 5.5 31.1 20.6 2.1 37.7
2p2(1D)7p −23.849196 12.38366 3.84[−4] 6.554 1.08[−1] 0.0 4.6 7.0 4.1 3.1 81.2
2p2(1D)8p −23.846330 12.46166 2.61[−4] 7.549 1.12[−1] 0.0 4.5 6.4 3.3 3.0 82.8
2p2(1D)9p −23.844401 12.51413 1.82[−4] 8.546 1.14[−1] 0.1 4.4 6.3 2.7 3.0 83.5
2p2(1D)10p −23.843045 12.55104 1.32[−4] 9.544 1.15[−1] 0.1 4.4 6.2 2.3 2.9 84.1
2p2(1D)11p −23.842055 12.57799 9.89[−5] 10.543 1.16[−1] 0.1 4.3 6.2 1.9 2.9 84.5
2 p2(1 D) −23.837556 12.70039

one could guess for the third and sixth terms in the main
series from the quantum defect of higher terms in the same
series. As a consequence, the main and intruder states in
these two pairs interact significantly with each other and
cause a shift downward for the intruder energies and upward
for the main-series terms, with respect to their projected
position. Notice that the lowest term that emerges from the

interaction within each pair has all but lost any propensity
to decay to the 2s2p( 3

P )εs channel, whereas for the other
autoionizing states with 2p2(1D)np dominant configurations,
the branching ratios to the 2s2p( 3

P )εs and 2s2p(1P )εs

channels are comparable. As a result, while all the resonances
in this interval predominantly decay as d-wave electrons, the
2p2(1D)4p and 2p2(1D)5p states mostly decay as s waves
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TABLE VII. Parameters of the 2
P

o resonances located between the 2p2( 1
D) and the 2p2( 1

S) thresholds. The six channels that open in these
first four energy intervals are, in order, 2s2εp , 2s2p(3P )εs , 2s2p(3P )εd , 2s2p(1P )εs , 2s2p(1P )εd , 2p2(3P )εp , 2p2(1D)εp , and 2p2(1D)εf .

Branching ratios (%)

State E(a.u.) E(eV) � (a.u.) n∗ �̄ (a.u.) ch1 ch2 ch3 ch4 ch5 ch6 ch7 ch8

1 −23.831819 12.85648 2.95[−3] 2.139 2.89[−2] 9.3 1.5 1.2 53.5 1.7 6.3 23.7 2.8
2 −23.813216 13.36267 3.17[−3] 2.348 4.11[−2] 7.5 38.1 17.3 4.3 7.6 7.2 7.8 10.1
3 −23.788597 14.03256 2.33[−3] 2.752 4.86[−2] 18.7 11.9 3.5 9.1 13.5 17.9 3.5 21.9
4 −23.765278 14.66707 1.13[−3] 3.421 4.51[−2] 0.2 12.7 24.6 5.9 0.6 21.5 5.2 29.3
5 −23.764580 14.68607 6.87[−4] 3.450 2.82[−2] 2.1 12.8 1.6 52.0 6.5 1.0 21.4 2.6
6 −23.748624 15.12024 4.57[−4] 4.380 3.84[−2] 3.3 8.0 18.8 25.0 0.9 17.1 2.8 24.0
7 −23.742951 15.27459 1.39[−4] 4.952 1.69[−2] 1.0 22.5 16.7 21.0 13.1 3.8 15.8 6.0
8 −23.740042 15.35375 2.11[−4] 5.348 3.23[−2] 9.8 7.4 15.4 35.3 1.8 11.3 3.7 15.3
9 −23.735232 15.48463 1.22[−4] 6.282 3.01[−2] 22.8 10.6 13.4 31.5 8.1 4.6 2.7 6.4
10 −23.732808 15.55059 5.07[−5] 6.985 1.73[−2] 18.8 15.1 7.2 0.3 52.3 4.3 0.9 1.2
11 −23.731994 15.57274 6.84[−5] 7.280 2.64[−2] 35.3 3.8 1.1 46.9 1.2 1.9 8.2 1.7
12 −23.730303 15.61873 1.16[−4] 8.036 6.04[−2] 37.1 5.3 0.7 8.6 14.0 14.1 7.1 13.2
13 −23.729010 15.65393 1.19[−4] 8.805 8.15[−2] 21.0 4.4 5.7 0.1 14.8 25.7 6.9 21.4
14 −23.727923 15.68352 7.73[−5] 9.656 6.96[−2] 9.1 4.3 11.1 2.6 14.7 32.0 6.3 19.9
15 −23.727043 15.70745 3.86[−5] 10.561 4.54[−2] 0.8 4.1 15.4 10.5 21.1 37.7 4.7 5.7

2 p2( 1
S) −23.722560 15.82943

instead (78.8% and 80.1% respectively). For the 2p2(1D)6p

intruder state, we estimate an apparent effective principal
quantum number with respect to the 2p2( 3

P ) threshold of
the order of n∗ ∼ 25.5, which is too close to threshold to be
resolved in our calculation.

The narrow energy interval between the 2p2( 3
P ) and the

2p2(1D) thresholds hosts two regular series, 2p2(1D)np and
2p2(1D)nf , with quite distinct character: The former decays
predominantly to the 2p2( 3

P )εp channel, while the latter is
two orders of magnitude narrower and it decays in comparable
proportions to the 2s2p( 3

P )εd and to the 2p2( 3
P )εp channels.

The fifth and last energy interval, up to the 2p2( 1
S)

threshold, again features several intruder states owing to the
small energy separation from the 2s3s(3/1S) nearby thresholds.
In this case (see third panel from top in Fig. 3), the 2s3s(3S)3 −
6p and the 2s3s( 1

S)3 − 4p intruder states interact strongly
with the main 2p2( 1

S)np series. Indeed, the first 11 resonances
in this interval are complex mixtures of terms from the main
series and intruder series. As a consequence, no clear pattern
is recognizable from either the resonance position or their

TABLE VIII. Parameters of the 2
S

e resonances between the 2s2

and the 2s2p(3P ) thresholds.

State E(a.u.) E(eV) � (a.u.) n∗ �̄ (a.u.)

2s2p(3P )3p −24.200990 2.81136 4.70[−4] 2.733 9.59[−3]
2s2p(3P )4p −24.169861 3.65836 1.67[−4] 3.736 8.69[−3]
2s2p(3P )5p −24.156336 4.02638 7.75[−5] 4.736 8.23[−3]
2s2p(3P )6p −24.149244 4.21936 4.21[−5] 5.736 7.95[−3]
2s2p(3P )7p −24.145067 4.33301 2.54[−5] 6.735 7.77[−3]
2s2p(3P )8p −24.142402 4.40552 1.65[−5] 7.735 7.64[−3]
2s2p(3P )9p −24.140599 4.45460 1.13[−5] 8.735 7.54[−3]
2s2p(3P )10p −24.139321 4.48935 8.08[−6] 9.735 7.45[−3]

2s2 p(3 P) −24.134046 4.63290

branching ratio (compare with Table VII). A regular decay
pattern for the main series emerges only above n = 8.

2. 2Se autoionizing states

The parameters of the resonances in 2
S

e symmetry are
reported in Tables VIII and IX. In the first energy interval,
all the resonances belong to the regular 2s2p( 3

P )np series.
As mentioned in Sec. III C, in single-channel approximation
the first term of this series, the 2s2p( 3

P )2p state, is above the
2s2 ionization threshold. However, when the doubly occupied
2p orbital is allowed to relax through interchannel interaction,
the 2s2p2( 2

S) state falls below the ionization threshold, thus
giving rise to an additional state in the bound series, rather
than to an autoionizing state.

