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Device-independent quantum key distribution (DIQKD) guarantees unconditional security of a secret key
without making assumptions about the internal workings of the devices used for distribution. It does so using
the loophole-free violation of a Bell’s inequality. The primary challenge in realizing DIQKD in practice is the
detection loophole problem that is inherent to photonic tests of Bell’ s inequalities over lossy channels. We revisit
the proposal of Curty and Moroder [Phys. Rev. A 84, 010304(R) (2011)] to use a linear optics-based entanglement-
swapping relay (ESR) to counter this problem. We consider realistic models for the entanglement sources
and photodetectors: more precisely, (a) polarization-entangled states based on pulsed spontaneous parametric
down-conversion sources with infinitely higher-order multiphoton components and multimode spectral structure,
and (b) on-off photodetectors with nonunit efficiencies and nonzero dark-count probabilities. We show that the
ESR-based scheme is robust against the above imperfections and enables positive key rates at distances much
larger than what is possible otherwise.
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I. INTRODUCTION

Quantum cryptography [1,2] uses the laws of quantum
mechanics to establish unconditional security of data trans-
mission, meaning that the encrypted data can be secure against
an eavesdropper of unbounded abilities. The BB84 [3] and a
host of other protocols proposed since [4–8] guarantee such
unconditional security in quantum key distribution (QKD)
when the physical components used are well characterized
and trustworthy. However, such ideal conditions cannot be
met perfectly in the real world. The implementation of the
physical devices may have imperfections more or less, i.e., side
channels. Also, the components may have been manufactured
by a malicious party, introducing back doors into them.
Real-world quantum crypto systems are hence amenable to
a plethora of possible attacks through side channels and
back doors. This has stimulated great interest in a model for
cryptography that establishes security independently of the
internal workings of the physical devices used and is thus
inherently immune to side-channel attacks and back doors,
provided that the given devices are operated in secure locations
by the legitimate sender (Alice) and receiver (Bob) [9]. Such a
“device-independent” (DI) model for QKD has been carefully
studied and its security proven under fairly general conditions
(cf. [10–12] and references therein).

Unconditional security in DIQKD is typically guaranteed
by means of the loophole-free violation of a Bell’s inequality,
where both the locality and the detection loopholes are closed
simultaneously [13]. The first-ever loophole-free Bell test has
been performed with electron spins in nitrogen-vacancy (NV)
centers in diamonds [14]. The first-ever all-optical loophole-
free Bell tests [15,16] have also been realized recently. Yet
photonic Bell tests over long-distance communication chan-
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nels are bound to suffer from the detection loophole problem
due to transmission and fiber-coupling losses. Nevertheless,
there have been proposals to mitigate transmission losses using
nondeterministic strategies. In particular, inspired by Ralph
and Lund’s idea for a nondeterministic photon amplifier [17],
Gisin et al. [18] proposed a heralded qubit amplifier that
utilizes quantum teleportation to boost the amplitude of the
maximally entangled component of a lossy entangled state.
The qubit amplifier was demonstrated experimentally by Koc-
sis et al. [19,20]. It is, however, technically far from feasible for
application in DIQKD. Curty and Moroder [21] investigated a
conventional entanglement-swapping relay (ESR) node based
on linear optics (Fig. 1). Rather than amplifying the maximally
entangled component in the lossy state, the relay node simply
ensures that the state heralded upon successful entanglement
swapping sufficiently violates the Clauser-Horne-Shimony-
Holt (CHSH) inequality [22] in a loophole-free test. The
authors showed that the relay node enables higher key rates
than is possible with the teleportation-based qubit amplifier
when photon number resolving detectors (PNRDs) are used
and the product of coupling and detector efficiencies is
higher than 95%. High-efficiency entanglement swapping has
been successfully demonstrated in numerous optical exper-
iments [23–25]. More recently, in an alternative approach,
DIQKD based on local Bell tests has been considered and its
security investigated [26].

In this work, we revisit the scheme of Curty and Moroder
based on entanglement swapping [21] with realistic models
for the entanglement sources and detectors. We consider
sources of polarization entanglement, which are based on
a pair of pulsed spontaneous parametric down-conversions
(SPDCs) with infinitely higher-order multiphoton components
and multimode spectral structure. Pulsed sources are preferred
over continuous-wave sources in many practical applications
because they generate temporally localized signals which are
more suitable for photon counters and coincidence count
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FIG. 1. Setup for DIQKD with a conventional entanglement-
swapping relay (ESR) node based on linear optics. A source ρAA′

distributes polarization entanglement to receivers Alice and Bob. The
distributed states are subject to losses in fiber coupling (both in the
channel to Alice, as well as to Bob) and transmission (in the channel to
Bob, who is situated far from the source), the respective efficiencies
being ηT and ηC . Bob employs an ESR node, which consists of
another similar entanglement source ρBB ′ , beam splitters (BS, 50:50
beam splitter; PBS, polarizing beam splitter), and heralding detectors
DH and DV corresponding to horizontal and vertical polarizations,
respectively. Upon each successful entanglement-swapping event,
Alice and Bob perform polarization measurement with polarizer
settings X, Y , respectively, and the outcomes are denoted as a, b ∈
{+1,−1}, respectively. The detectors are assumed to be imperfect, on-
off photodetectors, with nonunit efficiencies and nonzero dark-count
probabilities.

