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Permutation-invariant codes encoding more than one qubit
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A permutation-invariant code on m qubits is a subspace of the symmetric subspace of the m qubits. We derive
permutation-invariant codes that can encode an increasing amount of quantum information while suppressing
leading-order spontaneous decay errors. To prove the result, we use elementary number theory with prior theory
on permutation-invariant codes and quantum error correction.
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I. INTRODUCTION

The promise offered by the fields of quantum cryptography
[1,2] and quantum computation [3] has fueled recent interest in
quantum technologies. To implement such technologies, one
needs a way to reliably transmit quantum information, which
is inherently fragile and often decoheres because of unwanted
physical interactions. If a decoherence-free subspace (DFS)
[4] of such interactions were to exist, encoding within it
would guarantee the integrity of the quantum information.
Indeed, in the case of the spurious exchange couplings [5],
the corresponding DFS is just the symmetric subspace of
the underlying qubits. In practice, only approximate DFSs
are accessible because of small unpredictable perturbations to
the dominant physical interaction [6], and using approximate
DFSs necessitates a small amount of error correction. When
the approximate DFS is the symmetric subspace, permutation-
invariant codes can be used to negate the aforementioned errors
[7–9]. However, as far as we know, all previous permutation-
invariant codes encode only one logical qubit [7–9]. One may
then wonder if there exist permutation-invariant codes that can
encode strictly more quantum information than a single qubit
while retaining some capability to be error corrected.

The first example of a permutation-invariant code which
encodes one qubit into 9 qubits while being able to correct
any single qubit error was given by Ruskai over a decade ago
[7]. A few years later, Ruskai and Pollatshek found 7-qubit
permutation-invariant codes encoding a single qubit which
correct arbitrary single-qubit errors [8]. Recently permutation-
invariant codes encoding a single qubit into (2t + 1)2 qubits
that correct arbitrary t-qubit errors have been found [9].
Here, we extend the theory of permutation-invariant codes.
Our permutation-invariant code C has as its basis vectors the
logical 1 of D distinct permutation invariant codes given
by Ref. [9], where each such code encodes only a single
qubit. Surprisingly, this simple construction can yield a
permutation-invariant code encoding more than a single qubit
while correcting spontaneous decay errors to leading order.

Permutation-invariant codes are particularly useful in cor-
recting errors induced by quantum permutation channels with
spontaneous decay errors, with Kraus decomposition N (ρ) =
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A(P(ρ)) = ∑
α,β AβPαρP †

αAβ , where P and A are quantum
channels satisfying the completeness relation

∑
α P †

αPα =∑
β A

†
βAβ = 1 and 1 is the identity operator on m qubits.

The channel P has each of its Kraus operators Pα propor-
tional to eiθαâα , where θα is the infinitesimal parameter and
the infinitesimal generator âα is any linear combination of
exchange operators. By a judicious choice of θα and âα , the
channel P can model the stochastic reordering and coherent
exchange of quantum packets as well as out-of-order delivery
of classical packets [10]. The channel A, on the other hand,
models spontaneous decay errors, otherwise also known as
amplitude damping errors, where an excited state in each qubit
independently relaxes to the ground state with probability γ .
Our permutation-invariant code is inherently robust against
the effects of channel P and can suppress all errors of order γ

introduced by channel A, and is hence approximately robust
against the composite noisy permutation channel N .

II. MAIN RESULT

We quantify the error-correction capabilities of our
permutation-invariant codes C with code projector � begin-
ning from the approximate quantum error-correction criterion
of Leung et al. [11]. Since the Kraus operators Pα of the
permutation channel leave the code space of any permutation-
invariant code unchanged, it suffices only to consider the
effects of the amplitude-damping channel A. The optimal
entanglement fidelity between an adversarially chosen state
ρ in the permutation-invariant code space and error-corrected
noisy counterpart is just

1 − ε = sup
R

inf
ρ
Fe(ρ,R ◦ A), (1)

where ε is the worst case error [9] that we need to suppress.
Lower bounds for the above quantity can be found using
various techniques from the theory of optimal recovery
channels [9,12–17], but we restrict our attention to the simpler
(but suboptimal) approach of Refs. [9,11]. Suppose that we
can find a truncated Kraus set 	 [18] of the channel A
such that for every distinct pair of A,B ∈ 	, the spaces AC
and BC are pairwise orthogonal. Then the truncated recovery
map of Leung et al.R	,C(μ) := ∑

A∈	 �U
†
AμUA� is a valid

quantum operation, where UA is the unitary in the polar
decomposition of A� = UA

√
�A†A�. Since R	,C is now
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a special instance of a recovery channel in Eq. (1), we trivially
get ε � 1 − infρ Fe(ρ,R	,C ◦ A). As explained in Ref. [9],
the analysis of Leung et al. [11] allows one to show that

