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Quantum error correction for state transfer in noisy spin chains
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Can robustness against experimental imperfections and noise be embedded into a quantum simulation? In this
paper, we report on a special case in which this is possible. A spin chain can be engineered such that, in the absence
of imperfections and noise, an unknown quantum state is transported from one end of the chain to the other, due
only to the intrinsic dynamics of the system. We show that an encoding into a standard error-correcting code (a
Calderbank-Shor-Steane code) can be embedded into this simulation task such that a modified error-correction
procedure on readout can recover from sufficiently low rates of noise during transport.
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I. INTRODUCTION

One of the most promising, and furthest progressed, uses
of a quantum computer is the quantum simulator, wherein
the Hamiltonian of one well controlled and understood
quantum system can reproduce the Hamiltonian of another
system that we wish to study [1–5]. The challenge for
these simulators is the tolerance of noise. In principle, this
can be done: A universal quantum computer can implement
gates consisting of the Trotterized Hamiltonian within a
fault-tolerant architecture [6,7]. However, this digital method
of simulation means many of the benefits of the original
(analog) Hamiltonian simulation are lost; certainly we can no
longer use the comparatively easy route of natural Hamiltonian
dynamics. We seek a middle ground, a method for embedding
robustness into an analog Hamiltonian simulation. Such a task
appears extremely challenging: Even if the system’s error
channels are as simple as possible (e.g., acting locally and
independently on each spin), then by the end of the simulation
of Hamiltonian H , a time t later, the error operator Ô has
propagated to e−iH t ÔeiHt . The full set of errors that we have
to adapt to is huge, including not only the local errors but also
highly nonlocal ones as well. Moreover, without a method for
extracting entropy from the system throughout the simulation,
these techniques can never be scalable [8]; we simply envisage
that they permit larger, more accurate, simulations than in
their absence. We report on one special case for which an
error-corrected simulation is possible: perfect quantum state
transfer. This shows conceptually that additional robustness
can be imbued upon a quantum simulation and may provide
insight that benefits future studies.

The use of spin chains for transferring a quantum state
was first proposed by Bose [9] and refined for perfect action
in [10,11]. They are intended to reduce the experimental
demands of an essential component of the quantum computer:
the transport of quantum states between distant locations. The
concept requires the design, premanufacture, and testing of a
device that is made from the same technology as the rest of the
quantum computer and has a single fixed function (although
routing may be possible under certain assumptions [12,13]).
Conceptually, this enables one to expend a great deal of effort
on making the device as accurately as possible to minimize
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errors: Since direct control is not required of any of the spins
in the chain except for the first and last, all the rest could (in
principle) be isolated from the environment. Furthermore, it
should be comparatively simple to experimentally realize this
protocol [14,15] (although one has to add remarkably little in
order to regain the full power of quantum computation [16]).

Inevitably, errors will arise both in the manufacturing
process and as noise during the transport [14,15]. How are
we to surmount such obstacles? If we allow access to a
few sites at the beginning and end of a long chain, then
there is an elegant solution to the task of finding the optimal
encoding across those spins [17] in the presence of (time-
independent) identified manufacturing defects. Alternatively,
multiple parallel (nonidentical) chains may be used, at the
cost of a heralded but nondeterministic arrival [18]. Far less is
known about dynamically occurring noise, with [19] imposing
that errors only occur at a restricted number of positions and
times, and no true error-correction protocol (for unidentified
errors) is known.

In this paper, we identify the equivalent of local errors
for a spin chain and investigate error-correcting codes that
can correct for the presence of a small number of these
errors. We show that by modifying their error-correction
procedure, the Calderbank-Shor-Steane (CSS) codes [20,21]
can be used to encode an unknown quantum state into a few
sites at the beginning of a long chain, and decoded at the
opposite end, thereby enabling high-quality transport of a state
in the presence of sufficiently low error rates. This study
is of significant experimental relevance: The free-fermion
type Hamiltonians that we study have broad experimental
feasibility [22–26] and this work shows how they can tolerate
(i) perturbative errors in the intended coupling strengths
(imperfect manufacture), (ii) imperfect timing of the state
transfer protocol, and (iii) local noise that is dominated by
one particular type of error.

