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Quantum walks with memory (QWM) are a type of modified quantum walks that record the walker’s latest
path. As we know, only two kinds of QWM have been presented up to now. It is desired to design more QWM for
research, so that we can explore the potential of QWM. In this work, by presenting the one-to-one correspondence
between QWM on a regular graph and quantum walks without memory (QWoM) on a line digraph of the regular
graph, we construct a generic model of QWM on regular graphs. This construction gives a general scheme for
building all possible standard QWM on regular graphs and makes it possible to study properties of different kinds
of QWM. Here, by taking the simplest example, which is QWM with one memory on the line, we analyze some
properties of QWM, such as variance, occupancy rate, and localization.
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I. INTRODUCTION

Due to constructive quantum interference along the paths in
the discrete or the continuous version, quantum walks provide
a method to explore all possible paths in a parallel way. Many
kinds of models of quantum walks have been proposed, such
as single-particle quantum walks [1–4], two-particle quantum
walks [5–7], three-state quantum walks [8,9], controlled
interacting quantum walks [10,11], indistinguishable-particle
quantum walks [12,13], disordered quantum walks [14,15],
quantum walks on closed surfaces [16], etc. Each type of
quantum walk has its own special features and advantages.
Therefore, algorithms based on quantum walks have been
established as a dominant technique in quantum compu-
tation, ranging from element distinctness [17] to database
searching [18–21] and from constructing quantum Hash
schemes [10,11] to graph isomorphism testing [22,23].

Most quantum walks that have been studied are quantum
walks without memory (QWoM) on regular graphs, such
as lines, circles, and lattices. Quantum walks with memory
(QWM) have been studied only in Refs. [24–27], while
classical walks with memory have been used in research
on the behavior of hunting, searching, and building the
human-memory search model. Standard QWM are a kind of
modified quantum walk that has many extra coins to record
the walker’s latest path. As we know, only two kinds of QWM
have been presented up to now. Rohde et al. presented a kind
of QWM provided by recycled coins and a memory of the
coin-flip history [24]. Mc Gettrick presented another kind
of QWM whose coin state decides if the shift is “reflect”
or “transmit” [25,26]. Konno and Machida provided limit
theorems for Mc Gettrick’s QWM [27]. The evolutions of
these two QWM agree with our intuition. A general scheme
for building all possible standard QWM does not exist. It is
desired to design more QWM for research, so that we can
explore the potential of QWM. Furthermore, if we want to
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design a QWM on a complex graph or a position-dependent
QWM, it seems impossible to design the unitary evolution for
a QWM by intuition.

In this paper, we construct a generic model that includes all
possible standard QWM on regular graphs. By analyzing the
mathematical formalism of QWoM and two existing QWM,
we find that QWM on a regular graph can be transformed into
a QWoM on a line digraph of the regular graph. Furthermore,
the mapping is one to one. That is, we can study QWoM on
a line digraph of a regular graph instead of the corresponding
QWM on the regular graph. There is only one coin for QWoM,
while there are at least two coins for QWM. Therefore,
this replacement decreases the coin space and simplifies the
analytic process for QWM. Then we construct a generic model
of QWoM on a line digraph of regular graphs. This model is
actually the generic model of QWM on regular graphs, and
it gives a general scheme for building all possible standard
QWM on regular graphs.

With this model, it becomes possible to build any wanted
QWM on regular graphs and to study the properties of different
kinds of QWM. In this paper, by taking the simplest example,
which is QWM with one memory on the line, we analyze some
properties of this kind of QWM, such as variance, occupancy
rate, and localization. We focus on its relation with the partition
and coin shift function, which are introduced for designing
QWM. Through analysis and research, we get some interesting
and useful results.

This paper is structured as follows. In Sec. II, we present
the one-to-one correspondence between QWM on a regular
graph and QWoM on a line digraph of the regular graph. In
Sec. III, we construct a generic model that includes all possible
standard QWM on regular graphs. Then, in Sec. IV, by taking
the simplest example, which is QWM with one memory on
the line, we analyze some properties of this kind of QWM.
Finally, a short summary is given in Sec. V.

II. RELATION BETWEEN QWM AND QWoM

In this part, we introduce the standard formalization of
discrete-time QWoM and two kinds of existing QWM. By
analyzing the relation between QWoM and QWM, we show
that the evolution of QWM on a regular graph is the same

2469-9926/2016/93(4)/042323(8) 042323-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.93.042323


LI, MC GETTRICK, GAO, XU, AND WEN PHYSICAL REVIEW A 93, 042323 (2016)

as the evolution of QWoM on a line digraph of the regular
graph.

