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Spin-orbit interactions in electronic structure quantum Monte Carlo methods
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We develop generalization of the fixed-phase diffusion Monte Carlo method for Hamiltonians which explicitly
depends on particle spins such as for spin-orbit interactions. The method is formulated in a zero-variance manner
and is similar to the treatment of nonlocal operators in commonly used static-spin calculations. Tests on atomic
and molecular systems show that it is very accurate, on par with the fixed-node method. This opens electronic
structure quantum Monte Carlo methods to a vast research area of quantum phenomena in which spin-related
interactions play an important role.
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I. INTRODUCTION

Quantum Monte Carlo (QMC) methods are making signif-
icant contributions to our understanding of many-body effects
in quantum systems. Although hampered by the infamous
fermion sign problem, a number of approaches have been
explored for dealing with inefficiencies whenever sampled
distributions possess varying signs or complex values. One of
the commonly used strategies is the fixed-node approximation
that replaces the fermionic antisymmetry with boundaries
given by trial wave function nodes. For broken time-reversal
Hamiltonians or for twisted boundary conditions [1] with
inherently complex eigenstates, the fixed-node condition
has been generalized to the fixed-phase approximation [2].
Benchmark quality results for both models and real materials
have been obtained in many settings such as molecules, solids,
noncovalently bonded complexes, ultracold condensates and
other systems [3,4].

Electronic structure QMC calculations are usually done
with particle spins being assigned fixed labels, up or down.
Since spins commute with Hamiltonians without explicit spin
terms, the problem simplifies to the spatial solution of the
stationary Schrödinger equation. Treating the spins as quantum
variables for more complicated Hamiltonians was explored
very early [5] in variational Monte Carlo (VMC) calculations
of nuclear systems. However, extending this to projection
methods such as the diffusion Monte Carlo (DMC) in position
space [3,4] is much more involved. Building upon results for
nuclear systems [6–8], a DMC method has been proposed and
applied to a two-dimensional (2D) electron gas with Rashba
spin-orbit interaction [9]. In this approach the spinors are
stochastically updated by the action of the spin-orbit operator
that is absorbed into the path sampling part of the propagator.
It effectively samples the space of spinor states rather than
(spin) coordinates and a similar VMC approach has been
implemented for spin-orbit in atoms [10] very recently.

Here we propose a development that is formulated as the
DMC method in coordinate space with spinors in the trial state
kept intact during the imaginary time evolution. This implies
the zero variance property, i.e., the bias in the obtained energy
is proportional to the square of the trial function error.

The method builds upon our previous work [11] on nonlocal
pseudopotentials (PP) since the spin-orbit operator is just

another case of inherent nonlocality. It is also well suited for
calculations of real systems with heavy atoms since both scalar
relativistic and spin-orbit effects can be accurately represented
by pseudopotentials as is routinely done in quantum chemical
calculations [12]. In particular, commonly used semilocal one-
particle PP operator W = ∑

l,m vl(r)|lm〉〈lm| is generalized to

W =
∑
l,j

vlj (r)
∑
mj

|ljmj 〉〈ljmj | (1)

where |ljmj 〉 are atomic one-particle spinors, vlj are potential
functions, while r is the distance from the ion. The method
employs the fixed-phase approximation and therefore depends
on the accuracy of the trial function similarly to the fixed-node
DMC with static spins.

II. DISCUSSION

A. Phase and absolute value

We assume a Hamiltonian H = T + V + W , where V

denotes electronic and ionic local interactions while W

represents nonlocal and spin-orbit PP terms. Substituting
� = ρ exp(i�) into the imaginary-time Schrödinger equation
gives, for the real component,

−∂tρ = [T + V + WRe + (∇�)2/2]ρ, (2)

where WRe = Re[ρ−1 exp(−i�)Wρ exp(i�)]. The imaginary
component equation describes the phase � flow conservation
between sources and sinks represented by the imaginary part
of W ; however, it has no contribution to the total energy since
W is Hermitian. In the limit t → ∞, the stationary solution
of the real part provides the desired ground-state energy and
corresponding ρ.