As mentioned in the introduction to the present section,
one experimental paper from 1976 claims to have measured
the position of the 2s2p( 3

P )3p 2
S

e autoionizing state of the
neutral boron atom [120]. The position calculated here for
that state, 2.811 36 eV (compare with Table VIII), however,
differs from the value 2.677 01 eV reported in [120] by as
much as 134 meV (∼1100 cm−1). This apparent discrepancy
is much larger than what one could expect on the basis of
the excellent agreement already found for the position within
the bound 2s2ns Rydberg series of the 2s2p2 intruder state,
which can be regarded as the very first term in the 2s2p( 3

P )np
series. In fact, the correct description of the 2s2p2 state is
arguably more challenging than that of the subsequent terms
in the series. Furthermore, while the position of the 2s2p2 is
slightly affected by the mismatch between the experimental
and theoretical separation of the 2s2 and 2s2p( 3

P ) thresholds,
that of the 2s2p( 3

P )3p state is much less so, since we estimate
the energy of the resonances using the 2s3s(3S) threshold as a
reference. Indeed, the discrepancy between the experimental
and the theoretical energy gap between the 2s2p( 3

P )3p and
2s3s(3S) is between just 1 and 4 meV, depending on which
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TABLE IX. Parameters of the 2
S

e. The decay channels are, in order, 2s2εs , 2s2p(3P )εp , 2s2p(1P )εp , and 2p2(1D)εd .

Branching ratios (%)

State E(a.u.) E(eV) � (a.u.) n∗ �̄ (a.u.) ch1 ch2 ch3 ch4

2s2p(1P )3p −24.052112 6.86231 5.90[−3] 2.459 8.78[−2] 14.4 85.6
2s2p(1P )4p −24.010676 7.98980 2.17[−3] 3.481 9.15[−2] 16.8 83.2
2s2p(1P )5p −23.994237 8.43710 1.02[−3] 4.488 9.18[−2] 17.8 82.2
2s2p(1P )6p −23.985976 8.66187 7.94[−4] 5.495 1.32[−1] 18.4 81.6
2s2p(1P )7p −23.981286 8.78950 3.69[−4] 6.490 1.01[−1] 18.7 81.3
2s2p(1P )8p −23.978326 8.87004 2.39[−4] 7.491 1.00[−1] 18.9 81.1
2s2p(1P )9p −23.976350 8.92379 1.65[−4] 8.492 1.01[−1] 19.0 81.0
2s2p(1P )10p −23.974966 8.96146 1.19[−4] 9.492 1.02[−1] 19.1 80.9
2s2 p(1 P) −23.969417 9.11247

2p2(1D)3d −23.890814 11.25125 9.05[−5] 3.064 2.60[−3] 5.7 23.7 70.6
2s3s2 −23.877437 11.61522 2.43[−3] 3.541 1.08[−1] 30.4 7.1 62.6
2p2(1D)4d −23.868026 11.87129 1.34[−4] 4.051 8.93[−3] 10.3 19.2 70.5
2p2(1D)5d −23.857250 12.16452 5.19[−5] 5.039 6.64[−3] 9.6 30.9 59.5
2p2(1D)6d −23.851304 12.32630 2.84[−5] 6.031 6.23[−3] 9.6 42.0 48.3
2p2(1D)7d −23.847689 12.42467 1.80[−5] 7.024 6.22[−3] 9.4 51.9 38.7
2p2(1D)8d −23.845330 12.48886 1.24[−5] 8.020 6.42[−3] 9.0 59.7 31.4
2p2(1D)9d −23.843707 12.53302 9.15[−6] 9.016 6.71[−3] 8.5 65.4 26.1
2p2(1D)10d −23.842543 12.56469 7.00[−6] 10.013 7.03[−3] 8.1 69.5 22.5
2 p2(1 D) −23.837556 12.70039

2p2( 1
S)3s −23.825799 13.02029 8.27[−3] 2.201 8.81[−2] 0.1 30.9 21.7 47.4

2p2( 1
S)4s −23.776690 14.35655 2.87[−3] 3.039 8.06[−2] 3.1 33.7 38.2 25.0

2s3s(3S)4s −23.774563 14.41444 2.99[−4] 3.101 8.90[−3] 39.7 42.8 9.0 8.5
2s3p2 −23.757395 14.88157 3.17[−3] 3.789 1.72[−1] 7.0 66.2 9.4 17.4
2p2( 1

S)5s −23.753330 14.99217 2.38[−3] 4.031 1.56[−1] 5.0 20.8 38.7 35.5
2s3s(3S)5s −23.746728 15.17182 4.09[−5] 4.548 3.85[−3] 48.3 6.1 29.5 16.0
2s3s( 1

S)4s −23.744557 15.23091 4.29[−4] 4.768 4.65[−2] 18.0 46.0 32.5 3.5
2p2( 1

S)6s −23.740248 15.34815 5.88[−4] 5.317 8.84[−2] 0.7 43.2 17.2 38.9
2p2( 1

S)7s −23.735707 15.47171 4.48[−4] 6.167 1.05[−1] 0.8 25.3 36.1 37.7
2s3s(3S)6s −23.733990 15.51841 8.88[−5] 6.614 2.57[−2] 30.7 55.7 10.3 3.3
2p2( 1

S)8s −23.732409 15.56145 2.81[−4] 7.125 1.02[−1] 1.3 23.0 40.1 35.6
2p2( 1

S)9s −23.730171 15.62235 1.83[−4] 8.105 9.76[−2] 1.8 21.2 43.1 34.0
2p2( 1

S)10s −23.728606 15.66492 1.26[−4] 9.094 9.49[−2] 2.0 20.5 44.5 33.0
2p2( 1

S)11s −23.727477 15.69563 8.26[−5] 10.084 8.47[−2] 7.3 48.3 16.2 28.2
2s3s(3S)7s −23.727468 15.69590 4.85[−5] 10.094 4.98[−2] 35.1 30.4 27.8 6.6
2 p2( 1

S) −23.722560 15.82943

values of J one considers. For these reasons, the present
calculated result for the position of this resonance should not
be off the mark by more than �200 cm−1.

To ascertain the convergence of our results, we carried out
a larger calculation, using extended and thicker series of knots
for the B splines, more stringent thresholds for the determi-
nation of the LC basis, and including five additional virtual
PWCs: 2s4d(1,3D)εd, 2s4f ( 1,3

F )εf , 2s4p(1P )εp. The new
position of the 2s2p( 3

P )3p resonance, however, was found to
differ from the original one by just few cm−1. To exclude
that the discrepancy between the present theoretical result
and the value reported in [120] might be due to a highly
asymmetric photoabsorption profile, we computed the cross
section of the neutral boron atom from the 2s22p ground
state in a small energy range close to the resonance in both
length and velocity gauge. As shown in Fig. 4, the 2s2p3p

resonance gives rise to a sharp peak at −24.201 046 a.u.,
which differs by a mere 1.5 meV from the pole of the

scattering matrix, at −24.200 990 a.u. Moreover, the good
agreement between the two gauges supports our opinion that
the calculated cross section reliably reproduces the absorption
spectrum of the atom. In conclusion, the position assigned to
the 2s2p( 3

P )3p 2
S

e resonance in [120], which, to the best of
our knowledge, is the only one available in the literature, is
irreconcilable with the present theoretical result, and deserves
further experimental investigation.