measurements. On the other hand, these signals are generated
in spectrally multiple modes, which makes it more difficult
to match the mode of interest between the devices used,
especially when dispersive components are involved in the
experimental setup. Thus, in order to improve the visibility
of correlation measurements, careful multimode analysis is
necessary. This is our motivation to include the multimode
spectral structure of the sources in our model. We model
our detectors as on-off photodetectors, detectors that merely
distinguish the event of presence of photons from absence and
include losses and dark counts. The detector efficiencies are
assumed to be flat over all the spectral modes. We show that the
relay node enables positive key rates at distances larger than is
possible without the relay node for sufficiently large coupling
and detector efficiencies, small dark-count probabilities in
the detectors, and small spectral spread in the sources. Our
analyses are nonperturbative and exact. They involve the use
of tools from Gaussian quantum information that are based on
characteristic functions.

The paper is organized as follows. In Sec. II, we recall
the basics of DIQKD and outline the ESR-assisted scheme
for DIQKD. In Sec. III, we describe our realistic model
for the sources of polarization entanglement in the scheme,
which includes their higher-order multiphoton components
and multimode spectral structure. In Sec. IV, we present our
results. Section V captures our main conclusions.

II. DIQKD USING AN ENTANGLEMENT-SWAPPING
RELAY

A. Basic principle of DIQKD

First of all, we recall the basic principle of DIQKD between
two parties Alice and Bob [27]. A typical protocol for DIQKD

involves (a) a “blackbox” source that transmits shares of
an entangled quantum state to Alice and Bob through lossy
communication channels and (b) a blackbox measurement
apparatus at each of Alice and Bob. The apparatus at Alice has
three possible measurement settings, Xi ∈ {X0,X1,X2}, while
the one at Bob has two possible settings, namely Yj ∈ {Y1,Y2}.
All the measurement observables are taken to have binary
outcomes, i.e., ai, bj ∈ {+1,−1}. For example, in an optical
protocol for DIQKD based on polarization entanglement, the
different measurement settings would correspond to different
polarizer settings, and the outcomes to the clicking of one of
two detectors placed in orthogonal polarization modes. The
only assumption involved is that Alice and Bob are in secure
locations such that no classical information either about the
choice of measurement settings or the observed outcomes leaks
out without their permission.

Alice and Bob perform repeated measurements under the
setting {X0,Y1} to generate the raw key. The qubit error
rate (QBER) associated with the raw key is defined as
P (a �= b|X0 = Y1). Over a subset of uses of the communi-
cation channel, Alice and Bob use the measurement settings
{X1,X2} and {Y1,Y2} to test the CHSH functional

CHSH = 〈a1b1〉 + 〈a1b2〉 + 〈a2b1〉 − 〈a2b2〉, (1)

where 〈aibj 〉 = P (a = b|XiYj ) − P (a �= b|XiYj ). A value of
CHSH > 2 indicates the presence of nonlocal correlations in
the state and is used to bound Eve’s knowledge about the key.
We denote the maximal possible value of CHSH for a given
state with the corresponding sets of optimal measurement
observables {X1,X2} and {Y1,Y2} by S. S can at best take the
value 2

√
2, known as the Cirelson bound [28], and is achieved

by the maximally entangled state. The key rate is a function of
S and the QBER. A conservative lower bound on the rate of
generating a key that is secure against the so-called collective
eavesdropping attacks (i.e., where the attack is independent
and identical during each use of the communication channel)
is given by the Devetak-Winter formula [29],

K � 1 − h(Q) − χ (S), (2)

where K is the number of secret bits that can be generated per
channel use, S is the maximal violation, Q is QBER,

χ (S) = h

[
1 +

√
(S/2)2 − 1

2

]
, (3)

and h(x) is the binary entropy given by h(x) = −x log2 x −
(1 − x) log2 (1 − x). It can be shown that S > 2 is a necessary
condition to realize a positive key rate.

A crucial requirement on the Bell test for DIQKD is
that it is performed in a loophole-free manner. We recall a
simple strategy that has been used to perform a loophole-free
test of the CHSH inequality for the realistic scenario under
consideration [21]. Let us say that the clicking of detector
D1 at Alice corresponds to outcome a = +1 and D2 to
a = −1 and, similarly, the clicking of D3 at Bob to b = +1
and D4 to b = −1. When neither or both detectors at Alice
(D1, D2) click, or likewise at Bob (D3, D4), the outcome is
obviously inconclusive at the respective party. The strategy is
to deterministically assign a conclusive outcome upon such
detection events. For example, when neither or both detectors
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at Alice click, the outcome can be assigned the value a = −1,
and at Bob b = −1.