For the standard discrete-time QWoM on a linear graph,
the walker is a bipartite system |x,c〉, where x is the position
of the walker in the graph and c is the coin which decides
the shift of the walker. The evolution is decomposed into two
steps, U = SC, defined as

C : |x,c〉 →
∑

j

Ac,j |x,j 〉,
(1)

S : |x,c〉 → |x + c,c〉,
where A is a unitary coin matrix defining the transition
amplitudes. The coin takes values of ±1 (right and left,
respectively). After evolving t steps, the output state is |ψout〉 =
(SC)t |ψin〉.

For QWM, there is not a generic model which includes all
possible standard QWM. Until now, there have only been two
kinds of QWM.

For QWM in Ref. [24], the evolution is decomposed into
two steps, U = SC, defined as

C : |x,c1, . . . ,cd+1〉 →
∑

j

Acd+1,j |x,c1, . . . ,j〉,
(2)

S : |x,c1, . . . ,cd+1〉 → |x + cd+1,cd+1,c1, . . . ,cd〉,
where A is still the unitary coin matrix defining the transition
amplitudes, x is the current position of the walker, {ci =
±1|i = 1, . . . ,d} records the shift of the walker i steps before,
and cd+1 is the coin which decides the shift of the walker.

For QWM in Refs. [25,26], the evolution is decomposed
into two steps, U = SC, defined as

C : |x0,x1, . . . ,xd,c〉 →
∑

j

Ac,j |x0,x1, . . . ,xd,j 〉,

S : |x0,x1, . . . ,xd,1〉 → |x1,x0,x1, . . . ,xd−1,1〉, (3)

|x0,x1, . . . ,xd, − 1〉 → |2x0 − x1,x0,x1, . . . ,xd−1, − 1〉,
where A is the unitary coin matrix, x0 is the current position
of the walker, and {xi |i = 1, . . . ,d} record the positions of
the walker i steps before. The coin c takes values ±1, and
xi+1 = xi ± 1.

To build the bridge between QWM and QWoM, we provide
a preface for future needs here. We denote by G = (V,E) a
digraph with vertex set V (G) and arc set E(G). With fixed
labeling of vertices, the adjacency matrix of a digraph G with
N vertices, denoted by M(G), is the N × N (0,1) matrix with
the ij th element defined by Mi,j (G) = 1 if (xi,xj ) ∈ E(G)
and Mi,j (G) = 0 otherwise. The line digraph of a digraph G,

denoted by
−→
L G, is defined as follows: the vertex set of

−→
L G is

E(G); for xa,xb,xc,xd ∈ V (G),[(xa,xb),(xc,xd )] ∈ E(
−→
L G) if

and only if (xa,xb) and (xc,xd ) are both in E(G) and xb = xc.
The line digraph of

−→
L G is denoted by

−→
L 2G. Similarly, there

are
−→
L dGs with d ∈ N∗. For simplicity, we call all of them the

line digraph of G.
Then we show how to transform QWM on a regular graph

G to QWoM on a line digraph of G. From the definition of
a line digraph, we know a vertex of

−→
L dG is a d-length path

on graph G. Therefore, there is a one-to-one correspondence
between |x,c1, . . . ,cd〉 and |(x − c1 · · · − cd, . . . ,x − c1,x)〉,

where {(x − c1 · · · − cd, . . . ,x − c1,x)} is the vertex set of−→
L dG. Then, due to the relation between |x,c1, . . . ,cd,c〉 and
|(x − c1 · · · − cd, . . . ,x − c1,x),c〉, we build a bridge between
the two kinds of quantum walks.

For example, we choose the QWM with two memories on
the line, i.e., three qubit coins. For QWM in Ref. [24], the
evolution is as follows:

|x,c1,c2,c〉 C−→
∑

j

Ac,j |x,c1,c2,j 〉

S−→
∑

j

Ac,j |x + j,j,c1,c2〉. (4)

It also can be written as

|(x − c1 − c2,x − c1,x),c〉
C−→

∑
j

Ac,j |(x − c1 − c2,x − c1,x),j 〉

S−→
∑

j

Ac,j |(x − c1,x,x + j ),c2〉. (5)

Equations (4) and (5) correspond to QWM on G and QWoM
on

−→
L 2G, respectively. We can easily know that the evolutions

are essentially the same because |x + j,j,c1,c2〉 corresponds
to |(x − c1,x,x + j ),c2〉, where (x − c1,x,x + j ) is a vertex
of

−→
L 2G. In addition, the evolution space

−→
L 2G ⊗ H2 for

QWoM on the line digraph of G is spanned by {|(x − c1 −
c2,x − c1,x),j 〉|c1,c2,j = ±1}, where H2 is the Hilbert space
for a two-dimensional coin. Therefore, a QWM with two
memories on G corresponds to a QWoM (which updates the
coin state after the shift) on the related

−→
L 2G. What is more, a

QWoM (which updates the coin state after the shift) on
−→
L 2G

corresponds to a QWM with two memories on G. That means
there is a one-to-one correspondence between QWM on G

and QWoM on the line digraph of G. Similarly, there is a
one-to-one correspondence between QWM with d memories
on any regular graph G and QWoM on the related line digraph−→
L dG.