II. NOISY TRANSFER CHAINS

We consider a chain of N qubits with nearest-neighbor
couplings. The Hamiltonian has the XX form

H = 1

2

N∑
n=1

BnZn + 1

2

N−1∑
n=1

Jn(XnXn+1 + YnYn+1),
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where Xn, Yn, and Zn indicate the standard Pauli X, Y ,
and Z matrices respectively, applied to site n (and identity
elsewhere). Such Hamiltonians are particularly appropriate
for superconducting qubits [22–24]. The coupling strengths
can be selected in many different ways to achieve perfect
transfer [27], but the details are irrelevant as our constructions
are universally applicable: The same error-correcting code and
correction procedure can be used on any such chain. Equivalent
constructions can be made for other one-dimensional free-
fermion models, such as the transverse Ising model [11,28],
which is also experimentally relevant [5,25,26], but do not
apply to the Heisenberg model. For our purposes, it is sufficient
to know that there exists a time t0 such that

e−iH t0 |1〉|0〉⊗(N−1) = eiφ|0〉⊗(N−1)|1〉 (1)

for some known phase φ [11]. Here the N -fold tensor product
represents the states of consecutive spins on the chain; the first
is the input spin and the last is the output spin of the state
transfer process. Equation (1) imposes that for any arbitrary
initial state |�I 〉 of the N qubits, after evolution for time t0,
this state is mirror inverted about the center of the chain, up to
the application of controlled-phase gates between every pair
of qubits [11,29]. However, if a state on a block of spins
(such as at either end of the chain) has a fixed parity of
excitations (number of |1〉’s), then the controlled-phase gates
cannot cause that block to become entangled with the rest of
the system. This observation has previously been used to avoid
the initialization of any part of the spin chain except where the
state is input [11,28,30]. We seek an encoding for an unknown
quantum state on the first M spins of a spin chain such that,
after time t0, the input state can be recovered from the M spins
at the opposite end of the chain (the decoding region). In the
absence of noise, it is sufficient to encode in a state of fixed
parity of excitation number and use a perfect transfer chain.

Inspired by the Jordan-Wigner transformation, we intro-
duce the Majorana fermions

cn = Z1Z2 . . . Zn−1Xn, cn+N = Z1 . . . Zn−1Yn,

whose time evolution can be written as

cn(t) = e−iH t cne
iHt =

2N∑
m=1

〈m|e−iht |n〉cm, (2)

where

h = −Y ⊗ H1

is a 2N × 2N matrix describing the coupling of the 2N

fermion modes (the tensor product between the Pauli matrix
Y and the matrix H1 is merely a matrix construction and
reflects no correspondence with a physical division of subsets
of qubits) and

H1 =
N∑

n=1

Bn|n〉〈n| +
N−1∑
n=1

Jn(|n〉〈n + 1| + |n + 1〉〈n|)

is the Hamiltonian H , restricted to the first excitation subspace.
The key to this description is that the fermions cn evolve
independently of one another (one only has to be careful
of the ordering of the operators, which contributes the
aforementioned controlled-phase gates).

The fermions cn form a basis that, in principle, any error
(such as Xn) could be described in terms of. However, certain
errors, such as local phase errors, are described by only a pair
of fermions: Zn = −icncN+n. So, if a phase error were to occur
on any spin at any time t , then by Eq. (2), at the state transfer
time t0 there would still only be two fermions present in the
system and the errors on the output region would consist of no
more than two operators of the form

ZN+1−MZN+2−M · · · ZN+k−1−MXN+k−M,

ZN+1−MZN+2−M · · ·ZN+k−1−MYN+k−M,

where k ∈ {1, . . . ,M}. These are clearly not the single-site
operators that standard error-correcting codes are designed to
combat. However, observe that whatever error occurs, (i) there
are no more than two bit flips (X or Y ) and (ii) on a site p

where there is no bit flip, there is a Z error only if there is an
odd number of bit-flip errors on the sites p + 1 to N .

III. THE CSS CODES

The CSS codes [20,21] constitute the first known exam-
ples of a quantum-error-correcting code. An [[n,k,d]] code
comprises n physical qubits, encoding k logical qubits, and is
capable of correcting for any �(d − 1)/2� single-qubit errors
(X, Y or Z). They work by combining two different classical
codes: one for X errors and the other for Z errors. After an
encoded state has been exposed to noise, the original state can
be reconstructed by first performing a syndrome extraction, in
which the location of errors is written onto some ancilla qubits,
and then error correction, in which the ancillas are measured
and the detected errors are inverted, for each type of error (X
or Z) in turn.