B. Entanglement-swapping relay-assisted DIQKD

Suppose that the source of entanglement is located near
Alice and Bob is situated at a distance from both Alice and
the source. The losses in the communication channel to Alice
are thus attributed to fiber-coupling and detector inefficiencies.
On the other hand, the channel to Bob in addition suffers from
transmission losses. We denote the fiber-coupling efficiency,
the detector efficiency, and the transmission efficiency by
ηC , ηdet (or ηhdet in the case of heralding detectors), and
ηT , respectively. We refer to the product ηCηdet as detection
efficiency ηD (or ηHD in the case of the heralding modes),
while on the other hand, by “overall” detection efficiency, we
mean the product ηDηT . The overall detection efficiencies at
Alice and Bob are thus given by ηD and ηDηT , respectively.
Recent results by Caprara Vivoli et al. [30] have shown that a
loophole-free test of the CHSH inequality in (1) based on the
deterministic strategy described above requires an overall de-
tection efficiency, which is at least 2/3 to exhibit a value of S >

2. Assuming ideal fiber coupling and detectors at both parties
(i.e., ηD = 1), this corresponds to a distance of 8.8 km for the
optical fiber communication channel to Bob (α = 0.2 dB/km
attenuation). Since S > 2 is a necessary condition for a positive
key rate, the scope for DIQKD thus appears to be severely
limited at first look. However, as mentioned before [18,21],
it is possible to mitigate the effects of transmission losses
on distillable key rate using probabilistic strategies, thereby
extending the possible distances for DIQKD.

Consider the ESR-assisted scheme shown in Fig. 1, as
considered in Ref. [21]. To first approximation, the state
generated by the source ρAA′ is a maximally polarization
entangled photon pair, with a photon directed towards each
of Alice and Bob. Alice performs polarization measurement
on her share of the state. Bob, on his part, employs an ESR
node to the state received through the lossy channel. That is,
he mixes the incoming state on a 50:50 beam splitter with one
share of another polarization-entangled state ρB ′B , which is
similar to ρAA′ , and performs polarization measurement on the
output modes. When entanglement swapping succeeds (i.e.,
when either of the pair of heralding detectors D6 and D7 or
D5 and D8 placed in the output modes click and the respective
other pair does not), Bob performs a polarization measurement
on the other share of the entangled state ρB ′B . The parties then
apply the deterministic strategy of assigning conclusive values
to inconclusive outcomes mentioned above to perform DIQKD
based on the (loophole-free) CHSH test. Naturally, the key rate
in the ESR-assisted scheme now includes a factor correspond-
ing to the probability of success of the relay node. Although
this success probability drops exponentially with growing
distance, the distances over which positive key rate can be
achieved with ideal fiber coupling and detectors still improves
by an order of magnitude compared to the original scheme.

III. MODELING OUR ENTANGLEMENT SOURCES

We now describe our realistic model for the ESR-assisted
DIQKD scheme discussed above that includes imperfections.

All detectors are modeled as on-off photodetectors; i.e., they
simply distinguish between vacuum and not vacuum. The
model takes into account dark-count probability and nonunit
efficiency (see the Appendix for more details). The sources of
polarization entanglement are modeled using realistic SPDCs.
A detailed account of the same is described below.

A. Polarization entanglement based on a pair of SPDC sources

Polarization-entangled photon pairs form a natural choice
for entangled qubits in photonic implementations of QKD. For
example, one could consider generating a photon-pair state of
the form

∝ (|HA,VB〉 + |VA,HB〉), (4)

where the polarization of the photons that Alice and Bob
receive are oppositely correlated.

One way to achieve such an entangled state in practice is
to use SPDCs. In particular, we consider the Sagnac loop
architecture which uses two down-conversions to generate
one entangled photon pair by weak pumping of an SPDC
crystal from two opposite directions. Due to its configuration,
especially the collinear generation of photon pairs, the Sagnac
loop has practical advantages in its compactness, stability, and
high brightness (see, for example, [31] and references therein)
compared to the other architectures with single pumping of the
crystal. The Sagnac loop architecture was originally invented
in [32] and is now widely used in recent photonic quantum
information processing experiments [23,33–35]. In theory,
the double pumping of the crystal is modeled by two SPDC
emissions, more precisely two two-mode squeezed vacua, as
described below.

Figure 2(a) illustrates the Sagnac loop configuration where
a single nonlinear crystal is pumped simultaneously from
both clockwise (CW) and counterclockwise (CCW) directions.
The crystal is assumed to enable Type II SPDC, meaning it
produces down-converted light in two orthogonal polarization
modes. The resulting state can be described as follows. Let us
denote the input modes to the Sagnac loop as modes â and b̂.
Then the state at the output of the two SPDC processes (CW
and CCW) can be approximated as |�〉

= (c0|00〉aH aV
+ c1|11〉aH aV

)(c0|00〉bH bV
+ c1|11〉bH bV

)

= c2
0|0000〉aH aV bH bV

+ c2
1|1111〉aH aV bH bV

+ c0c1(|0011〉aH aV bH bV
+ |1100〉aH aV bH bV

), (5)

where we assume |c0|2 + |c1|2 ≈ 1 and |c1| 
 1 and aH ,
aV denote the horizontal and vertical polarization modes,
respectively, in the spatial mode â, for example. This state,
when propagated through the polarizing beam splitter, results
in

|�〉 PBS−−→ c2
0|0000〉aH aV bH bV

+ c2
1|1111〉aH aV bH bV

+ c0c1(|0110〉aH aV bH bV
+ |1001〉aH aV bH bV

). (6)