Fe(ρ,R	,C ◦ A) �
∑
A∈	

λA, (2)

where λA = min |ψ〉 ∈ C
〈ψ |ψ〉 = 1

〈ψ |A†A|ψ〉 quantifies the worst-case

deformation of each corrupted code space AC.
The symmetric subspace of m qubits is central to the study

of permutation-invariant codes, and has a convenient choice of
basis vectors, namely the Dicke states [9,19–21]. A Dicke state
of weight w, denoted as |Dm

w〉, is a normalized permutation-
invariant state on m qubits with a single excitation on w qubits.
Our code C is the span of the logical states |dL〉 for d =
1, . . . ,D, and these states can be written as superposition over
Dicke states, with amplitudes proportional to the square root
of the binomial distribution. Namely for positive integers nd

and gd ,

|dL〉 =
∑
j∈Id

√ (
nd

j

)
2nd−1

∣∣Dm
gdj

〉
, (3)

and the set Id comprises the odd integers from 1 to 2� nd−1
2 � +

1. The states |dL〉,A|dL〉 can be made to be pairwise orthogonal
via a judicious choice of constraints on the positive integer
parameters n1, . . . ,nD , g1, . . . ,gD , and m.

We elucidate the case for D � 3 since permutation-
invariant codes encoding only one qubit [9] are already known.
Here, we require n1, . . . ,nD to be pairwise coprime integers
with n1 � · · · � nD , and define their product to be N =
n1 . . . nD . The length of our code is a polynomial in N , given by
m = Nq for any integer q � 3. Moreover, we set gd = N/nd

so that for distinct d and d ′, the greatest common divisor of gd

and gd ′ is precisely gcd(gd,gd ′ ) = N/(ndnd ′ ) > 1, so that gd

and gd ′ are not coprime. Furthermore, we require that gd � 3,
nd � 4.

The reason for requiring gd and gd ′ to not be coprime is
that it allows the inner products 〈dL|d ′

L〉 and 〈dL|A†B|d ′
L〉 to be

identically zero for distinct d and d ′ and for any operators A,B

acting nontrivially on strictly less than mind gd

2 qubits when N is
even. To see this, we analyze the linear Diophantine equation

xd,d ′gd = yd,d ′gd ′ + s, (4)

with s = 0,±1. This linear Diophantine equation has a solution
(xd,d ′ ,yd,d ′ ) if and only if s is a multiple of gcd(gd,gd ′),
where gcd(a,b) denotes the greatest common divisor between
integers a and b which is the largest positive integer that
divides both a and b. Having gcd(gd,gd ′ ) > 1 ensures that
Eq. (4) has no solution for nonzero s such that |s| <

gcd(gd,gd ′ ). When s = 0, integer solutions (xd,d ′ ,yd,d ′ ) where
0 < xd,d ′gd = yd,d ′gd ′ < N do not exist. To see this, note that
the minimum positive solutions of Eq. (4) are precisely xd,d ′ =

gd′
gcd(gd ,gd′ ) and yd,d ′ = gd

gcd(gd ,gd′ ) , and hence we must require that
gdgd′

gcd(gd ,gd′ ) < N be an invalid inequality. But our construction

gives gdgd′
gcd(gd ,gd′ ) = gdgd′ndnd′

N
= N . This immediately implies

several orthogonality conditions on the states given by Eq. (3)
for large n1.

We use a sequence of large consecutive primes and an
even number to construct our sequence of coprimes. We let

n1 = pk , where pk denotes the kth prime, and let n2 = n1 + 1.
We also let nj = pk+j−2 for all j = 3, . . . ,D, which gives us
our D coprime integers. The length of our code is m = [(pk +
1)(pk . . . pk+D−2)]q . In the special case when D = 3, we can
use the existence of twin primes n1 and n3 a bounded distance
apart [22] (at most 600 apart [23]), and let n2 = n1 + 1, which
yields m = [n1n3(n1 + 1)]q .

The oft-used Kraus operators for an amplitude-damping
channel on a single qubit are A0 = |0〉〈0| + √

1 − γ |1〉〈1| and
A1 = √

γ |0〉〈1| respectively, with γ modeling the probability
for a transition from the excited |1〉 state to the ground state |0〉.
On m qubits, the Kraus operators of the amplitude-damping
channel have a tensor product structure, given by Ax1 ⊗ · · · ⊗
Axm

, where x1, . . . ,xm = 0,1. We focus our attention on the
Kraus operators K0 = A⊗m

0 , and Fj which applies A1 on the
j th qubit and applies A0 everywhere else for j = 1, . . . ,m.
The choice of Kraus operators for a quantum channel is not
unique, and we can equivalently consider a subset of the Kraus
operators in a Fourier basis. Namely, for � = 1, . . . ,m, we
define K� = 1√

m

∑m
j=1 ω(�−1)(j−1)Fj , where ω = e2πi/m. We

choose the set of Kraus operators that we wish to correct to be
	 = {K0,K1, . . . ,Km}.