In the second interval, between the 2s2p( 3
P ) and the

2s2p(1P ) thresholds, the 2s2p(1P )np series is also regular and
it decays preferentially to the 2s2p( 3

P )εp channel, a process
that does not require the parent ion to change configuration or
the satellite electron to change angular momentum. In fact, the
reduced width of this series, �̄ � 10−2 a.u., is the largest of
this energy region among all natural-parity doublet resonances,
with the only exception of the 2p3(2P ) state.

In the third interval, between the 2s2p(1P ) and the 2p2(1D)
thresholds, we encounter the first autoionizing intruder state
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FIG. 4. Photoionization cross section of the boron atom from
the 2s22p 2

P
o ground state to the 1s2εs ionization continuum, in

proximity of the 2s2p( 3
P )3p( 2

S) autoionizing state, computed in
velocity gauge (blue solid line) and length gauge (red dash-dotted
line). The cross section has been convoluted with a FWHM = 5 meV
Gaussian.

of the 2
S

e manifold, with dominant configuration 2s3s2. As
already observed for the 2s2p2( 2

S) state, even in this case
the multiple occupancy of an excited orbital results in a
significant shift of the energy of the 2s3s(3S)3s single-channel
approximation to the state, once the state is allowed to relax in
the CI calculation. Indeed, the intruder is clearly recognizable
as the large resonance between the first and the second terms
of the 2p2(1D)nd series (compare with the fourth panel from
the top in Fig. 3). This conclusion is also confirmed by the
analysis of the resonance composition in terms of Rydberg
PWC states, which shows that while the first autoionizing state
in this energy region is characterized by a large contribution
from the 2p2(1D)3d single-channel Rydberg state, the next
autoionizing state has a distinct 2s3s2 character. The branching
ratio of the higher 2p2(1D)nd states drifts steadily from the
2s2p(1P )εp to the 2s2p( 3

P )εp channel, either as a long-range
consequence of the 2s3s2 intruder state or as a general feature
of the highly polarizable 2s2p2 parent ion.

The fourth energy interval, between the 2p2(1D) and the
2p2( 1

S) thresholds, features, beyond the main 2p2( 1
S)ns

series, as many as six intruders states of diverse character: four
from the very close 2s3s(3S)ns series (n = 4–7), as well as the
2s3s(3S)4s and the 2s3p2 states. By looking at the fifth panel
in Fig. 3, the terms of the principal series are recognizable
as light-blue peaks with comparatively large width, �̄ � 0.1
a.u., while the intruders from the 2s3s(3S)ns series give rise
to narrower peaks with a characteristically small propensity
to decay to the 2p2(1D)εd channel. The latter circumstance is
reasonable, given that the B∗∗(2s3sns) → B+[2p2(1D)] + e−

d

decay path requires all three orbitals in the initial dominant
configuration to change and the parent ion to exchange as
much as two quanta of angular momentum with the bound ns

satellite in order to release it to the continuum as a d wave. On
the other hand, the assignment of the fourth resonance, with
n∗ = 3.789, from the resonant scattering parameters alone,
is not obvious. In this case, the analysis of the resonance
composition in terms of its Rydberg components is useful
to establish that this resonance is essentially due to the 2s3p2
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FIG. 5. Total photoionization cross section of the boron atom
from the 2s22p ground state to the 2

S
e

ionization continua, between
the 2p2 (1D) and the 2p2 ( 1

S) thresholds. See Fig. 4 and text for
further details.

intruder state. Once again, the final energy of this state, in
which the parent ion binds an electron in an orbital that is
already occupied, is significantly lower than the value obtained
for the 2s3p(3P o)3p state in the frozen-ion approximation.
The two resonances with n∗ close to 10 originate from the
2p2( 1

S)11s term of the main series and the 2s3s(3S)7s intruder
state. Even if these two states have extremely close unperturbed
energies, −23.727 438 2 and −23.726 621 1 a.u., and indeed
they give rise to two virtually overlapping resonances, their
widths, and even more the small propensity of the narrowest
to decay to the 2p2(1D)εd channel, indicates that the resonance
at n∗ = 10.084 belongs in fact to the main series, while the
other still has marked intruder character. All the remaining
resonances in the interval belong to the 2p2(1S)ns series. The
distinction of the resonances due to intruder states from those
of the main series is also visible from their profile in the total
photoionization cross section from the 2s22p ground state to
the 2

S
e continuum, in the fourth energy interval, which is

shown in Fig. 5. The cross section is dominated by the strong
peak of the 2s3p2 intruder state, at −23.757 a.u., which also
alters dramatically the profile of the nearest terms of the main
2p2( 1

S)ns series. The narrow 2s3s(3S)ns intruders, instead,
are barely visible.

TABLE X. Parameters of the 2
P

e resonances between the
2s2p(3P ) and the 2s2p(1P ) thresholds.

State E(a.u.) E(eV) � (a.u.) n∗ �̄ (a.u.)

2s2p(1P )3p −24.052545 6.85054 1.88[−3] 2.453 2.77[−2]
2s2p(1P )4p −24.011304 7.97271 2.46[−4] 3.455 1.01[−2]
2s2p(1P )5p −23.994697 8.42457 3.57[−5] 4.447 3.14[−3]
2s2p(1P )6p −23.986322 8.65246 2.87[−6] 5.438 4.62[−4]
2s2p(1P )7p −23.981507 8.78349 1.27[−7] 6.431 3.39[−5]
2s2p(1P )8p −23.978483 8.86576 1.80[−6] 7.426 7.37[−4]
2s2p(1P )9p −23.976458 8.92086 3.06[−6] 8.427 1.83[−3]

2s2 p(1 P) −23.969417 9.11247
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TABLE XI. Parameters of the 2
P

e resonances between the 2s2p(1P ) and the 2s3p(3P ) thresholds. The decay channels are, in order,
2s2p(3P )εp , 2s2p(1P )εp , 2p2(3P )εs , 2p2(3P )εd , and 2p2(1D)εd .

Branching ratios (%)

State E(a.u.) E(eV) � (a.u.) n∗ �̄ (a.u.) ch1 ch2 ch3 ch4 ch5

2p2(3P )3s −23.957312 9.44183 1.86[−2] 2.189 1.95[−1] 49.6 50.4
2p2(3P )4s −23.901645 10.95654 5.64[−3] 3.205 1.86[−1] 52.1 47.9
2p2(3P )5s −23.881180 11.51338 2.44[−3] 4.210 1.82[−1] 52.8 47.2
2p2(3P )6s −23.871373 11.78023 1.28[−3] 5.212 1.81[−1] 53.6 46.4
2p2(3P )7s −23.865918 11.92865 7.51[−4] 6.213 1.80[−1] 53.4 46.6
2p2(3P )8s −23.862574 12.01966 4.78[−4] 7.213 1.79[−1] 53.7 46.3
2p2(3P )9s −23.860376 12.07947 3.23[−4] 8.214 1.79[−1] 53.9 46.1
2p2(3P )10s −23.858854 12.12088 2.29[−4] 9.214 1.79[−1] 54.2 45.8
2p2(3P )11s −23.857757 12.15072 1.67[−4] 10.214 1.78[−1] 56.9 43.1