When postselected on its two-photon component, this state
gives the desired polarization-entangled photon pair [31]. The
underlying essence behind the generation of entanglement here
is the lack of information as to which of the two pumps resulted
in the generation of the down-converted photon pairs. Since
the underlying source of the photon pair in the considered
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FIG. 2. (a) A Sagnac loop source for generating polarization
entanglement based on Type II SPDC, meaning it produces down-
converted light in two orthogonal polarization modes. The SPDC is
pumped simultaneously by a clockwise (CW) and a counterclockwise
(CCW) pump. DM stands for a dichroic mirror, which reflects light
of frequency 2ω, while being transparent to light of frequency ω.
DPBS stands for a dichroic polarizing beam splitter, which splits
light of both frequencies ω and 2ω into its H and V polarization
components. DHWP stands for a dichroic half-wave plate at an angle
45◦, so that it flips the polarization in the H,V basis as H → V and
V → H . The geometry of the source makes sure that the pump is
perfectly recycled, while the down-converted light is output through
the topmost and the rightmost modes. (b) A schematic representation
of the source. The CW pump generates squeezing in the modes aH

and bV , while the CCW pump generates squeezing in the other two
modes.

scheme is a pair of SPDC processes, the source can be exactly
modeled as a tensor product of two-mode squeezed vacuums,

exp(ξ â
†
H b̂

†
V − ξ ∗âH b̂V ) exp(ξ â

†
V b̂

†
H − ξ ∗âV b̂H )|0〉aH

⊗ |0〉aV
⊗ |0〉bH

⊗ |0〉bV
, (7)

where, e.g., âH and â
†
H are the annihilation and creation

operators, respectively, of the mode aH . Figure 2(b) depicts
this representation of the state produced by the source.

B. Multimode spectral structure of the SPDC outputs

When the parametric down-conversion source is pumped
by a pulsed laser, the quantum state emitted has a spectral
structure and can be described by [36],

exp

[
ξ

∫∫
dωsdωif (ωs,ωi)â

†
s (ωs)â

†
i (ωi) − H.c.

]
|0〉, (8)

where ξ = r exp (iθ ) is the squeezing parameter (related to
the pump power), â

†
s (ωs) and â

†
i (ωi) are creation operators

for the signal and idler modes with frequencies ωs and ωi ,
respectively. Let us call the above state |�〉. f (ωs,ωi) is
the joint spectral amplitude, which is a product of the pump
distribution and the phase-matching function of the nonlinear
crystal [36–38]. We can assume ξ to be real and positive
without losing generality.

This joint spectral amplitude can be decomposed using
Schmidt decomposition as [37,38]

f (ωs,ωi) =
∑

l

√
λlgl(ωs)hl(ωi), (9)

where λl , gl(ωs), hl(ωi) are solutions of the eigenvalue
equations ∫

K1(ω,ω′)gl(ω
′) = λlgl(ω

′), (10)∫
K2(ω,ω′)hl(ω

′) = λlhl(ω
′), (11)

and

K1(ω,ω′) ≡
∫

dω2f (ω,ω2)f ∗(ω′,ω2), (12)

K2(ω,ω′) ≡
∫

dω1f (ω1,ω)f ∗(ω1,ω
′). (13)

Then the state in (8) can be represented as

|�〉 = exp

[
r
∑

l

√
λlb̂

†
l ĉ

†
l − H.c.

]
|0〉 (14)

=
∏

l

exp[r
√

λlb̂
†
l ĉ

†
l − H.c.]|0〉 (15)

= |�(r
√

λ1)〉|�(r
√

λ2)〉 · · · , (16)

where

b̂
†
l =

∫
dωsgl(ωs)â

†
s (ωs), (17)

ĉ
†
l =

∫
dωihl(ωi)â

†
i (ωi), (18)

and λl is the Schmidt eigenvalue. Note that b̂l and ĉl satisfy a
standard bosonic commutation relation [b̂l ,b̂

†
m] = [ĉl ,ĉ

†
m] =

δlm. The decomposition of the exponential term as given
in (15) is possible since the Schmidt modes are orthonormal.
Finally, (16) represents that in the Schmidt-mode basis, the
state is described by tensor products of two-mode squeezed
vacuums |�(r

√
λl)〉, where

|�(r
√

λl)〉 = 1

cosh r
√

λl

∑
n

(tanh r
√

λl)
n|n〉Bl

|n〉Cl
, (19)

with the effective squeezing parameter r
√

λl . As a conse-
quence, we conclude that the quantum state emitted from the
SPDC source is simply given by a tensor product of two-mode
squeezed vacuums. Thus, in the Sagnac loop source described
previously, when the pump is a pulsed laser, the state in (7) is
further a tensor product of TMSVs over appropriate Schmidt
modes.
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FIG. 3. The ESR-assisted Bell testing setup for DIQKD in greater detail. The Type II SPDC crystal placed in a Sagnac configuration as
depicted in Fig. 2 is used to generate a pair of two-mode squeezed vacuua (TMSV) over polarization modes. The polarizer angle settings at
Alice and Bob are denoted as θA and θB , respectively. The detectors are assumed to be imperfect on-off photodetectors, with nonunit efficiencies
and nonzero dark-count probabilities.