III. QWM ON REGULAR GRAPHS

From the above discussion, we know that there is a one-to-
one correspondence between QWM on a regular graph G and
QWoM on a line digraph of G. Therefore, the generic model
of QWoM on a line digraph of G, which includes all possible
QWoM (which updates the coin state after the shift) on a line
digraph of G, is actually the generic model of QWM on G,
which includes all possible standard QWM on G. Then we
only need to construct the generic QWoM on the line digraph
of G instead of generic QWM on G.

Here, we introduce two definitions to prepare for con-
structing the model of generic QWoM on a line digraph of
an m-regular graph G (these two definitions are inspired by
Ref. [28]). These two definitions are introduced to show the
shift of the walker along the graph G.
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(a)

(b)

(c)

FIG. 1. The original digraph G and the line digraph of G denoted
by �LG. (b) and (c) show two partitions of �LG, π1 and π2, by using
different lines (dash-double-dotted red line and solid blue line) to
denote Ck .

Definition 1. Let G be an m-regular graph. Define π as a
partition of

−→
L dG such that

π :
−→
L dG → {C1,C2, . . . ,Cm}, (6)

where {Ck|k = 1, . . . ,m} satisfy V (Ck) = V (
−→
L dG),⋃

k E(Ck) = E(
−→
L dG) and, for every vertex v ∈ V (Ck),

the outdegree is 1. Dicycle factorization is a kind of
partition which satisfies the requirement that for every vertex
v ∈ V (Ck), the outdegree and indegree are 1. We denote the
set of partitions of

−→
L dG by �−→

L dG
.

We show two partitions in Fig. 1. The original graph G is the
infinite line in Fig. 1(a). The line digraph of G,

−→
L G, is shown

in Fig. 1(b). We show partitions π1 and π2 in Figs. 1(b) and 1(c),
respectively, by using different lines (dash-double-dotted red
line and solid blue line) to denote Ck .

Definition 2. For π ∈ �−→
L dG

with
−→
L dG

π−→
{C1,C2, · · · ,Cm}, define

fCk
: V (

−→
L dG) → V (

−→
L dG) (7)

such that for any v ∈ V (
−→
L dG),

[v,fCk
(v)] ∈ E(Ck). (8)

In what follows, we construct the generic QWoM on
−→
L dG,

i.e., the generic model of QWM with d-step memory on an
m-regular graph G.

Definition 3. For a QWoM on the line digraph of G denoted
by

−→
L dG, the evolution is decomposed into two steps, U =

SC, defined as

C : |v,c〉 −→
∑

j

Ac,cj
|v,cj 〉,

(9)
S : |v,cj 〉 −→ |fCj

(v),gc(v,cj )〉,
where A is a unitary coin matrix defining the transition
amplitudes, which may be position time dependent. v is the
position at

−→
L G. The coin c decides the shift of the walker.

The coin shift function gc is defined as follows:

gc : V (
−→
L dG) ⊗ Hm −→ Hm, (10)

where Hm is the Hilbert space for an m-dimensional coin,
spanned by {c1,c2, . . . ,cm}.

The shift operator S requires the walker to walk along the
subgraph Ck when the coin is ck . The coin shift function gc

updates the coin after moving. We should remind readers that
QWM is decided by the coin operator, partition, and coin shift
function.

Until now, we get a generic model of QWoM on the line
digraph of G, i.e., a generic model of QWM on regular graph
G. However, the model seems too formalized. Next, we will
show the concrete form of the model. It is worth recalling that
the evolution of quantum walks on an infinite graph at time t

equals the evolution of quantum walks on a bigger finite graph
at time t . Therefore, we only need to consider the finite graph
when we focus on the outstate after t steps.

The coin operator C for this model is similar to that for
QWoM, which may be position history dependent. However,
the shift operator S for this model is more complex. Below we
will show the concrete form of the shift operator.

Suppose M(G) is the adjacent matrix of an m-regular graph
G on N vertices. Then a partition of G is actually a partition
of the adjacent matrix M(G), i.e.,

M(G)
π===== M(D1) + M(D2) + · · · + M(Dm), (11)

where there is exactly one entry which is 1 and entries are
0 elsewhere for every row vector of M(Dk),k = 1, . . . ,m.
Furthermore, a dicycle factorization is a special partition in
which there is exactly one entry which is 1 and entries are 0
elsewhere for every column vector of M(Dk),k = 1, . . . ,m.