B. Approximations

In general, neither the exact phase � nor WRe are known
and we have to introduce approximations. First, we impose the
fixed-phase approximation in which � is replaced by the trial
wave function phase. The corresponding potential is given as

(∇�)2/2 ≈ (∇�T )2/2 (3)
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For a given V + WRe in an ordinary representation it follows
that this approximation is variational [2], i.e., the energy
expectation with ρ exp(i�T ) is an upper bound to the exact
value for an arbitrary symmetric ρ � 0. Since the fixed-phase
solution for ρ is non-negative everywhere by construction, the
fermion sign problem is eliminated variationally; this implies
the need for accurate approximations to the many-body phase.
For the sake of completeness we also note that the fixed-
node approximation commonly used in QMC with real wave
functions is a special case of the fixed-phase approximation, as
had been pointed out by Ortiz et al. [2]. In addition, we note that
in twist-averaging (Brillouin zone sampling) calculations of
periodic systems one employs both fixed-node and fixed-phase
approximations on equal footing since they typically exhibit
comparable systematic and statistical errors [1].

The second approximation involves the projection of W

onto the trial function, similarly to the localization ap-
proximation for nonlocal pseudopotentials [11] in spin-free
Hamiltonians. WRe is approximated as

WRe ≈ WRe
T = Re

[
�−1

T W�T

]
. (4)

This results in a multiplicative many-body operator and one
can show that the bias in energy obtained with WRe

T vanishes
quadratically in the trial function error [11]. The resulting
energy is not necessarily variational; however, the variational
property can be recovered with an appropriate modification
[13] of the T-moves algorithm [14].

C. Continuous spin and its updates

In its usual representation, the spin configurations have
discrete values ±1/2 so that for Sz eigenstates χ↑(1/2) =
χ↓(−1/2) = 1, χ↓(1/2) = χ↑(−1/2) = 0. The correspond-
ing configuration space is noncompact and therefore would
lead to so-called jumps in the evolving stochastic paths.
Such jumps could easily make the sampling process rather
inefficient since the corresponding local energy fluctuations
could go up substantially. Large fluctuations would complicate
both the importance sampling and make calculations of larger
systems intractable and, eventually, unreachable. Another
straightforward option would be to integrate over all spins for
every spatial step; however, this would scale exponentially due
to the 2N configurations for N electrons. One way to overcome
this difficulty is to introduce a continuous, overcomplete, and
compact representation [15] that enables us to make the paths
smooth. Obviously, we also wish that the spin coordinate space
is small so that the sampling can be fast. This points towards
the pair of orthogonal states for a one-dimensional (1D) ring
as one possible option,

〈si |χ↑〉 = eisi ; 〈si |χ↓〉 = e−isi ; 〈χα|χβ〉 = 2πδαβ. (5)

We note that overcompleteness can also compromise the varia-
tional property although we estimate that the dominant source
of such possible bias would be the localization approximation.

The sampling of spins is done in a manner similar to the
spatial degrees of freedom. For this purpose we add spin kinetic
energies into the Hamiltonian H for all si,i = 1, . . . ,N . It

includes an effective mass μs and an energy offset

Tsi
= − 1

2μs

[
∂2

∂s2
i

+ 1

]
(6)

so that it annihilates an arbitrary spinor ψ

Tsi
ψ = Tsi

[αϕ↑(ri)χ
↑(si) + βϕ↓(ri)χ

↓(si)] = 0. (7)

The offset cancels out the bare spin kinetic contribution;
however, T s does not commute with H so there is some
additional contribution to the energy. For the considered
strengths of spin orbit, this contribution appears to be small and
can be fully eliminated by running the effective spin mass μs

to zero; this effectively increases the corresponding diffusion
constant and in turn speeds up the spin sampling. Another
significant effect of such faster spin evolution is that a subset
of possible spin configurations gets sampled per single spatial
step. This partial averaging statistically approximates the full
average over the 2N space. Since one can adjust the spatial
and spin time steps independently, it is possible to carry out
extrapolations to find the unbiased values. Due to the fact that
the spin functions are very smooth, in the tested cases we found
that a spin time step that is 5–10 times larger than the spatial
one was sufficient such that the resulting energies were not
affected.