Connection between r and the experimentally observable
parameter is the following. Note that the theoretical modeling
of f (ωs,ωi) is well established and thus one can derive the
Schmidt eigenvalues for a given setup of the SPDC source.
In the experiment, one can also estimate the photon-pair
generation rate of the SPDC source, i.e., the probability that
the source emits nonzero photons:

p = 1 −
∏

l

|〈00|�(r
√

λl)〉|2. (20)

Plugging (19) into (20), we obtain the relation

p = 1 −
∏

l

(cosh r
√

λl)
−2, (21)

which allows us to derive r numerically from experimentally
estimated p.

With the above observation and the recent theoretical
method developed in [39], one can, e.g., simulate the four-
photon Hong-Ou-Mandel experiment including experimental
imperfections, infinitely higher-order multiphoton compo-
nents, and joint spectral property of the SPDC source.

IV. RESULTS

Having described our realistic models for the source and the
detectors, we now analyze the performance of the ESR-assisted
DIQKD scheme with realistic elements. We do so using
the characteristic function-based approach from Gaussian
quantum information (see the Appendix and [39] for more
details on the tools we use to perform our calculations). The
approach is quite effective to describe and analyze the system
consisting of Gaussian elements and on-off photodetectors,
taking into account multimode structure in the sources and
losses and dark counts in the detectors.

Consider the full, linear optics-based depiction of the ESR-
assisted scheme for DIQKD shown in Fig. 3. In this figure,
for simplicity the modes are renumbered 1 through 8, with the
odd-numbered modes denoting horizontally polarized modes
and the even-numbered modes being vertically polarized.
They are generated by SPDC as described in Sec. III A with
the pairs 1 and 8, 2 and 7, etc., being in the two-mode

squeezed vacuum state. The polarizers are replaced by beam
splitters between the horizontal-vertical mode pairs, with
the tunable transmittivities cos2 θA and cos2 θB denoting the
polarizer settings. The detectors are assumed to be imperfect,
on-off photodetectors, with nonunit efficiencies and nonzero
dark-count probabilities.

First, we recall the results presented in [21], where Bob
employs the ESR node, but with the detectors modeled as
PNRDs. A conclusive detection event in this case refers to
the presence of exactly a single photon in the mode. Hence,
a conclusive-conclusive event at Alice and Bob corresponds
to the presence of a maximally entangled photon pair with
an intrinsic S value of 2

√
2. Any other combination of

events at Alice and Bob corresponds to the classical value
of S = 2. So the maximal possible violation could be written
as the linear combination S = μcc2

√
2 + (1 − μcc)2, where

μcc is the probability of obtaining a conclusive-conclusive
event at Alice and Bob. This, when evaluated in the limit
of small average photon numbers in the source, resulted
in S ≈ 1 + √

2, a constant independent of the distance of
transmission.

On the contrary, in our case where we consider on-off pho-
todetectors, a conclusive-conclusive event does not necessarily
imply the presence of a maximally entangled photon pair.
Thus, we cannot adopt the analysis of [21] and are forced
to resort to numerical optimization to determine S values
for the state under different conditions of the sources and
the detectors. We globally optimize S over the measurement
settings at Alice and Bob and the mean photon numbers of
the SPDC outputs at the two sources (one being the primary
source and the other at the relay node). We use a simulated
annealing-based numerical optimization algorithm. We find
that the optimal measurement angles at Alice and Bob for
the considered loophole-free Bell test are given by {0,π/6}
and {π/2,2π/3} for the two parties, respectively, and are
independent of all other conditions. Assuming symmetric
losses in orthogonal polarization modes, we further optimize
over an absolute mean photon number the ratio between the
mean photon numbers of the primary source and the source in
the relay node and the ratio between the mean photon numbers
of the two SPDCs within a source.
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We present our results in two parts. First, we focus on
the potential S value of the state heralded upon successful
entanglement swapping as a function of the communication
distance assuming a telecommunication fiber of attenuation
α = 0.2 dB/km. Here we assume ideal coupling and detectors
at the end users Alice and Bob, but real, imperfect ones at
the relay node. Second, we consider real, imperfect coupling
and detectors all over, including at Alice and Bob, and analyze
the S value as a function of distance. Here we also separately
optimize K to evaluate the performance of the scheme for
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FIG. 4. Maximal loophole-free violation of the CHSH inequality
S as a function of distance in the ESR-assisted DIQKD of Fig. 3. The
sources are assumed to be monochromatic. The detection efficiencies
at Alice and Bob are assumed to be ideal (i.e., the product of coupling
and detector efficiencies ηD = ηCηdet = 1 and dark-count probability
in the detectors PDC = 0). The quantities ηHD = ηCηhdet and PDCH

denote the detection efficiency and dark-count probability, for the
heralding modes and detectors, respectively. Curves corresponding to
various values of ηHD are plotted for the cases (a) without (PDCH = 0)
and (b) with dark counts (PDCH �= 0) in the heralding detectors. The
common reference (black) curve in both (a) and (b) corresponds to
the case where the ESR node is absent. In (a), the S curves coincide,
while in (b), from top (blue) to bottom (gray), the curves correspond
to decreasing values of ηHD .

key distribution. We assume that the sources have a single
pure Schmidt mode by default unless mentioned otherwise. In
the latter cases, we assume that there are predominantly two
Schmidt modes and we denote the leading Schmidt eigenvalue
as λ, with the other being 1 − λ.