Then, we introduce an important theorem [29] about the
adjacent matrix of the line digraph of G.

Theorem 1. Let G be an m-regular digraph on N vertices
and let {D1,D2, . . . ,Dm} be a dicycle factorization of G. Then
there is a labeling of V (

−→
L G) such that

M(
−→
L G) =

⎛
⎜⎜⎝

M(D1) M(D2) · · · M(Dm)
M(D1) M(D2) · · · M(Dm)

...
...

. . .
...

M(D1) M(D2) · · · M(Dm)

⎞
⎟⎟⎠. (12)

With this theorem, we can get the adjacent matrix M(
−→
L dG)

for any m-regular graph G. First, we need to partition the
m-regular graph G into {D1,D2, . . . ,Dm} which is a dicycle
factorization of G. This process is very easy for a regular
graph. According to Theorem 1, we can get the adjacent matrix
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M(
−→
L G). Then we partition M(

−→
L G) to

M(
−→
L G) =

⎛
⎜⎜⎝

M(D1)
M(D2)

. . .
M(Dm)

⎞
⎟⎟⎠ + · · ·

+

⎛
⎜⎝

0 M(D2)
0 M(D3)

0 M(Dm)
M(D1) 0

⎞
⎟⎠,

(13)

where the formalization of each term in the sum is similar
to that of the determinant. This partition is still a dicycle
factorization of M(

−→
L G). We can get the adjacent matrix

M(
−→
L 2G) by using Theorem 1 again. Iterating this process,

we can get the adjacent matrices of
−→
L dG for any d. The

vertices of V (
−→
L dG) are labeled by v1, . . . ,vN2d−1 , . . . vN2d .

Until now, we can get the adjacent matrix of
−→
L dG for any

d and any regular graph G. A partition of
−→
L dG is actually a

partition of the adjacent matrix of
−→
L dG, i.e.,

M(
−→
L dG)

π===== M(C1) + M(C2) + · · · + M(Cm), (14)

where there is exactly one entry which is 1 and entries are
0 elsewhere for every row vector of M(Ck),k = 1, . . . ,m.
Furthermore, M(Ck)(vi ,vj ) = 1 if and only if fCk

(vi) = vj .
Therefore, the shift operator S is

S =
∑
i,k

M(Ck)T |vi〉〈vi | ⊗ |gc(vi,ck)〉〈ck|. (15)

From the above equation, we find that in order to ensure the
unitarity of the shift operator S, gc has to follow some rules.
From Theorem 1, we can easily know that M(

−→
L dG) can be

viewed as a combination of m same block matrices, i.e.,

M(
−→
L dG) =

⎛
⎜⎜⎝

M1(
−→
L dG)
...

Mm(
−→
L dG)

⎞
⎟⎟⎠, (16)

where each of {Mi |i = 1, . . . ,m} includes Nmd−1 rows of
M(

−→
L dG). Furthermore, because we choose dicycle factoriza-

tions to partition the regular graph G and its line digraphs, there
is exactly one entry which is 1, and entries are 0 elsewhere
for every column vector of Mi(

−→
L dG). Therefore, there are

m {Ck,vi} satisfying v = fCk
(vi) for any v ∈ V (

−→
L dG). Under

the sort order of vertices, in order to ensure the unitarity of
the shift operator S, for the corresponding m {ck,vi}, the set of
{gc(vi,ck)} has to satisfy

{
m︷ ︸︸ ︷

gc(vi,ck), . . .} = {c1,c2, . . . ,cm}. (17)

Thus, we finally get the concrete form of the generic model
of QWoM on the line digraph of G. Due to the one-to-one
correspondence between QWoM on the line digraph of G and
QWM on G, this model is actually the generic model of QWM,
which includes all possible standard QWM on regular graphs.

More importantly, this model provides a way to build any
wanted QWM directly. Furthermore, it seems the walker has
to walk on a more complex graph, but the generic model does
not increase or decrease the evolution space. It provides a fresh
viewpoint to study the QWM by transforming the coin space
to position space.

IV. QWM WITH ONE MEMORY ON THE LINE

The generic model of QWM provides a way to design any
wanted QWM. With all standard QWM on regular graphs, it
is possible to study the properties of different kinds of QWM.
However, it is unrealistic to study each particular situation
in this paper. In this part, we focus on the properties of the
simplest one, QWM with one memory on the line, i.e., m =
2,d = 1, and its relation to the partition and coin shift function.