2p2(1D)3d −23.892882 11.19496 1.79[−4] 3.539 7.93[−3] 35.7 64.3
2p2(1D)4d −23.868935 11.84658 9.91[−5] 5.595 1.74[−2] 35.4 64.6
2p2(1D)5d −23.857627 12.15425 4.25[−5] 10.356 4.72[−2] 36.5 63.5

2p2(3P )3d −23.912285 10.66702 1.33[−4] 2.903 3.26[−3] 13.1 86.9
2p2(3P )4d −23.885793 11.38787 4.55[−5] 3.903 2.71[−3] 11.7 88.3
2p2(3P )5d −23.873862 11.71251 4.23[−5] 4.891 4.96[−3] 18.1 81.9
2p2(3P )6d −23.867283 11.89151 6.62[−6] 5.909 1.37[−3] 4.6 95.4
2p2(3P )7d −23.863481 11.99497 1.16[−5] 6.895 3.80[−3] 15.4 84.6
2p2(3P )8d −23.860995 12.06261 9.83[−6] 7.891 4.83[−3] 17.7 82.3
2p2(3P )9d −23.859299 12.10877 9.08[−6] 8.885 6.37[−3] 20.2 79.8
2p2(3P )10d −23.858106 12.14121 1.45[−5] 9.861 1.39[−2] 26.4 73.6
2 p2(3 P) −23.852965 12.28111

2p2(1D)6d −23.851501 12.32093 8.89[−5] 5.988 1.91[−2] 13.9 20.6 1.5 64.0
2p2(1D)7d −23.847799 12.42167 5.79[−5] 6.987 1.97[−2] 13.6 20.1 1.5 64.9
2p2(1D)8d −23.845397 12.48705 3.94[−5] 7.986 2.01[−2] 13.5 19.9 1.4 65.2
2p2(1D)9d −23.843749 12.53187 2.80[−5] 8.985 2.03[−2] 13.4 19.8 1.4 65.4
2p2(1D)10d −23.842571 12.56392 2.06[−5] 9.985 2.05[−2] 13.4 19.7 1.4 65.5
2 p2(1 D) −23.837556 12.70039

2s3p(3P )4p −23.707441 16.24082 3.65[−5] 2.906 8.97[−4] 54.6 6.3 24.3 0.4 14.4
2s3p(3P )5p −23.680565 16.97213 1.13[−4] 3.933 6.85[−3] 26.3 1.6 14.8 7.1 50.2
2s3p(3P )6p −23.668253 17.30711 1.74[−5] 4.998 2.18[−3] 56.4 4.9 24.8 2.7 11.2
2s3p(3P )7p −23.662086 17.47493 1.53[−5] 6.010 3.33[−3] 56.6 10.2 26.3 1.1 5.8
2s3p(3P )8p −23.658407 17.57504 1.32[−5] 7.013 4.57[−3] 53.4 14.1 26.3 0.7 5.5
2s3p(3P )9p −23.656028 17.63976 1.24[−5] 8.013 6.39[−3] 51.9 16.1 28.1 0.3 3.7
2s3p(3P )10p −23.654386 17.68445 1.25[−5] 9.021 9.21[−3] 41.6 26.4 22.8 0.9 8.3
2s3p(3P )11p −23.653220 17.71618 8.45[−6] 10.021 8.51[−3] 44.3 23.8 23.7 0.7 7.5

2s3p2 −23.776131 14.37177 4.16[−3] 1.977 3.22[−2] 10.1 57.3 13.6 0.4 18.6
2s3p(1P )4p −23.699179 16.46562 1.26[−3] 3.133 3.88[−2] 14.3 59.9 13.9 0.4 11.4
2s3p(1P )5p −23.676933 17.07094 6.12[−4] 4.175 4.45[−2] 11.1 53.2 12.0 1.6 22.1
2s3p(1P )6p −23.666647 17.35081 2.79[−4] 5.212 3.95[−2] 15.2 58.6 13.3 0.6 12.3
2s3p(1P )7p −23.660960 17.50557 1.55[−4] 6.270 3.81[−2] 15.4 58.9 13.1 0.5 12.1
2s3p(1P )8p −23.657497 17.59979 9.01[−5] 7.350 3.58[−2] 16.1 59.2 13.3 0.4 11.0
2s3p(1P )9p −23.655180 17.66284 6.08[−5] 8.489 3.72[−2] 10.2 58.2 11.1 1.5 19.0
2s3p(1P )10p −23.653655 17.70434 4.95[−5] 9.610 4.39[−2] 12.4 60.0 11.9 0.8 14.9
2s3d2 −23.677786 17.04774 2.26[−4] 4.114 1.57[−2] 7.6 3.1 5.6 14.1 69.6
2s3d(3D)4d −23.655767 17.64686 2.39[−5] 8.151 1.29[−2] 19.7 2.1 25.9 17.9 34.4
2s3 p(3 P) −23.648241 17.85165

3. 2P e autoionizing states

The parameters for the 2
P

e resonances are given in Tables X
and XI. The first interval, which for this manifold is comprised
between the 2s2p( 3

P ) and the 2s2p(1P ) thresholds, contains
the 2s2p(1P )np series of autoionizing states and no intruder
states. While the effective quantum numbers of the terms in

this series seem quite regular, however, the reduced width �̄n

exhibits a smooth yet very pronounced energy dependence,
with a deep minimum in correspondence of the 2s2p(1P )7s

states, for which �̄ is almost three orders of magnitude smaller
than that of the first term, followed by a steady recovery
afterwards. This behavior is readily recognized as the hallmark
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FIG. 6. Photoionization cross section of the boron atom from the
2s22p 2

P
o ground state to the 2s2p( 3

P )εp(2P ) ionization continuum.
See Fig. 4 and text for further details.

of the interaction with an intruder state, where the minimum
in the reduced width results from the destructive interference
between the decay amplitude of the main series and that of the
contaminant configuration, as predicted by quantum-defect
theory [118].

Such a mechanism, which is similar to the one responsible
for the zero of a Fano profile in photoionization cross sections,
is reflected here also in the inversion of the asymmetry
parameter of the resonance profiles in the photoionization
from the 2s22p ground state, shown in Fig. 6. This prediction
is confirmed by the presence, in the second energy interval, of
the 2p2( 3

P )3s resonance, which is located just 220 meV above
the 2s2p(1P ) threshold and has a width as large as 506 meV.

In the second energy interval, between the 2s2p(1P ) and
the 2p2( 3

P ) thresholds, there are two main series, the broad
2p2( 3

P )ns states (�̄ � 0.2 a.u.) and the narrower 2p2( 3
P )nd

TABLE XII. Parameters of the 2
D

e resonances in the first energy
interval, between the 2s2 and the 2s2p(3P ) thresholds.

State E(a.u.) E(eV) � (a.u.) n∗ �̄ (a.u.)