A. With ideal coupling and detectors at Alice and Bob,
but real ones at the relay node

Assuming ideal detectors at Alice and Bob, we find that
the S value for the heralded state is constant over distance
and is independent of the efficiency of the heralding detectors
[Fig. 4(a)]. Although the value of S is less than the maximum
violation at zero distance obtainable in the absence of the ESR
(see black curve in Fig. 4), the fact that it is independent of
distance, in principle, is interesting. As explained previously,
this feature was also observed in [21], where PNRDs were
employed. On the other hand, when heralding detectors with a
dark-count probability PDCH = 10−5 are used, the constancy
of S no longer holds. Nevertheless, its value is still significantly
higher than the case without the relay node for a considerably
larger range of distances [Fig. 4(b)].

Next we include spectral spread in the sources, namely
the multimode nature λ < 1. The detector efficiencies are
assumed to be flat over all the spectral modes. In Fig. 5,
we plot S vs distance for various values of λ for the case
of a realistic heralding detection efficiency of ηHD = 0.2 and
dark-count probability PDC = 10−5. We find that S values
drop to the classical value of 2 faster with increasing spectral
impurity. The real cause for the faster degradation of S

vs distance with increasing spectral impurity in the sources
is that the on-off detectors cannot discriminate clicks from
different spectral modes, which destroy the entanglement
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�0.90
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FIG. 5. Maximal loophole-free violation S as a function of dis-
tance for different spectral spreads in the sources for the ESR-assisted
DIQKD scheme. λ here denotes the largest Schmidt eigenvalue in the
Schmidt decomposition of the joint spectral density. The curves from
top (blue) to bottom (gray) correspond to decreasing values of λ. The
detection efficiencies at Alice and Bob are assumed to be ideal (i.e.,
the product of coupling and detector efficiencies ηD = ηCηdet = 1 and
dark-count probability in the detectors PDC = 0), while the detection
efficiencies in the heralding modes are taken as ηHD = 0.2 and the
dark-count probability in the heralding detectors as PDCH = 10−5.
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correlation in each mode. Thus, if a Schmidt-mode separator
were possible to implement in front of the detector set, there
might be no degradation, but mode multiplexed performance
instead. Unfortunately, such a separator is not easy to realize.
Nevertheless, the largest distance at which S > 2 even for λ =
0.95 is about 30 km, which is still larger compared to the 10-km
limit at which S drops to 2 in the absence of the ESR node.

B. With real, imperfect coupling and detectors all over

Assuming identical, imperfect detectors at both Alice and
Bob as well as at the ESR, we now analyze the S and K

values as functions of distance. In the absence of dark counts
in the detectors, we once again find S to be independent of
the distance, but to decrease towards the classical value of 2
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FIG. 6. (a) Maximal loophole-free violation of the CHSH in-
equality S and (b) a lower bound on the key rate K (bits per
channel use), as a function of distance. The sources are assumed
to be monochromatic. All detection efficiencies are assumed to be of
nonunity (ηD and ηHD denoting the detection efficiencies at the end
users and the heralding detectors, respectively), but free from dark
count (PDC = PDCH = 0). The curves from top (blue) to bottom
(gray) correspond to decreasing values of detection efficiencies
ηD = ηHD = η.

with decreasing values of the detection efficiencies ηD = ηHD

[Fig. 6(a)]. The key rate K similarly monotonically decreases
with the detection inefficiencies while keeping an exponential
behavior in the drop with respect to distance [Fig. 6(b)]. We
now briefly compare the K values of Fig. 6(b) with those
reported in [21]. The calculations employed in the two are
identical, but the results are marginally different, because we
use on-off photodetector while [21] used PNRDs. The PNRDs
enable higher K values at short distances than the on-off
detectors, but we find that the performances of the two types of
detectors even out at larger distances. For, example, K ≈ 10−6

bits per channel use at a distance of about 60 km with both
types of detectors. In any case, the main point of emphasis here
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FIG. 7. Effect of spectral impurity (where the leading Schmidt
eigenvalue λ is 0.99) in the sources. (a) The maximal loophole-free
violation of the CHSH inequality S and (b) a lower bound on the key
rate, K (bits per channel use), are plotted as functions of distance.
All detection efficiencies are assumed to be of nonunity (ηD and ηHD

denoting the detection efficiencies at the end users and the heralding
detectors, respectively), but free from dark count (PDC = PDCH =
0). The curves from top (blue) to bottom [gray in (a) and pink in
(b)] correspond to decreasing values of detection efficiencies ηD =
ηHD = η.
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FIG. 8. Variation due to the multimode spectral structure in the
sources. (a) The maximal loophole-free violation of the CHSH
inequality S and (b) a lower bound on the key rate, K (bits per channel
use), are plotted as functions of distance. All detection efficiencies
are assumed to be nonunity (ηD = ηHD = 0.98, where ηD and ηHD

denote the detection efficiencies at the end users and the heralding
detectors, respectively) and dark-count probability PDC = 10−5. The
curves from top (blue) to bottom (gray) correspond to decreasing
values of the largest Schmidt eigenvalue λ.

is that rates enabled by the ESR are obviously much higher
than is possible without the relay.