Now the spaces AC and BC are orthogonal for distinct
A,B ∈ 	. Note that for �,�′ = 1, . . . ,m,

〈dL|K†
�K�′ |dL〉

= 1

m

m∑
j=1

m∑
j ′=1

ω−(�−1)(j−1)+(�′−1)(j ′−1)〈dL|F †
j Fj ′ |dL〉

=
m∑

j=1

ω(�′−�)(j−1)〈dL|F †
j Fj |dL〉

+ 1

m

m−1∑
d=1

m∑
j=1

ω−(�−1)(j−1)+(�′−1)(j−1+d)〈dL|F †
j Fj+d |dL〉,(5)

where the addition in the subscript is performed modulo m.
Using the invariance of 〈dL|F †

j Fj |dL〉 and 〈dL|F †
j Fj ′ |dL〉 for

distinct j,j ′ = 1, . . . ,m along with the identity

m−1∑
d=1

m∑
j=1

ω−(�−1)(j−1)+(�′−1)(j−1+d) = (mδ�′,1 − 1)mδ�,�′,

one can simplify (5) to get

〈dL|K†
�K�′ |dL〉

= δ�,�′(〈dL|F †
1 F1|dL〉 + (mδ�,1 − 1)〈dL|F †

1 Fm|dL〉), (6)

which completes the proof of the orthogonality of AC and BC
for distinct A,B ∈ 	.

Now we have

〈dL|K†
0K0|dL〉 =

∑
t∈Id

(
nd

t

)
2nd−1

(1 − γ )gd t ,

〈dL|F †
1 F1|dL〉 = γ

∑
t∈Id

(
nd

t

)
2nd−1

(1 − γ )gd t−1 gdt

m
, (7)

〈dL|F †
1 Fm|dL〉 = γ

∑
t∈Id

(
nd

t

)
2nd−1

(1 − γ )gd t−1 gdt(m − gdt)

m(m − 1)
.
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Using the Taylor series (1 − γ )gd t = 1 − gdtγ +
gd t(gd t−1)

2 γ 2 + O(γ 3) and (1 − γ )gd t−1 = 1 − (gdt − 1)γ +
O(γ 2) with the binomial identities

∑nd

t=0 t(nd

t ) = 2nd−1nd ,∑nd

t=0 t2(nd

t ) = 2nd−2nd (nd + 1), and
∑nd

t=0 t3(nd

t ) =
2nd−3n2

d (nd + 3) [9,24], we get

〈dL|K†
0K0|dL〉 = 1 − N

2
γ

+
(

N2 + Ngd

8
− N

4

)
γ 2 + O(γ 3),

〈dL|F †
1 F1|dL〉 = N

2m
γ −

(
N2 + Ngd

4m
− N

2m

)
γ 2

+ O(γ 3),

〈dL|F †
1 Fm|dL〉 =

(
N
2 − N2+Ngd

4m

)
m − 1

γ

+ N3 + 3N2gd

8m(m − 1)
γ 2

− (N2 + Ngd )
(
1 + 1

m

) − 2N

4(m − 1)
γ 2

+ O(γ 3). (8)

Now for all |ψ〉 ∈ C where 〈ψ |ψ〉 = 1, we can write |ψ〉 =∑D
d=1 ad |dL〉 such that

∑D
d=1 |ad |2 = 1 + O(2−n1 ).1 Hence for

all A ∈ 	, 〈ψ |A†A|ψ〉 = ∑D
d=1 |ad |2〈dL|A†A|dL〉, which im-

plies that λA � mind=1,...,D〈dL|A†A|dL〉[1 + O(2−n1 )]. This

1The term O(2−n1 ) arises because of the slight nonorthogonality of
the states |dL〉.

implies that

1 − ε � 1 − Ng1

4m
γ − cN2

8
γ 2 + O(γ 3)+O(2−n1 ), (9)

where

c = 1 + 2gD − g1

N
− 2

N
+ 3g1

m
+ 4g1

N
. (10)

Since m = Nq , 1 − ε � 1 − 1
4Nq−2 γ − cN2

8 γ 2 + O(γ 3) +
O(2−n1 ) and for fixed N and large q, the asymptotic error is
second order in γ with ε ∼ c′N2

8 γ 2 + O(γ 3)+O(2−n1 ), where

c′ = 1 + 2gD−g1

N
− 2

N
+ 4g1

N
.

III. CONCLUSION

In summary, we have generalized the construction of
permutation-invariant codes to enable the encoding of multiple
qubits while suppressing leading-order spontaneous decay
errors. These permutation-invariant codes might allow for the
construction of new schemes in physical systems, such as
improved quantum communication along isotropic Heisenberg
spin chains [25–28]. Symmetry of error-correction codes have
also recently been exploited to symmetrize prover strategies in
the context of interactive proofs [29,30], and so the extremely
high symmetry of the codes studied here may also have
theoretical implications.
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[17] C. Bény and O. Oreshkov, Approximate simulation of quantum
channels, Phys. Rev. A 84, 022333 (2011).

[18] Y. Ouyang and W. H. Ng, Truncated quantum channel represen-
tations for coupled harmonic oscillators, J. Phys. A 46, 205301
(2013).

[19] M. Bergmann and O. Gühne, Entanglement criteria for Dicke
states, J. Phys. A 46, 385304 (2013).

[20] T. Moroder, P. Hyllus, G. Tóth, C. Schwemmer, A. Niggebaum,
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