In order to study in depth the properties of the generic model
of QWM, we consider QWM with different partitions and coin
shift functions and the standard QWoM for comparison. We
denote the partitions and coin shift functions in Refs. [24,25]
by π1, π2, gc1, gc2, respectively. π1 and π2 are shown in
Figs. 1(b) and 1(c). gc1 and gc2 are presented in Eqs. (A4)
and (A5). We also consider a random partition π3 and a
random dicycle factorization partition π4, which are produced
by MATLAB. Therefore, there are six kinds of QWM: QWM
with π1, gc1; QWM with π2, gc1; QWM with π2, gc2; QWM
with π3, gc1; QWM with π4, gc1; and QWM with π4, gc2.
To avoid the confusion that the QWM we simulated include
QWM with π2,gc1 but not QWM with π1,gc2, we remind
readers that for QWM with partition π1, the coin shift function
gc2 does not satisfy the constraint (17). We leave details for
Appendix A. For the same reason, QWM with π3, gc2 does
not exist. For the coin operator, in this paper, we only consider
the Hadamard matrix as the coin operator.

QWM bring possibilities for new phenomena. However,
QWM with a dicycle factorization partition and the coin
shift function gc2 reduce the possibilities. When the initial
position state is |0〉p, there are QWM with different dicycle
factorization partitions and the coin shift function gc2 which
create the same probability distribution for any initial coin
state. The evolution of this kind of QWM is only affected by
the partition at three positions around the center, i.e., −1, 0,
1. Therefore, the number of different QWM with a dicycle
factorization partition and coin shift function gc2 is 8 = 23.
Luckily, this phenomenon does not appear in other kinds of
QWM. For other kinds of QWM, the number of different
QWM increases exponentially with time t , as we predicted.

Now we consider the variance of QWM. For QWoM,
we usually only consider current position of the walker,
and ignore the coin state. For QWM, we still only consider
current position rather than the memory. Therefore, variance
is defined as follows:

Var =
∑

x

p(x)x2 −
[∑

x

p(x)x

]2

, (18)

where x is the current position of the walker and p(x) is the
norm’s square of the amplitude for the walker at position x. El-
linas and Smyrnakis [30] have shown that the general form for
the variance of a quantum walk is σ (t)2 = K2t

2 + K1t + K2
0 .
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FIG. 2. Variance of six kinds of QWM and the standard QWoM,
denoted by the thin dash-dotted red line, thin dotted green line, thin
solid black line, thick dash-dotted cyan line, thick dotted blue line,
thick solid pink line, and purple circles. The initial coin state is
1
2 {| − 1,0〉|1〉 + i| − 1,0〉| − 1〉 + |1,0〉|1〉 + i|1,0〉| − 1〉}. The inset
shows the variance of QWM with π3,gc1 and π4,gc1 once again.

QWoM still follow the rule. From Fig. 2, we know that most
QWM are ballistic, except for QWM with a random partition
and the coin shift function gc1. It is surprising that QWM with a
random dicycle factorization partition and gc2 are still ballistic
while the other QWM with a random partition are diffusive.
We find that the random partition destroys the ballistic nature
of QWM; only QWM with a dicycle factorization and the coin
function gc2 remain ballistic. From another angle, QWM with
the coin shift function gc2 can generate ballistic behavior.
For QWM with the coin shift function gc1, only organized
partitions (such as the partition with repetition) can help to
make QWM ballistic. Luckily, considering the application
of QWM, only QWM with an organized partition will gain
extensive attention from researchers.

We consider the occupancy rate of QWM here. QWM with
a random partition and gc1 are diffusive, but that does not
mean no quantum properties exist for this kind of QWM. The
occupancy rate was proposed in Ref. [9] as a way of measuring
the statistical property of the probability distribution. A
nonzero value of the occupancy rate for a quantum walk on
an infinite graph can be seen as a sign of the quantum feature.
If the walker has range N , the occupancy rate is defined as

ROcc(N,t) = #
{
x
∣∣P (x,t) � 1

N

}
N

. (19)

For QWoM on the line [9], variance has the order O(t2),
and the occupancy rate has the order O(1). In addition, for
classical walks on the line, variance has the order O(t), and
the occupancy rate converges to zero. For QWM in Fig. 3, the
order of the occupancy rate is still O(1) for all cases, while the
order of variance of QWM with a random partition and the coin
shift function gc1 is O(t). This means that QWM do not lose
all of their quantum properties even with a random partition.
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FIG. 3. Occupancy rate of six kinds of QWM and the standard
QWoM, denoted by the thin dash-dotted red line, thin dotted green
line, thin solid black line, thick dash-dotted cyan line, thick dotted
blue line, thick solid pink line, and purple circles. The initial coin
state is 1

2 {| − 1,0〉|1〉 + i| − 1,0〉| − 1〉 + |1,0〉|1〉 + i|1,0〉| − 1〉}.