Next we include spectral imperfections in the sources.
The same behavior as above holds, but with diminished
values of S and K . Figures 7(a) and 7(b) illustrate the point
for sources with a leading Schmidt eigenvalue of λ = 0.99.
Finally, when dark counts are included (PDC = 10−5), both
S and K drop with distance at faster rates corresponding to
decreasing values of λ [Figs. 8(a) and 8(b)]. The K curves in
this case exhibit the familiar cliff-type drop to zero when the
dark-count rate becomes comparable to the signal rate, which
decreases with distance.

V. CONCLUSIONS

We investigated a scheme for DIQKD that is based on
the use of a simple, conventional ESR node to mitigate the
effect of transmission losses. Going beyond earlier work of
Curty and Moroder [21], we considered a more realistic model
for the entangled source and the detectors. Our sources of
polarization-entanglement were taken to be based on a pair
of pulsed SPDCs, having infinitely higher-order multiphoton
components and multimode spectral structure. Our detec-
tors were taken to be spectrally flat on-off photodetectors,
which simply distinguish the event of presence of photons
from absence. The detectors included losses (contributions
from detector inefficiency and free-space to fiber-coupling
inefficiency) and dark counts. We presented an exact key
rate analysis for the scheme based on the use of tools from
Gaussian quantum information. Our results showed that the
relay node enables positive key rates over larger distances than
what is possible without the relay node for sufficiently large
detection efficiencies (which includes detector and free space
to fiber-coupling efficiencies), small dark-count probabilities
in the detectors, and small spectral spread in the sources.
Thus, our results established the robustness of the ESR-based
scheme for DIQKD against imperfections in the sources and
detectors.

While our analyses captured the effects of imperfections
in the SPDC sources and in the detection process to a large
extent, there is room for further refinement. For example, in the
multimode spectral modeling of the sources, more terms in the
Schmidt decomposition could be included. In the model for
the on-off photodetectors, spectrally dependent efficiencies
could be considered. Since the source is based on a pulsed
laser, temporal mode mismatch could be included in the overall
model.

To conclude, our results ascertain that it is possible to
mitigate transmission losses using the ESR node with more
realistic models for the sources and detectors than what
was considered in [21]. However, the ultimate practical
realizability of DIQKD still hinges on improvements the
detector technologies. As noted in [21] and supported by
our analyses in this paper, detection efficiencies upwards of
95% are required to realize DIQKD even in the case that the
source spectral purity is one and the detectors are dark-count
free. Recent progress in coupling and detector technologies
shows promise that such high detection efficiencies might be
achievable in the not-so-distant future.
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APPENDIX: THE CHARACTERISTIC FUNCTION
APPROACH TO PHOTONIC QUANTUM

INFORMATION PROCESSING

In continuous-variable quantum information processing,
there exist powerful tools based on the characteristic functions
of quantum states, which are particularly useful when dealing
with Gaussian states and Gaussian operations [40,41]. Since
entangled photon pairs, in practice, are postselected from
continuous-variable sources such as SPDCs, these tools lend
themselves rather naturally for an easy and exact treatment
of photonic quantum information processing tasks (cf. [39])
without the need for any approximations. Here we present a
brief review of these tools for the convenience of the reader.
(For a more comprehensive review, see [40,41].)

Consider N Bosonic modes associated with a tensor product
Hilbert space H⊗N = ⊗N

j=1Hj , where each Hj is an infinite-
dimensional Hilbert space. Corresponding to each mode is
a pair of field operators âj and â

†
j —the annihilation and

creation operators, respectively—which satisfy the canonical
commutation relation given by

[âj ,â
†
k] = δjk. (A1)

It is common to define the quadrature operators of a bosonic
mode as

x̂j = 1√
2

(âj + â
†
j ), (A2)

p̂j = 1√
2i

(âj − â
†
j ), (A3)

where these operators can be verified to obey the commutation
relation

[x̂j ,p̂k] = iδjk. (A4)

(Note that we choose as a convention � = 1.)
Let ρ̂ be a density operator defined on H⊗N , which

represents a quantum state in the N -mode Hilbert space. The
characteristic function of ρ̂ is defined to be

χ (ξ ) = Tr{ρ̂Ŵ(ξ )}, (A5)

where

Ŵ(ξ ) = exp(−iξT R̂) (A6)

is known as the Weyl operator, and

R̂ = [x̂1, . . . ,x̂N ,p̂1, . . . ˆ,pN ], (A7)

ξ = [ξ1, . . . ,ξ2N ], ξi ∈ R ∀ i. (A8)

1. Gaussian states

A Gaussian state is a quantum state whose characteristic
function is Gaussian, i.e., of the form

χ (x) = exp

[
−1

4
xTγ x − idTx

]
, (A9)

where γ is a 2n × 2n matrix called the covariance matrix and d

is a 2n-dimensional vector known as the displacement vector.
The simplest example of a Gaussian state is the coherent state

|α〉 = exp(αa† − α∗a)|0〉, α = |α| exp(iφ), (A10)

= exp

(
−|α|2

2

) ∞∑
n=0

αn

√
n!

|n〉. (A11)

Its covariance matrix is the 2 × 2 identity matrix, and displace-
ment vector is

α =
√

2

(
Re(α)
Im(α)