Assume that we have encoded into an [[M,1,d]] CSS code
of distance d � 5, with the additional constraint that all the
stabilizers and logical operators of the code commute with
Z⊗M . The perfect mirroring property of the perfect transfer
system ensures that the code arrives perfectly on the decoding
region at time t0, up to the possible controlled phases that are
globally applied. The commutativity of the code with Z⊗M

ensures that the code space has a fixed parity of excitation
number and hence the rest of the chain can be initialized in an
arbitrary state and not get entangled with the decoding region
due to these gates. The internal controlled-phase gates are
removed by applying controlled-phase gates between all pairs
of qubits N + 1 − M to N [31], returning the original code,
but updating the errors to

XN+k−MZN+k+1−MZN+k+2−M · · · ZN,

YN+k−MZN+k+1−MZN+k+2−M · · ·ZN.

By performing standard syndrome extraction for the X-type
errors, we can detect any pair of bit-flip errors. Hence, by
observation (i) we can detect the location of any fermionic
operators that lie in the decoding region (with the exception
of cncN+n). This is followed up by an error-correction step.
Obviously, we should apply X rotations to the detected error
locations as normal. However, by observation (ii) we also apply
a Z rotation to any spin n that has an odd number of detected
bit flips on sites N + 1 − M to n − 1. This change in the
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procedure negates some of the fault-tolerant properties of CSS
codes [32], but these are irrelevant here.

The only errors that we have not corrected for are either the
cncN+n type (a Z on a single site) or the distinction between
X and Y operators, which were corrected as if they were
X. Thus, the remaining errors consist of up to two Z errors,
which can be detected and corrected using the Z part of the
CSS code in the standard manner. The net result is the perfect
correction of any single two-fermion error (e.g., Z) that occurs
at any time during the evolution of the system, a far stronger
result than the identified noise of [19], while by no means
contradicting studies of information propagation in more noisy
scenarios [33].

More generally, by selecting an [[M,1,2k + 1]] CSS code
to encode into (whose stabilizers commute with Z⊗M ), we
can correct for up to k Majorana fermions arriving in the
output region. This requires input and output regions of size
O(k2). While such codes are not so well studied, [[d2,1,d]]
Shor codes can easily be constructed: Divide the d2 qubits
into blocks of d and define logical qubits |0〉L1 = |+〉⊗d

and |1〉L1 = |−〉⊗d [Hadamard-rotated majority vote for Z

errors, distance d, where |±〉 = (|0〉 ± |1〉)/√2] and then
take those and form them into a standard majority vote (i.e.,
tuned for X errors) |0〉L2 = |0〉⊗d

L1 and |1〉L2 = |1〉⊗d
L1 . This

has a fixed parity of excitation number provided d is even.
However, better codes probably exist: In the case of d = 5,
a [[19,1,5]] code has been found [34], although this does
not have the necessary excitation parity condition. Indeed,
the explicit example that we have simulated in the next
section suggests that asymmetric quantum-error-correcting
codes could become objects of particular interest [35].

Minimal working example

As presented, the minimal size of the encoding and decod-
ing regions is 36 qubits, rendering simulation of the full Hilbert
space a serious challenge. In order to numerically verify the
presented results, we made a number of simplifications. First,
we limited the length of the chain to the size of the encoding
region (M = N ) and evolved for twice the state transfer time,
thereby creating a perfect revival of the original state, which
also removes the requirement for the code to commute with
Z⊗M . Second, we made the observation that although up
to two Z errors could occur, it is only necessary to use an
error-correcting code that corrects for a single Z error. This is
because there are two possible cases for what happens: Either
no bit flip error is detected (which means the Z error has
propagated to a single Z error on some site) or two bit flip
errors are detected (which means that there will be up to two
Z errors on those two sites). Obviously, the only case that a
one-Z-error-correcting code could not implicitly deal with is
the instance in which there are exactly two Z errors (Fig. 1).
However, we know that if a one-Z-error-correcting code is
comprised of three qubits and there are errors on two of the
qubits, the syndrome measurement detects an error on the other
bit [Fig. 1(c)]. Thus, if we compare this with the syndrome
information for the X error, we can implement the additional
rule that if a Z error is detected on a logical qubit on which
no X error was detected, then there were actually Z errors
on the other two logical bits instead. As such, the Shor-like

FIG. 1. Error-correcting code of 15 qubits made up of 3 logical
qubits (grouped by shading) in a Z-error-correcting code, each
composed of a 5-qubit X-error-correcting code. Two bit flips and
the trailing Z errors have been detected and corrected. Up to two
Z errors remain, located on the sites of the detected X errors. (a) A
single error is easily detected and corrected. (b) A pair of errors within
the same logical qubit cancel each other. (c) Two errors on different
logical qubits yield a syndrome that does not match the locations of
the X errors, flagging the need to correct for two Z errors.

construction reduces to 15 qubits, rendering simulation more
feasible. We have implemented this [36] using the standard
coupling configuration for perfect transfer, Jn = √

n(N − n)
and Bn = 0 [10,11]. For 1024 random samples of a single Z

error (chosen randomly to occur at any time during the transfer
time and to be applied at any random site on the chain), every
instance was corrected perfectly.