2s2p(3P )3p −24.209873 2.56964 1.74[−3] 2.568 2.94[−2]
2s2p(3P )4p −24.172940 3.57460 5.68[−4] 3.585 2.62[−2]
2s2p(3P )5p −24.157826 3.98584 2.87[−4] 4.585 2.77[−2]
2s2p(3P )6p −24.150061 4.19713 1.54[−4] 5.588 2.69[−2]
2s2p(3P )7p −24.145566 4.31945 9.34[−5] 6.588 2.67[−2]
2s2p(3P )8p −24.142730 4.39662 6.12[−5] 7.588 2.68[−2]
2s2p(3P )9p −24.140826 4.44842 4.25[−5] 8.588 2.69[−2]
2s2p(3P )10p −24.139486 4.48488 3.09[−5] 9.587 2.72[−2]

2s2p(3P )4f −24.165149 3.78659 1.57[−7] 4.009 1.02[−5]
2s2p(3P )5f −24.153977 4.09057 1.19[−7] 5.009 1.49[−5]
2s2p(3P )6f −24.147897 4.25601 8.65[−8] 6.008 1.87[−5]
2s2p(3P )7f −24.144227 4.35587 6.24[−8] 7.008 2.15[−5]
2s2p(3P )8f −24.141843 4.42073 4.59[−8] 8.008 2.36[−5]
2s2p(3P )9f −24.140208 4.46522 3.47[−8] 9.008 2.53[−5]
2s2p(3P )10f −24.139038 4.49706 2.70[−8] 10.007 2.71[−5]
2s2 p(3 P) −24.134046 4.63290

states (�̄ ∼ 10−2–10−3 a.u.), as well as the three intruder
states 2p2(1D)3d − 5d. The latter are readily recognized from
their positions: Their apparent effective principal quantum
numbers n∗ with respect to the 2p2( 3

P ) threshold, extrapolated
from the quantum defect of the 2p2(1D)6d − 9d terms
above threshold, are n

∗,Guess
2p2(1D)3d

= 3.514,n
∗,Guess
2p2(1D)4d

= 5.591,

and n
∗,Guess
2p2(1D)5d

= 10.337, in excellent agreement with the
values of 3.539, 5.595, and 10.356, respectively, obtained from
resonance fitting. Furthermore, all these three states exhibit
very characteristic branching ratio that are clearly distinct
from those of the two main series. While the 2p2( 3

P )ns states
seem to be quite insensitive to the presence of the intruder
states, the reduced width of the 2p2( 3

P )nd series exhibits a
pronounced modulation that indicates a strong interaction with
the 2p2(1D)nd intruders. This hypothesis, which is reasonable
already on the basis of the similarity between the dominant
configurations of these states, is confirmed by the decay
pattern of the higher terms in the 2p2(1D)nd series in the
following energy interval, which shows that the branching
ratio to the 2p2( 3

P )εd channel dominates (∼65%), while that
to the 2p2( 3

P )εs channel is negligible (1.5%).
The fourth and last interval, between the 2p2(1D) and the

2s3p( 3
P ) threshold, harbors, beyond the main 2s3p( 3

P )np
series, as many as 30 terms of the 2s3p(1P )np series, whose
limit is just 13 meV above the 2s3p( 3

P ) threshold. As a
result, these two sequences give rise to alternating resonances,
recognizable as a sequence of pairs of distinct peaks in the
density of states (compare with the seventh panel from above
in Fig. 3) up to large principal quantum numbers. The same
interval features also the 2s3d2 and the 2s3d(3D)4d intruder
states, each affecting one term in both 2s3p( 1,3

P )np series.
In Fig. 3, the intruder states appear as the second and third
green narrow peaks. The strong interaction of the 2s3d2 with
the 2s3p( 3

P )5p, in particular, displaces the latter significantly
and imparts to it a singularly large preference for the decay to
the 2p2(1D)εd channel.

4. 2De autoionizing states

The autoionizing states of the 2
D

e manifold are reported in
Tables XII, XIII, and XIV. Additional values are provided in
the Supplemental Material [117].

The first energy interval, between the 2s2 and the 2s2p( 3
P )

thresholds, has two main autoionizing series. The first term
of the larger 2s2p( 3

P )np series, with 2s2p2 configuration,
actually gives the largest contribution to the ground state in
this symmetry, as already discussed in Sec. III C. A substantial
energy shift with respect to the single-channel Rydberg states is
observed also for the 2s2p( 3

P )3p and 2s2p( 3
P )4p states. The

2s2p( 3
P )nf series is much narrower, with a reduced width of

the order of 10−5 a.u., which exhibits a pronounced energy de-
pendence. To the best of our knowledge, the 2s2p( 3

P )3p 2
D

e

resonance is the only other autoionizing state with symmetry
pertinent to the present work, beyond the 2s2p( 3

P )3p 2
S

e

already discussed in Sec. III D 2, whose position has been
claimed to have been determined experimentally [120]. In this
case, the values reported in the literature, E2s2p(3P )3p(2De

3/2) =
2.557 75 eV and E2s2p(3P )3p(2De

5/2) = 2.558 07 eV, differ from
the present theoretical value of 2.569 64 eV by 12 meV
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TABLE XIII. Parameters of the 2
D

e autoionizing states between the 2s2p(3P ) and the 2p2(1D) thresholds. The decay channels are, in
order, 2s2εd , 2s2p(3P )εp , 2s2p(3P )εf , 2s2p(1P )εp , 2s2p(1P )εf , and 2p2(3P )εd .

Branching ratios (%)

State E (a.u.) E (eV) � (a.u.) n∗ �̄ (a.u.) ch1 ch2 ch3 ch4 ch5 ch6

2s2p(1P )4f −23.989463 8.56699 1.28[−7] 4.994 1.59[−5] 57.9 24.1 18.0
2s2p(1P )5f −23.983337 8.73368 9.63[−8] 5.993 2.07[−5] 55.9 26.6 17.5
2s2p(1P )6f −23.979642 8.83422 7.11[−8] 6.993 2.43[−5] 54.3 28.7 17.0
2s2p(1P )7f −23.977244 8.89947 5.29[−8] 7.992 2.70[−5] 53.1 30.4 16.5
2s2p(1P )8f −23.975601 8.94420 4.00[−8] 8.992 2.91[−5] 52.1 31.8 16.1
2s2p(1P )9f −23.974425 8.97619 3.08[−8] 9.992 3.07[−5] 51.2 33.0 15.8
2s2p(1P )10f −23.973555 8.99985 2.42[−8] 10.991 3.21[−5] 50.6 34.0 15.5

2s2p(1P )3p −24.057946 6.70357 1.98[−3] 2.377 2.65[−2] 10.3 89.5 0.3
2s2p(1P )4p −24.012632 7.93657 7.60[−4] 3.401 2.99[−2] 10.3 89.3 0.3
2s2p(1P )5p −23.995149 8.41229 3.89[−4] 4.408 3.33[−2] 10.0 89.7 0.4
2s2p(1P )6p −23.986500 8.64764 2.30[−4] 5.410 3.64[−2] 9.6 90.0 0.4
2s2p(1P )7p −23.981583 8.78141 1.49[−4] 6.411 3.91[−2] 9.3 90.3 0.4
2s2p(1P )8p −23.978522 8.86472 1.02[−4] 7.410 4.14[−2] 9.1 90.5 0.4
2s2p(1P )9p −23.976486 8.92011 7.30[−5] 8.410 4.34[−2] 8.9 90.7 0.4
2s2p(1P )10p −23.975064 8.95881 5.42[−5] 9.410 4.51[−2] 8.8 90.8 0.4
2s2p(1P )11p −23.974031 8.98690 4.13[−5] 10.409 4.66[−2] 8.7 90.9 0.4
2s2 p(1 P) −23.969417 9.11247