Localization is an important feature of QWM (by localiza-
tion, we mean the existence of position x where the asymptotic
probability value is nonzero). For QWM, localization is a
more common property than for other kinds of quantum
walks. Almost every kind of QWM we examined, except
QWM with the partition π2 and the coin shift function gc1,
possesses localization. For example, we show the probability
at the origin at time 100 of QWM with π1 and gc1 in
Fig. 4(a) and QWM with π2 and gc1 in Fig. 4(b). We choose
the initial state α| − 1,0〉|1〉 + √

α(1 − α)eiβ | − 1,0〉| − 1〉 +√
α(1 − α)eiβ |1,0〉|1〉 + (1 − α)e2iβ |1,0〉| − 1〉. We find that

Fig. 4(b) is basically dark while Fig. 4(a) is more bright. This
implies QWM with π2 and gc1 are not localized while QWM
with π1 and gc1 are localized. In fact, for other QWM we
examined, the graphs of localization are also bright. Then we
show the probability at the origin position with time t changing
in Fig. 4(c). We choose the initial state 0.1| − 1,0〉|1〉 +√

0.09| − 1,0〉| − 1〉 + √
0.09|1,0〉|1〉 + 0.9|1,0〉| − 1〉. Dif-

ferent initial states will not affect the subgraph drastically.
From Fig. 4(c), it is easy to see that only for QWM with
π2 and gc1 and standard QWoM does the probability at the
original position converge to zero. This phenomenon verifies
that QWM with π2 and gc1 are not localized while other QWM
are localized. For QWM with a random partition and the coin
shift function gc1, the probability at the origin vibrates sharply
because of the randomness of the partition. Nevertheless, this
kind of QWM still has a high probability at the origin for large
values of the time t . It shows again the quantum property of
QWM with a random partition.

During our research, we found a rare and interesting
result. Even though QWM with different partitions which
could produce the same probability distribution exist, they
still belong to QWM. Mostly, different kinds of quantum
walks produce different probability distributions. There is only
one special case. In Refs. [6,7], Di Franco et al. found the
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FIG. 4. (a) The probability at the origin at time 100 of QWM with
π1 and gc1. (b) The probability at the origin at time 100 of QWM
with π2 and gc1. The initial state is α| − 1,0〉|1〉 + √

α(1 − α)eiβ | −
1,0〉| − 1〉 + √

α(1 − α)eiβ |1,0〉|1〉 + (1 − α)e2iβ |1,0〉| − 1〉. (c) The
change of probability at the origin with time t changing for six kinds
of QWM and the standard QWoM, denoted by the thin dash-dotted red
line, thin dotted green line, thin solid black line, thick dash-dotted
cyan line, thick dotted blue line, thick solid pink line, and purple
circles. The initial state is 0.1| − 1,0〉|1〉 + √

0.09| − 1,0〉| − 1〉 +√
0.09|1,0〉|1〉 + 0.9|1,0〉| − 1〉.

nonlocalized case of the spatial density probability of the
two-dimensional Grover walk can be obtained using only a
two-dimensional coin space and a quantum walk in alternate
directions. Here, we find another example. The symmetric
probability distribution of the standard QWoM on the line
with initial state |0〉( 1√

2
|1〉 + i√

2
| − 1〉) can be obtained by the

QWM with π2 and gc2 when the initial state is 1
2 | − 1,0〉|1〉 −

1
2 | − 1,0〉| − 1〉 − 1

2 |1,0〉|1〉 + 1
2 |1,0〉| − 1〉. Let us denote the

coefficients in the decomposition of the standard QWoM and
that of the QWM as αx,c and βx,x±1,c, respectively. Then we
have a correspondence between them given by

αt
x,1 = (−1)

t+x
2 ei π

4
(−iβt

x−1,x,1 − βt
x−1,x,−1

)
,

(20)
αt

x,−1 = (−1)
t+x

2 ei π
4
(−βt

x+1,x,1 + iβt
x+1,x,−1

)
.

We leave the proof for Appendix B. Therefore, these two
totally different quantum walks produce same probability
distribution, i.e.,

P t
x = ∣∣αt

x,1

∣∣2 + ∣∣αt
x,−1

∣∣2

= ∣∣βt
x−1,x,1

∣∣2 + ∣∣βt
x−1,x,−1

∣∣2 + ∣∣βt
x+1,x,1

∣∣2 + ∣∣βt
x+1,x,−1

∣∣2
.

(21)

V. SUMMARY

In this paper, we found the one-to-one correspondence
between QWM with d memory on a regular graph G and
QWoM on the associated line digraph

−→
L dG. Through this

correspondence, we studied QWoM on the line digraph of
G instead of QWM on G. Furthermore, through this corre-
spondence, we constructed a generic model which includes all
possible standard QWM on regular graphs.