D. Importance sampling and trial function

The final step is the importance sampling that is accom-
plished by multiplying the real part of the Schrodinger equation
with the trial function ρT . The trial function is a product of the
Jastrow factor and Slater determinant(s) of spinors

�T (R,S) = exp[U (R)]
∑

k

ckdetk[{ψn(ri ,si)}], (8)

where R = (r1, . . . ,rN ) and S = (s1, . . . ,sN ). The Jastrow
factor includes electron-ion, electron-electron, and possibly
higher order terms. Since U (R) depends only on the spatial
coordinates, the spin integrations in the nonlocal opera-
tor can be done explicitly and the rest is similar to the
treatment of nonlocality in static spin calculations [11,13].
The short-time approximation for the importance sampled
propagator [3,4] is a product of the dynamical and reweight-
ing factors G(R,S; R′,S′) = Gdyne

−
t(Eloc+E′
loc−2ET )/2, where

Eloc(R,S) = [H�T ]/�T . Note that as �T converges to
the exact eigenstate the local energy approaches the exact
eigenvalue with vanishing variance pointwise, regardless of
the representation or the propagator accuracy. Note that the
success of the method depends on the local energies to be
mildly varying since large fluctuations could cause very large
variance of the exponentials and make the sampling very
inefficient. More details about this fixed-phase spin-orbit DMC
(FPSODMC) method are further elaborated elsewhere [13].

III. RESULTS

A. Atomic calculations: Excitations
in Pb, Bi, and W atoms

We present results for the lowest excitations of Pb, Bi,
and W atoms as a testing ground for atomic calculations with
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spin-orbit effects. This choice is motivated by several con-
siderations. Clearly, the spin-orbit interaction is appreciably
large in Pb and Bi. These atoms are often used as the simplest
illustrations of the spin-orbit splittings since they exhibit an
open shell with only two and three p states, respectively. That
makes the splittings at the linear combination of orbitals level
analytically transparent and is often used in textbooks [16].
At the same time, the spin orbits in these atoms have impact
beyond just finding the corresponding multiplet energies for
the well-understood cases. In particular, spin-orbit-induced
shift in the ground-state energy changes the key quantities
such as energies in chemical bonds by very large amounts, as
we illustrate later.

The W atom calculations illustrate another important point.
As demonstrated below, the interplay of spin orbit and
correlation is needed to find basic properties such as the
symmetry and occupation in the ground state of this atom.
Note that the effect is significant since these properties are
different from its isovalent elements in the same column of
the periodic table such as Cr and Mo, despite the fact that Mo
exhibits a sizable spin-orbit interaction as well. Therefore, the
example of W atom is quite revealing as a demonstration of
these combination of effects.

The chosen examples show the introduced method to be on
par with essentially the only total energy, wave-function-based
alternative, namely, the expansions in Slater determinants with
large basis sets. In some cases, the accuracy and agreement
between the two approaches enabled us to reveal the accuracy
limits of the existing PPs and to point out that a new generation
of PPs will be needed in order to harness the full potential
of such accurate QMC calculations. Note that the used
PPs were constructed in a Dirac-Hartree-Fock formulation,
and therefore one does not expect their accuracy to be
systematically better than 0.1–0.2 eV for energy differences.
Additionally, QMC is scalable to much larger systems. Clearly
this positions our method for promising prospects for high-
accuracy correlated calculations of larger molecular and solid
systems with spin-dependent Hamiltonians.

In the valence-only framework we have tested two types
of relativistic PPs for Pb and Bi with spin-orbit terms:
large core (LC) with 4 and 5 valence electrons and small
core (SC) with 22 and 23 valence electrons respectively
[17,18]. The spinors for the Slater determinants are obtained
from the two-component Dirac-Fock with complete open-
shell configuration interaction (COSCI) calculations using an
extensive basis set and the DIRAC13 [19] code. For the COSCI
trial wave functions, we include only the local, s, p3/2, and
p1/2 channels in the LC PP, and for the SC we add d5/2 and
d3/2.