2p2(3P )3d −23.906838 10.81524 8.58[−4] 3.046 2.43[−2] 0.5 9.2 90.0 0.2 0.0
2p2(3P )4d −23.883526 11.44954 4.73[−4] 4.045 3.13[−2] 0.6 12.9 86.0 0.5 0.0
2p2(3P )5d −23.872623 11.74620 2.57[−4] 5.043 3.29[−2] 0.6 10.1 89.2 0.2 0.0
2p2(3P )6d −23.866662 11.90842 1.85[−4] 6.042 4.07[−2] 0.5 17.6 78.7 3.1 0.0
2p2(3P )7d −23.863046 12.00680 1.02[−4] 7.042 3.55[−2] 0.6 12.4 86.7 0.3 0.0
2p2(3P )8d −23.860696 12.07075 6.85[−5] 8.042 3.56[−2] 0.6 11.3 87.9 0.2 0.0
2p2(3P )9d −23.859081 12.11469 4.86[−5] 9.041 3.59[−2] 0.6 10.3 88.9 0.2 0.0
2p2(3P )10d −23.857914 12.14644 2.59[−5] 10.051 2.63[−2] 1.5 4.9 57.0 17.2 19.5
2p2(3P )11d −23.857067 12.16950 2.46[−5] 11.040 3.32[−2] 0.4 3.0 95.8 0.8 0.1
2p2(3P )12d −23.856414 12.18727 2.42[−5] 12.040 4.22[−2] 0.5 17.9 78.4 3.0 0.1

2p2(1D)3d -23.894657 11.14668 2.47[-4] 3.463 1.03[-2] 4.6 6.7 7.7 31.6 49.3
2p2(1D)4d -23.869540 11.83011 1.14[-4] 5.492 1.89[-2] 5.0 6.1 9.7 36.7 42.5
2p2(1D)5d -23.857961 12.14517 6.84[-5] 10.004 6.85[-2] 4.2 7.4 33.9 27.4 27.2

2p2(1D)3s -23.951380 9.60324 7.20[-3] 2.254 8.24[-2] 0.8 66.9 0.4 31.9 0.0
2p2(1D)4s -23.889107 11.29769 2.06[-3] 3.719 1.06[-1] 0.5 65.4 0.8 33.2 0.1
2p2(1D)5s -23.867005 11.89909 8.43[-4] 5.968 1.79[-1] 0.3 60.4 6.7 32.5 0.1
2p2(1D)6s -23.856608 12.18198 4.48[-4] 11.715 7.20[-1] 0.3 65.4 1.5 32.5 0.1
2p2(1D)5g -23.857435 12.15949 1.66[-8] 10.576 1.96[-5]
2 p2(3 P) -23.852965 12.28111

2p2(1D)6d −23.851679 12.31610 3.58[−5] 5.950 7.54[−3] 5.1 4.5 10.3 38.9 36.8 4.4
2p2(1D)7d −23.847910 12.41867 2.25[−5] 6.949 7.56[−3] 5.1 4.3 10.5 39.5 35.9 4.6
2p2(1D)8d −23.845470 12.48506 1.51[−5] 7.949 7.56[−3] 5.1 4.2 10.7 39.9 35.3 4.8
2p2(1D)9d −23.843800 12.53048 1.05[−5] 8.948 7.56[−3] 5.1 4.1 10.9 40.1 34.9 4.9
2p2(1D)10d −23.842608 12.56292 7.67[−6] 9.948 7.55[−3] 5.1 4.0 11.0 40.3 34.6 5.0
2p2(1D)11d −23.841728 12.58688 5.74[−6] 10.948 7.54[−3] 5.1 4.0 11.0 40.4 34.4 5.0

2p2(1D)7s −23.850890 12.33756 2.64[−4] 6.123 6.07[−2] 0.3 65.5 0.6 32.2 0.1 1.2
2p2(1D)8s −23.847407 12.43233 1.67[−4] 7.124 6.05[−2] 0.3 65.7 0.6 32.0 0.2 1.3
2p2(1D)9s −23.845131 12.49428 1.13[−4] 8.125 6.04[−2] 0.3 65.9 0.6 31.8 0.2 1.3
2p2(1D)10s −23.843561 12.53700 7.95[−5] 9.125 6.04[−2] 0.3 66.0 0.6 31.7 0.2 1.3
2p2(1D)11s −23.842433 12.56768 5.82[−5] 10.125 6.04[−2] 0.3 66.1 0.6 31.6 0.2 1.3
2 p2(1 D) −23.837556 12.70039
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TABLE XIV. Parameters of the 2
D

e autoionizing states between the 2p2(1D) and the 2p2( 1
S) thresholds. The decay channels are, in order,

2s2εd , 2s2p(3P )εp , 2s2p(3P )εf , 2s2p(1P )εp , 2s2p(1P )εf , 2p2(3P )εd , 2p2(1D)εs , 2p2(1D)εd , and 2p2(1D)εg .

Branching ratios (%)

Main configuration E (a.u.) E (eV) � (a.u.) n∗ �̄ (a.u.) ch1 ch2 ch3 ch4 ch5 ch6 ch7 ch8 ch9

2p2( 1
S)3d −23.788102 14.04605 3.76[−3] 2.762 7.91[−2] 5.2 4.9 0.4 0.6 73.5 4.9 6.1 1.0 3.4

2p2( 1
S)4d −23.756360 14.90973 1.29[−3] 3.846 7.33[−2] 2.5 9.8 0.9 3.3 72.0 7.3 0.7 0.9 2.5

2p2( 1
S)5d −23.742743 15.28024 1.35[−3] 4.977 1.66[−1] 0.2 2.5 1.6 6.3 58.9 11.9 0.3 9.4 8.9

2p2( 1
S)6d −23.737126 15.43310 8.18[−4] 5.859 1.64[−1] 3.1 1.9 0.8 6.5 69.1 9.8 0.4 3.2 5.3

2p2( 1
S)7d −23.733301 15.53717 4.49[−4] 6.823 1.43[−1] 4.0 2.5 0.7 4.8 71.2 9.6 0.1 2.7 4.4

2p2( 1
S)8d −23.730784 15.60565 2.82[−4] 7.797 1.34[−1] 5.8 3.3 0.6 5.6 70.1 8.7 0.0 2.2 3.6

2p2( 1
S)9d −23.729062 15.65252 2.00[−4] 8.769 1.35[−1] 9.2 5.1 0.8 10.2 62.7 6.9 0.7 1.7 2.6

2p2( 1
S)10d −23.727799 15.68688 1.20[−4] 9.769 1.12[−1] 7.0 4.2 0.6 4.3 70.8 8.3 0.1 1.9 2.8

2s3s(3S)3d −23.801461 13.68254 4.56[−3] 2.517 7.28[−2] 10.0 33.2 2.2 34.3 6.8 0.0 9.8 3.7 0.1
2s3s(3S)4d −23.750545 15.06796 1.09[−3] 4.227 8.26[−2] 0.1 0.3 1.0 20.2 37.4 10.6 14.1 5.0 11.3
2s3s(3S)5d −23.735990 15.46401 2.02[−4] 6.102 4.59[−2] 11.4 0.4 14.2 28.6 0.1 1.0 31.3 12.7 0.4
2s3s(3S)6d −23.728754 15.66089 9.78[−5] 8.984 7.10[−2] 9.6 5.9 11.4 33.1 2.9 1.4 27.1 7.9 0.5
2s3p2 −23.764984 14.67508 1.17[−3] 3.433 4.72[−2] 13.5 62.2 1.1 1.8 1.7 4.6 9.1 0.8 5.3
2s3s( 1

S)4d −23.745677 15.20041 5.59[−4] 4.651 5.62[−2] 16.0 14.0 10.6 0.4 23.0 1.4 6.7 27.1 0.7
2 p2( 1

S) −23.722560 15.82943

(compare with Table XII), which is, in principle, a satisfactory
agreement. Indeed, a 12-meV difference is compatible with the
accuracy expected for the present calculation, and it is only a
fraction of the resonance width, which is of the order of 50
meV, and which should be unambiguously visible as an almost
window resonance in the transition from the ground state
(see Fig. 7). That said, the experiment reports two different
values for the position of the 3/2 and 5/2 components of the
autoionizing multiplet, supposedly separated by a mere 0.32
meV, i.e., less than 1% of the resonance width. This apparently
contradictory circumstance, together with the lack of any
details on how the transitions are extracted from the measured
spectrum, which is not available, or the assignments made,
calls those experimental results into question and suggests
that further experimental investigation is needed.