The generic model may not make the calculation of QWM
simpler because it transforms the coin space to position space,
which does not increase or decrease the resource to execute
QWM. However, the model gives a fresh viewpoint to study
QWM on regular graphs. Furthermore, this model gives a
general scheme for building all possible standard QWM on
regular graphs. Then we can design any required QWM on
regular graphs.

What is more, with the generic model of QWM on regular
graphs, it is possible to study the properties of different kinds
of QWM. Because it was unrealistic to study each particular
situation in this paper, we focused on the simplest case, which
is QWM with one memory on the line. We paid the most
attention to QWM with different kinds of partition and coin
shift functions. In this paper, we have the following results:

Variance Occupancy rate Localization

QWM π1,gc1 ballistic nonzero yes
π2,gc1 ballistic nonzero no
π2,gc2 ballistic nonzero yes
π3,gc1 diffusive nonzero yes
π4,gc1 diffusive nonzero yes
π4,gc2 ballistic nonzero yes

Standard QWoM ballistic nonzero no
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(1) QWM with a sorted partition have ballistic evolution,
while QWM with a random partition may become diffusive. At
the same time, QWM with a random dicycle factorization par-
tition and gc2 (which number eight when we fix the initial posi-
tion state to |0〉) are still ballistic. With this result, we can build
a ballistic QWM as desired by choosing the appropriate parti-
tion and coin shift function. We also know that we do not need
to study all QWM with a dicycle factorization partition and the
coin shift function gc2 because they can be reduced to eight
QWM. Therefore, researching those eight QWM is enough.

(2) QWM have a nonzero value of the occupancy rate, even
for QWM with a random partition. This means QWM still
have quantum properties even with a random partition.

(3) Localization is a common feature for QWM, but it does
not necessarily occur for all QWM. QWM with the partition π2

and the coin shift function gc1 do not possess the localization
property. Our results tell us which kind of partition and coin
shift function we should choose if we want to build a QWM
with or without localization.

(4) A QWM could produce the same probability distribution
as that of a standard QWoM on the line when the initial state

is
√

1
2 |0〉p(|1〉c + i| − 1〉c). This result may be not useful but

is interesting considering how rare it is.
Our work extends current research on quantum walks by

showing a generic model of QWM. Furthermore, the generic
model opens the door to the research of QWM by giving a
general scheme for constructing all possible standard QWM.
We anticipate that the abundant phenomena of QWM will be
useful in quantum computation and quantum simulation.
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APPENDIX A

First, we show the partitions of the two kinds of
QWM [24,25], labeled by π1 and π2, in Figs. 1(b) and 1(c),
respectively. The essential difference between the two parti-
tions is that the partition π2 is a dicycle factorization of the
line digraph in Fig. 1(a), which means that for every vertex
v ∈ V (Ck) (k = 1,2), the outdegree and indegree of v are both
1. This difference makes the coin shift function gc for different
QWM take on different forms.

We denote the vertices as v1, . . . ,vN , . . . v2N (the sort of
order should obey Theorem 1 in Sec. III). According to
Eqs. (16), for any v ∈ −→

L G, M(
−→
L G)(vi ,v) = 1 if and only

if M(
−→
L G)(vi+N ,v) = 1.

If the partition is a dicycle factorization, because the inde-
gree of any v is 1, there is no (vj ,Ck) that satisfies fCk

(vj ) =
fCk

(vj+N ). Therefore, the constraint (17) can be written as

gc(vi,1) + gc(vi+N, − 1) = 0,
(A1)

gc(vi, − 1) + gc(vi+N,1) = 0,

where i � N2d−1.

If the partition is not a dicycle factorization, there exist
(vj ,Ck) that satisfy fC(vj ) = fC(vj+N ). Therefore,

gc(vi,1) + gc(vi+N, − 1) = 0 (i 
= j ),

gc(vi, − 1) + gc(vi+N,1) = 0 (i 
= j ),
(A2)

gc(vj ,1) + gc(vj+N,1) = 0,

gc(vj , − 1) + gc(vj+N, − 1) = 0.

Summarizing the above conditions, the choice

gc(vi,1) = ki, gc(vi+N,1) = −ki,
(A3)

gc(vi, − 1) = ki, gc(vi+N, − 1) = −ki,

with ki = ±1. This choice befits any partition.
For QWM in Ref. [24], for any vj , there exist Ck such that

fCk
(vj ) = fCk

(vj+N ), and the coin state takes values ±1. The
coin shift function gc1 in Ref. [24] is

gc1(vi,1) = 1, gc1(vi+N,1) = −1,

(A4)
gc1(vi, − 1) = 1, gc1(vi+N, − 1) = −1,

which satisfies Eqs. (A3) and befits any partition.
For QWM in Ref. [25], because π2 is a dicycle factorization,

there do not exist (vj ,Ck) such that fCk
(vj ) = fCk

(vj+N ). The
coin shift function gc2 in Ref. [25] is

gc2(vi,1) = 1, gc2(vi+N,1) = 1,

(A5)
gc2(vi, − 1) = −1, gc2(vi+N, − 1) = −1,

where i � N . Here, gc2 only satisfies Eqs. (A1) rather than
Eqs. (A3), which means gc2 only work for QWM with a dicycle
factorization partition.