)
. (A12)

Another common example of a Gaussian state is the two-mode
squeezed vacuum state, which is generated by an SPDC source,

|ξ 〉 = exp(ξa†b† − ξ ∗ab)|0〉a ⊗ |0〉b (A13)

= 1

cosh r

∞∑
n=0

[exp(iθ ) tanh r]n|n〉a ⊗ |n〉b, (A14)

where ξ = r exp (iθ ) is the squeezing parameter. The TMSV
has zero displacement and a covariance matrix given by

γ TMSV(μ) =
(

γ +(μ) 0
0 γ −(μ)

)
, (A15)

where μ is the average photon number in each mode of the
state and

γ ±(μ) =
(

2μ + 1 ±2
√

μ(μ + 1)
±2

√
μ(μ + 1) 2μ + 1

)
. (A16)

A very convenient property of the characteristic function
representation of a multimode Gaussian state is that the
reduced state on any subsystem is simply given by the
corresponding submatrix of the displacement vector and the
covariance matrix of the full state. For example, consider the
TMSV. The reduced state on any one of the two modes is a
thermal state

ρ th =
∞∑

n=0

μn

(μ + 1)n+1
|n〉〈n|, (A17)

whose covariance matrix is given by

γ th =
(

2μ + 1 0
0 2μ + 1

)
, (A18)

which is precisely what the corresponding submatrix of
γ TMSV is.

2. Gaussian operations

By a quantum operation, we mean a linear map E : ρ →
E(ρ) [where ρ is a quantum state, i.e., ρ � 0 and Tr (ρ) = 1],
which is completely positive, i.e., (id ⊗E)(σ ⊗ ρ) is also a
valid quantum state for all positive operators σ , and trace
reducing, i.e., 0 � Tr [E(ρ)] � 1. A quantum operation is
called a quantum channel if it is trace preservation, i.e.,
Tr [E(ρ)] = 1. Further, the special case of quantum channels
that are reversible are the unitary transformations U−1 = U †,
which transform a quantum state ρ as ρ → UρU †.
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A quantum operation is called a Gaussian operation if it
maps Gaussian states to Gaussian states. Also likewise, Gaus-
sian unitaries are defined to be unitaries that map Gaussian
states to Gaussian states. The action of a Gaussian unitary U

on a state ρ can be described easily by a corresponding real
symplectic transformation S on the covariance matrix γ and
the displacement vector d of the state

γ → STγ S, d → STd. (A19)

The symplectic transformation corresponding to a simple
phase-shift unitary on a single mode is given by

R(φ) =
(

cos φ sin φ

− sin φ cos φ

)
. (A20)

Likewise, that corresponding to a beam splitter of transmittiv-
ity t between two modes is given by

S(t) =

⎛
⎜⎜⎜⎝

√
t

√
1 − t 0 0

−√
1 − t

√
t 0 0

0 0
√

t
√

1 − t

0 0 −√
1 − t

√
t

⎞
⎟⎟⎟⎠.

(A21)

3. Photodetectors

We consider on-off photodetectors, meaning that the de-
tectors simply distinguish between vacuum and not vacuum.
These detectors can be represented as the following positive
operator valued measure (POVM):

�0 = |0〉〈0|,

�1 =
∞∑

n=1

|n〉〈n| = I − �0. (A22)

When a single-mode Gaussian state ρ with characteristic
function χρ(x) = exp (− 1

4xTγ x) is measured using a on-off
photodetector, the probability of detecting photons (“on”
outcome) is given by

p1 = Tr(ρ�1) = 1 − Tr(ρ�0)

= 1 − 1

2π

∫
dxχρ(x)χ|0〉〈0|(−x)

= 1 − 1

2π

∫
dx exp

[
−1

4
xT(γ + I )x

]

= 1 − 2√
det(γ + I )

. (A23)

Likewise, when an m-mode Gaussian state is measured using
on-off photodetectors in all the modes, the probability of
coincidence detection (“on” outcome in all the modes) is given
by

pcoinc. =
∑

τ∈P(K)

(−1)|τ | 2|τ |√
det(γ (τ ) + I|τ |)

, (A24)

where K is a set consisting of the m modes, P(K) is the
powerset of K–meaning the set of all subsets of K, γ (τ ), e.g.,
is the covariance matrix of the reduced state on the modes in
element τ , and I|τ | is the identity matrix of dimension |τ |.

4. Imperfections in the channel and the detectors

The primary imperfection in the optical channel is photon
loss, e.g., losses in transmission and in coupling between
media. It is known that the lossy optical channel is a Gaussian
channel. A typical model for the channel is a pure loss
bosonic channel, which is a beam-splitter transformation of
transmittivity t between the lossy mode and a vacuum mode.
The action of the lossy optical channel on the state of a mode
with covariance matrix γ can be described as

Lt : γ → KTγK + α, (A25)

where K = √
tI and α = (1 − t)I .

The imperfections in the on-off photodetectors include (a)
photon loss, which is modeled as a lossy channel of the above
type followed by a lossless detector, and (b) dark counts, which
are modeled by amending the detector POVM elements as

�0(ν) = (1 − ν)|0〉〈0|, (A26)

�1(ν) = I − �0(ν), (A27)

where ν is the dark-count probability.
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