In the second interval, between the 2s2p( 3
P ) and the

2s2p(1P ) thresholds, there are again two main series, the

-24.22 -24.21 -24.2
Absolute Energy (a.u.)

0

10

20

30

40

P
ho

to
io

ni
za

tio
n 

C
ro

ss
 S

ec
tio

n 
(M

b) VEL
LEN

FIG. 7. Photoionization cross section of the boron atom from the
2s22p 2

P
o ground state to the 2s2εd ionization continuum, in the

proximity of the 2s2p( 3
P )3p(2D) autoionizing state. See Fig. 4 and

text for further details.

narrow 2s2p(1P )nf series, and a much broader 2s2p(1P )np
series, with a very pronounced preferential decay to the
2s2p( 3

P )εp channel (∼90%). In this case, both these seem-
ingly regular series actually exhibit a steady increase of their
reduced width, possibly as a result of the influence of the
2p2(1D)3s, which is located slightly above the 2s2p(1P )
threshold.

The third interval, between the 2s2p(1P ) and the 2p2( 3
P )

thresholds, has a very rich structure due to the presence, just
15 meV above its upper limit, of the 2p2(1D) threshold,
which binds several Rydberg satellites, with s, d, and g

angular momentum and that appear here as intruder states.
The distribution of the main series and of the intruder states is
clearly seen in the second panel from the bottom in Fig. 3. The
regular series is given by the light-violet peaks, which indicates
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FIG. 8. Total photoionization cross section of the boron atom
from the 2s22p ground state to the 2De ionization continuum, between
the 2s2p (1P ) and the 2p2 ( 3

P ) thresholds. See Fig. 4 and text for
further details.
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a preferential decay by emission of an electron with angular
momentum larger than 2. Indeed, the main series 2p2( 3

P )nd

decays preponderantly to the 2s2p( 3
P )εf channel. The light-

blue peaks correspond to the 2p2(1D)3d − 5d intruder states,
the last of which interacts strongly with the 2p2( 3

P )10d term
of the main series. The 2p2(1D)3s − 6s intruder states give
rise to the broadest resonances, which decay preferentially to
the 2s2p( 3

P )εp channel. The intruder 2p2(1D)5g gives rise
to a vanishingly narrow resonance, with � = 1.66 × 10−8 a.u.
Beyond n∗ = 12, where no further intruder states can be found,
the parameters of the main 2p2( 3

P )nd series steadily approach
their asymptotic values.

The many intruder states in this region give also rise to
recognizable resonant features in the total photoionization
cross section from the ground state (see Fig. 8), superposed to
those of the denser main series.

In the narrow energy interval between the 2p2( 3
P ) and the

2p2(1D) thresholds there are, in principle, three regular main
series. The terms of the narrowest 2p2(1D)ng series, however,
are virtually bound and have not been resolved here. The
two remaining 2p2(1D)ns and 2p2(1D)nd series have very
stable reduced parameters. For both series, the branching ratio
to the newly open 2p2( 3

P )εd channel is very small, and the
branching ratio to the other channels closely reproduces that
of the corresponding intruder states examined in the previous
energy interval.

Finally, as in the case of the other two natural symmetries,
the fifth and last interval, between the 2p2(1D) and the 2p2( 1

S)
thresholds, features one main series and numerous intruder
states from the nearby 2s3s( 3,1

S) and 2s3p( 3
P ) thresholds.

The parameter of the resonances in this energy region are
listed in Table XIV, together with their tentative assignment.
The density of states corresponding to this interval, shown
in the bottom panel of Fig. 3, conveys the idea that, while
for n∗ � 5 there is a reasonably clear-cut distinction between
the 2p2( 1

S)nd main series and the intruder states, at smaller
energies the terms of the main series are strongly mixed with
the four 2s3s(3S)3d, 2s3s(3S)4d, 2s3s( 1

S)3d, and 2s3p2

intruder states.

IV. CONCLUSIONS

We have presented a new implementation of the B-spline
K-matrix method, based on the close-coupling expansion with
a localized channel to complement short-range correlation,
for three-active electron atoms with a polarizable core, in
which the core-valence interaction potential comprises both
a one-body and a two-body dipolar component. The method
is designed to predict, at a moderate computational cost and
with competitive and uniform precision, the properties of
the single-ionization continuum of polyelectronic atoms, and
it has been applied to compute a large number of bound
and autoionizing doublet states of the neutral boron atom
in the 2

S
e , 2P e,o, and 2

D
e symmetries, for which little or

no data were previously available, thus filling an important
gap in the literature. The present theoretical data are in
very good agreement with the few validated experimental
and theoretical records that are available for comparison.
The extensive theoretical analysis conducted in this work
permitted us to highlight several rearrangement processes

driven by the electronic correlation between three similarly
excited electrons. Finally, the CC + LC bases examined in
this work constitute a suitable space in which to conduct
time-resolved studies of the correlated dynamics of three elec-
trons triggered by subfemtosecond extreme-ultraviolet pulses.
Therefore, this work, which demonstrates the possibility of
building accurate scattering states within those same spaces,
opens the way to the “exact” asymptotic analysis of correlated
three-electron wave packets in the single-ionization continuum
of three-electron systems, in a way similar to the one that
has already been successfully employed for the helium atom
[83–86,88].
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APPENDIX : MATRIX ELEMENTS BETWEEN
THREE-ELECTRON CONFIGURATIONS

In this Appendix we provide the expressions for the matrix
elements of one- and two-body spin-free operators, such as
the Hamiltonian and the dipole transition operators, between
products of three angularly coupled electrons, |123〉, built from
nonorthogonal radial orbitals,

〈{�ri}|123〉 = [[
φn1	1 (�r1) ⊗ φn2	2 (�r2)

]
	12

⊗ φn3	3 (�r3)
]
LM

.