APPENDIX B

For QWM with π2 and gc2,

βt+1
x,x+1,1 = 1√

2

(
βt

x+1,x,1 + βt
x+1,x,−1

)
,

βt+1
x,x−1,1 = 1√

2

(
βt

x−1,x,1 + βt
x−1,x,−1

)
,

(B1)

βt+1
x,x−1,−1 = 1√

2

(
βt

x+1,x,1 − βt
x+1,x,−1

)
,

βt+1
x,x+1,−1 = 1√

2

(
βt

x−1,x,1 − βt
x−1,x,−1

)
.

We first want to prove the amplitudes satisfy the constraint

βt
x,x+1,1 + βt

x,x+1,−1 + βt
x,x−1,1 + βt

x,x−1,−1 = 0,
(B2)

βt
x+1,x,1 + βt

x−1,x,1 = 0.

Our proof works by induction on t . When the QWM begin with
the initial state 1

2 | − 1,0〉|1〉 − 1
2 | − 1,0〉| − 1〉 − 1

2 |1,0〉|1〉 +
1
2 |1,0〉| − 1〉, i.e.,

β0
−1,0,1 = 1

2 , β0
−1,0,−1 = − 1

2 ,
(B3)

β0
1,0,1 = − 1

2 , β0
1,0,−1 = 1

2 ,
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it is easy to verify, by means of a direct calculation, that
Eqs. (B2) are satisfied at t = 0. Now, we assume Eqs. (B2)
are true for any x at time t ; then we prove that they hold at
time t + 1.

βt+1
x,x+1,1 + βt+1

x,x+1,−1 + βt+1
x,x−1,1 + βt+1

x,x−1,−1

=
√

2
(
βt

x+1,x,1 + βt
x−1,x,1

)
= βt−1

x,x+1,1 + βt−1
x,x+1,−1 + βt−1

x,x−1,1 + βt−1
x,x−1,−1

=
√

2
(
βt−2

x+1,x,1 + βt−2
x−1,x,1

)
. (B4)

Therefore, Eqs. (B2) are satisfied at any time t .
For the standard QWoM on the line,

αt+1
x,1 = 1√

2

(
αt

x−1,1 + αt
x−1,−1

)
,

(B5)

αt+1
x,−1 = 1√

2

(
αt

x+1,1 − αt
x+1,−1

)
.

We want to prove the relation

αt
x,1 = (−1)

t+x
2 ei π

4
(−iβt

x−1,x,1 − βt
x−1,x,−1

)
,

(B6)
αt

x,−1 = (−1)
t+x

2 ei π
4
(−βt

x+1,x,1 + iβt
x+1,x,−1

)
,

with the initial condition for the standard QWoM given by
α0,1 = 1√

2
,α0,−1 = i√

2
. Again, we proceed by induction in

t . When t = 0, Eqs. (B6) are satisfied by means of a direct
calculation. Now, we assume Eqs. (B6) are true for any x at
time t ; then we prove that they hold at time t + 1.

αt+1
x,1 = 1√

2

(
αt

x−1,1 + αt
x−1,−1

)
= 1√

2
(−1)

t+x−1
2 ei π

4
( − iβt

x−2,x−1,1 − βt
x−2,x−1,−1

−βt
x,x−1,1 + iβt

x,x−1,−1

)
= 1√

2
(−1)

t+x−1
2 ei π

4
(
iβt

x,x−1,1 − βt
x−2,x−1,−1

+βt
x−2,x−1,1 + iβt

x,x−1,−1

)
= (−1)

t+x+1
2 ei π

4
( − iβt+1

x−1,x,1 − βt+1
x−1,x,−1

)
, (B7)

αt+1
x,−1 = 1√

2

(
αt

x+1,1 − αt
x+1,−1

)
= 1√

2
(−1)

t+x+1
2 ei π

4
( − iβt

x,x+1,1 − βt
x,x+1,−1

+βt
x+2,x+1,1 − iβt

x+2,x+1,−1

)
= 1√

2
(−1)

t+x+1
2 ei π

4
(
iβt

x+2,x+1,1 − βt
x,x+1,−1

−βt
x,x+1,1 − iβt

x+2,x+1,−1

)
= (−1)

t+x+1
2 ei π

4
( − βt+1

x+1,x,1 + iβt+1
x+1,x,−1

)
. (B8)

Therefore, Eqs. (B6) are satisfied at any time t .
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