We note that unlike in ls coupling the only good quantum
number is the total angular momentum J and the lower
symmetry is indeed manifested in significant mixing of the
states. For example, the ground state 3P0(6s26p2) mixes very
strongly with the highest state 1S0(6s26p2) with an amplitude
of ≈0.2. Using the same Hamiltonian, we perform a full con-
figuration interaction (FCI) in the two-component formalism
to compare with our fixed-phase spin-orbit DMC (FPSODMC)
calculations. The total energies from FPSODMC and FCI are
shown in Fig. 1. The agreement between the total energies
is excellent, showing that as soon as the most significant
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FIG. 1. Total energies of the lowest states of Pb atom from the FCI
method (circles) with cc-pVnZ basis sets compared to FPSODMC
with a COSCI trial wave function (dashed lines). The valence space
includes only 6s and 6p electrons.

configurations are included, the fixed-phase approximation
shows accuracy that is similar to the conventional static-spin
calculations in the fixed-node approximation. The energy
differences are listed in Table I and agreement with the
experiment is very good, although not perfect, due to small
biases in the PP that are visible from essentially perfect
agreement between DMC and FCI methods. In addition, we
calculate an electron affinity (EA) for the Pb atom that is
significantly lower than for other group IVB elements due to
the spin-orbit interaction. We find the EA to be 0.417(7) eV
that, within the accuracy of the PPs, compares very favorably
to the experimental value 0.365(8) eV [21] and also to other
theoretical values [22]. In SC calculations the first excited
state is closer to experiment than the LC; however, the higher
excitations are off by ≈0.2 eV that we assign mostly to the
used PP imperfections.

For Bi we calculate the first four excitations of the p3

electronic configuration and for an independent validation
we perform CI with single, double, and triple (CISDT)
excitations. Results are shown in Fig. 2. The FPSODMC
using a COSCI wave function agrees with the total energies
for the CISDT to only ≈0.007 hartree. We also test the
improvement of the fixed-phase error by including higher
excitations into virtual spinors with resulting closer agreement

TABLE I. FPSODMC (DMC for short) excitation energies (eV)
of the Pb atom using LC and SC relativistic PPs [17] with COSCI
trial function compared with experiment (Exp). For completeness
we include also Dirac-Fock COSCI results. The multireference
CI (MRCI) and MRCI + core polarization corrections (CPP)
calculations [17] are done with the LC PP.

COSCI DMC DMC MRCI Expt.
State LC LC SC MRCI +CPP [20]

3P1 0.83 0.851(1) 0.90(1) 0.90 0.94 0.97
3P2 1.30 1.245(4) 1.10(1) 1.27 1.32 1.32
1D2 2.69 2.500(4) 2.42(1) 2.55 2.66 2.66
1S0 4.06 3.527(5) 3.42(1) 3.54 3.68 3.65
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FIG. 2. Total energies of the lowest states of Bi atom from CISDT
(circles) with cc-pVnZ basis sets compared to FPSODMC with
COSCI (long-dashed lines) and CISDT (short-dashed lines) trial wave
functions. The valence space includes only 6s,6p states.

with the CISDT energies. Although the COSCI is missing
some correlation energy (approx. 5–9%) compared to the more
extensive FPSODMC-CISDT and CISDT methods, it only
adds a constant shift to the spectra since the excitation energies
are comparable among all the correlated methods in Table II.
We see good agreement for both the LC and SC calculations
with the COSCI trial wave function. The FPSODMC with
the CISDT trial wave function most accurately reproduces the
experimental values.

The next system we calculate is the W atom that shows
the importance of both spin-orbit as well as the electron
correlation. It is an interesting case since the isovalent Cr and
Mo atoms have the ground-state occupations d5s1 whereas the
ground state of W is d4s2. Qualitatively, the d4 occupation
is favored due to the lower energy in the j = 3/2 channel;
however, it turns out that correlations have to be captured
accurately as well. We used a relativistic PP with 14 electrons
[23] with two different trial wave functions, COSCI and CISD.
The results are listed in Table III. Clearly, the ground state
of the Dirac-Fock COSCI method is 5d56s1, indicating that
correlation is crucial for correctly calculating the spectrum.
Using the CISD as a trial wave function in FPSODMC, we

TABLE II. FPSODMC excitation energies (eV) of the Bi atom
using LC and SC relativistic PPs [17,18] compared with experiment
(Expt.). For completeness we include Dirac-Fock complete open-
shell CI (COSCI) and CI (SDT) results. The second row indicates
FPSODMC trial wave functions.