For bra states, we use primed indexes. As shown in Sec. II B,
one needs to evaluate matrix elements of operators of the
form n−1

γ Oρ̂
γ̄s

SaSb
, where γ̄s identifies the total spin, whereas Sa

and Sb indicate the intermediate spin coupling, between the
first two electrons, in the bra and ket states, respectively. In
the case of one-body operators, such as the kinetic energy or
the dipole, we can write n−1

γ Oρ̂
γ̄s

SaSb
= 1

6

∑
iσ D

γ̄ ∗
SaSb

(σ ) o(i) σ ,

whereas for two-body operators we can write n−1
γ Gρ̂

γ̄s

SaSb
=

1
6

∑
kσ D

γ̄ ∗
SaSb

(σ ) g(i,j ) σ , where it is assumed that in the last
expression ijk are cyclic permutations of 123. The full matrix
elements between antisymmetrized spin and angularly coupled
three-electron states, therefore, are simple linear combinations
of matrix elements of the form 〈1′2′3′‖oT (i)σ‖123〉, for one-
body tensor operator of rank T , and 〈1′2′3′|g(i,j )σ |123〉, for
two-body operators. In the latter case, in particular, we are
interested in the interelectronic repulsion r−1

12 = ∑
l gl(1,2),

with gl(1,2) = rl
<
/ rl+1

>
Pl(r̂1 · r̂2). These matrix elements can

be written as the product of overlap integrals, radial transition
integrals, and angular coefficients Fiσ and Gkσ ,

〈1′2′3′‖oT (i)σ‖123〉 = Fiσ �	′
12	12LL′ 〈i ′‖oT ‖σ̄i〉

∏
j �=i

〈j ′|σ̄j 〉,

〈1′2′3′|gl (i,j )σ |123〉 = Gkσ �	′
12	12 {i ′j ′|σ̄i σ̄j }l 〈k′|σ̄k〉,

with �ab··· = √
(2a+1)(2b+1)···, 〈i ′|j 〉 = δ	′

i 	j
〈φ′

i |φj 〉, {1′2′|12}l
= (−)l�	1	2C

	′
10

l0,	10C
	′

20
l0,	20〈φ′

1φ
′
2| rl

<

rl+1
>

|φ1φ2〉, and σ σ̄ = 1. The
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TABLE XV. Coefficients Fiσ and Gkσ , for the matrix elements of the one-body tensorial operator oT (i)σ and the two-body multipolar scalar
operator gl (i,j )σ , respectively, between angularly coupled three-electron configurations. Here, the permutation σ = (123) is defined such that
σf (x1,x2,x3) ≡ f (xσ1 ,xσ2 ,xσ3 ) = f (x3,x1,x2), and hence σφ1φ2φ3 = φσ̄1φσ̄2φσ̄3 = φ2φ3φ1. The naturality ν is defined so that ν = 1 (ν = −1)
for natural (unnatural) states and operators. For all other angular symbols we follow the conventions in [121].

Fiσ

�
�σ

i
1 2 3

E

{
	′

12 	12 T

	1 	′
1 	2

}{
L T L′

	′
12 	3 	12

}
ν ′

12 ν12 ν

{
	′

12 	12 T

	2 	′
2 	1

}{
L T L′

	′
12 	3 	12

}
ν

{
L T L′

	′
3 	12 	3

}
{	1	2	12}
�

	′12	12

δ	′
12	12 ν ′ ν ′

12 νo

(13)

{
	1 	2 	12

	′
1 L′ 	′

12

}{
L T L′

	′
1 	12 	3

}
ν12 νo ν ′

{
L T L′
	3 	′

2 	′
12

	12 	2 	1

}
ν

{
	1 	2 	12

	3 L 	′
12

}{
L T L′

	′
3 	′

12 	1

}
ν ′

12 ν ′ νo

(23)

{
L T L′
	3 	′

1 	′
12

	12 	1 	2

}
ν ′

12 ν12 ν

{
	1 	2 	12

L′ 	′
2 	′

12

}{
L T L′

	′
2 	12 	3

}
ν ′ νo ν ′

12

{
	1 	2 	12

L 	3 	′
12

}{
L T L′

	′
3 	′

12 	2

}
νo ν ′ ν12

(12)

{
	′

12 T 	12

	2 	1 	′
1

}{
L T L′

	′
12 	3 	12

}
ν ′

12 ν

{
	12 T 	′

12

	′
2 	2 	1

}{
L T L′

	′
12 	3 	12

}
ν ν12

{
L T L′

	′
3 	12 	3

}
{	1	2	12}
�

	′12	12

δ	′
12	12 ν ′

(123)

{
L T L′
	3 	′

1 	′
12

	12 	2 	1

}
ν ν ′

12

{
	1 	2 	12

	′
2 L′ 	′

12

}{
L T L′

	′
2 	12 	3

}
ν ′

12 ν12 νo ν ′
{
	1 	2 	12

	3 L 	′
12

}{
L T L′

	′
3 	′

12 	1

}
νo ν ′

(321)

{
	′

12 	1 	′
1

	12 L′ 	2

}{
L T L′

	′
1 	12 	3

}
νo ν ′

{
L T L′
	3 	′

2 	′
12

	12 	1 	2

}
ν ν12

{
	1 	2 	12

L 	3 	′
12

}{
L T L′

	′
3 	′

12 	2

}
ν ′

12 ν12 ν ′ νo

Gkσ

�
��σ

k
1 2 3

E

{
	′

12 l 	12

	2 	1 	′
2

}{
	′

12 l 	12

	3 L 	′
3

}
ν ν ′

12 ν12

{
	1 l 	′

1

	′
12 	2 	12

}{
	′

12 l 	12

	3 L 	′
3

}
ν

{
	′

1 l 	1

	2 	′
12 	′

2

}
{L	3	′

12}
�

	′12	12

δ	′
12	12 ν ′

12

(13)

{
	′

2 l 	2

	1 	12 	′
3

}{
	′

3 	′
12 L

	3 	12 	′
2

}
ν12

{
	′

1 	′
12 	2

	3 L 	12
l 	′

3 	1

}
ν

{
	′

1 	′
12 	′

2

	2 l 	3

}{
L 	1 	′

12

	2 	3 	12

}
ν ′

12

(23)

{
	12 	3 L

	2 l 	′
3

	1 	′
2 	′

12

}
ν ν ′

12 ν12

{
	1 	12 	2

	′
3 l 	′

1

}{
	′

1 	′
12 	3

L 	′
3 	12

}
ν ′

12

{
	′

2 l 	3

	2 	′
1 	′

12

}{
L 	2 	′

12

	1 	3 	12

}
ν12

(12)

{
	′

2 l 	1

	12 	2 	′
12

}{
	′

12 l 	12

	3 L 	′
3

}
ν ν ′

12 ν12

{
	′

12 	1 	′
1

	2 l 	12

}{
	′

12 l 	12

	3 L 	′
3

}
ν ν12

{
	′

1 l 	2

	1 	′
12 	′

2

}
{	′

12	3L}
�

	′12	12

δ	′
12	12

(123)

{
	′

2 l 	3
	2 	1 	12
	′

12 	′
3 L

}
ν ν ′

12

{
	1 	12 	2

	′
1 l 	′

3

}{
	′

3 	12 	′
1

	3 	′
12 L

}
ν ′

12 ν12

{
	′

2 	3 l

	2 	′
1 	′

12

}{
L 	1 	′

12

	2 	3 	12

}

(321)

{
	1 	12 	2

	′
3 l 	′

2

}{
	′

2 	′
3 	12

L 	3 	′
12

} {
	′

1 	′
12 	1

	3 L 	12
l 	′

3 	2

}
ν ν12

{
	′

12 	′
2 	′

1

l 	3 	1

}{
L 	2 	′

12

	1 	3 	12

}
ν ′

12 ν12

angular coefficients Fiσ and Gkσ can be computed with stan-
dard techniques of angular algebra [121]. Their expressions

in terms of 3nj symbols, as a function of bra and ket angular
momentum quantum numbers, are listed in Table XV.
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