DMC- DMC- DMC-
COSCI COSCI COSCI CI CI Expt.

State LC LC SC LC LC [20]

2D3/2 1.542 1.311(4) 1.38(1) 1.356 1.37(2) 1.415
2D5/2 2.129 1.834(6) 1.74(1) 1.858 1.85(2) 1.914
2P1/2 3.108 2.628(6) 2.53(1) 2.562 2.66(2) 2.685
2P3/2 4.428 4.005(6) 3.95(1) 3.900 3.98(2) 4.040

TABLE III. DMC excitation energies (eV) of the W atom with
a relativistic PP [23] compared with CISD and experiment (Expt.).
CISD is extrapolated to a complete basis set limit.

DMC- DMC- Expt.
Config. State COSCI COSCI CISD CISD [20]

5d46s2 5D1 0.098 0.130(9) 0.104 0.15(1) 0.207
5d56s1 7S3 −0.845 −0.194(9) 0.115 0.19(1) 0.365
5d46s2 5D2 0.244 0.30(1) 0.132 0.30(1) 0.412
5d46s2 5D3 0.415 0.49(1) 0.289 0.51(1) 0.598
5d46s2 5D4 0.599 0.686(9) 0.452 0.69(1) 0.771

see that not only the states are correctly ordered but also the
excitation energies are accurate to within ≈0.1 eV. We note
that the FPSODMC-CISD energies are significantly lower than
the ones from the basis set extrapolated CISD.

B. Molecular calculations

For the PbO molecule we use the SC PP as recommended
[17] so as to avoid overlaps between PPs from the two
atoms. The theoretical results of bond length and dissociation
energy of PbO molecule together with experimental values
are given in Table IV. We also report 1-component CCSD(T)
combined with 2-component MRCI studies [17,24] both in
PP and all-electron, frozen-core settings. The bond length
re with the SO interaction shows an excellent agreement
with experiment value, compared to an underestimation by
∼0.04 Å in static-spin PP calculations. We also note that the
averaged SO treatment overestimates the dissociation energy
by ≈0.9 eV whereas we see excellent agreement by explicit
treatment of the SO effects.

IV. CONCLUSION

In conclusion, we have proposed a projector QMC method
for treating the spins as quantum variables in electronic
structure calculations. The method establishes continuous spin
coordinate sampling with resulting zero variance algorithm

TABLE IV. PbO bond length (re) and dissociation energy (De).
The DMC calculations are done with the small-core PP and averaged
SO represents the fixed-node DMC.

Method re (Å) De (eV)

Spin-free PP-CCSD(T)a 1.886 5.14
MRCIS-spss–CCSD(T)b 1.923 3.87
Spin-free AE-CCSD(T)c 1.937 4.85
SO AE-CCSD(T)d 1.934 3.63
DMC, 1-comp. averaged SO 1.88(1) 4.76(3)
FPSODMC, 2-comp. 1.92(1) 3.83(3)
Expt.e 1.920 3.87

aSpin-free CCSD(T) 1-comp., averaged SO PP [17].
b2-comp. MRCIS with spin-free-state shift evaluated with 1-comp.
CCSD(T) [17].
cAll-electron spin-free CCSD(T) [24].
dAll-electron SO CCSD(T) [24].
eExperimental data [25].
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within the fixed-phase approximation and projections of the
nonlocal pseudopotentials. The tests on atomic and molecular
systems for both total energies and differences show excellent
agreement with independent correlated quantum chemical
calculations in two-component formalism. The accuracy is
very similar to the fixed-node DMC that is widely used for
static spins calculations. The method opens QMC to variety
of systems across the periodic table such as materials with
noncollinear states, spin waves, and other electronic phases
for which particle spins are of the key importance.
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