IV. MORE REALISTIC NOISE

While a fixed number of errors simplifies the pedagogy, of
more practical interest is the case of a fixed per-qubit error
rate. Assume that there is a probability per qubit and per unit
time of γ that a two-fermion error occurs on the spin chain.
For instance, phase errors can be described using the master
equation

dρ

dt
= −i[H,ρ] − Nγρ + γ

N∑
n=1

ZnρZn.

During the time t0, one would therefore expect an average
of 2γNt0 fermionic errors to afflict the chain. However,
we anticipate that only O(γMt0) of these are located on
the decoding region at the moment of error correction. To
formalize this, consider the intended transformation under
the perfect state transfer Hamiltonian of cn 	→ cN+1−n and
cN+n 	→ c2N+1−n, i.e., we want to keep track of errors in the
mode e−iH t cne

iHt = eiHtcN+1−ne
−iH t for n � N . Thus, if we

evaluate

χn = Tr(ρe−iH t cne
iHt ) = Tr(ρ̃cN+1−n),
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where ρ̃ = e−iH tρeiHt is the density matrix in the interaction
picture, we can evaluate the derivative as

dχn

dt
= −Nγχn

+ γ

N∑
m=1

Tr(ρ̃e−iH tZmeiHtcN+1−ne
−iH tZmeiHt ).

Using Eq. (2), we rewrite

ZmeiHtcne
−iH tZm = eiHtcne

−iH t − 2cm〈m|eiht |n〉
−2cN+m〈N + m|eiht |n〉

such that

dχn

dt
= −2γ Tr

(
ρ̃e−iH t

2N∑
m=1

〈m|eiht |N + 1 − n〉cmeiHt

)

= −2γχn,

using Eq. (2) again. This leaves a final solution of χn(t) =
e−2γ tχn(0). We interpret this as a probability of p = 1

2 (1 −
e−2γ t ) of each fermionic mode having an error. If γ t0 � 1, then
the error probability is approximately p = γ t0 per fermionic
error. However, these error modes do not occur independently
of one another. Provided the expected number of errors
∼ 2γMt0 is smaller than the number of errors that the code
can correct for (∼ √

M/2), the code can be useful. Thus, we
require γ t0 ∼ 1/

√
M and, furthermore, t0 scales with at least

N if the maximum coupling strength of a chain is bounded [37].
We therefore envisage this being applied in finite length chains
where the parameters can be judiciously chosen to be effective,
thereby providing regular repetitions of error correction if
transfer is required over greater distances.

V. TIMING AND MANUFACTURING ERRORS

So far, we have shown that a small number of fermionic
errors can be corrected for and we have ascribed their
appearance to noise in a particular basis. However, there are
two other important mechanisms that can be described in this
way. The first is a timing error: Rather than removing the
arriving state from the spin chain at time t0, we accidentally
do so at the time t0 + δt [38]. Instead of the initial state |�I 〉
evolving to the target state |�T 〉 = e−iH t0 |�I 〉, it acquires an
error e−iHδt . Expanding this for small δt (requiring δtλmax �
1, where λmax is the largest singular value of H1) yields an
expansion in even powers of the fermionic operators, i.e.,
larger numbers of errors are strongly suppressed such that
error correction succeeds with high probability. In Fig. 2, we
show how the minimal working example successfully corrects
the majority of cases for a small timing error. Note that,
unlike previous treatments such as in [38], here we evaluate
the probability that the state arrives perfectly, not the overlap
between the input and output states.

Similarly, were we to imperfectly manufacture the target
coupling strengths and magnetic fields in H , then the per-
turbation V (which could be time dependent) is quadratic in
fermions. Now the error in evolution can be described by

FIG. 2. In the minimal working example, we test faults due to
timing errors, assessing the probability of successful corrections (by
tracking all possible syndrome measurements).

e−i(H+V )t0eiHt0 |�T 〉 and expanded in powers of V as

e−i(H+V )t0eiHt0 = 1 + it0

∫ t0

0
e−iH tV eiHtdt + O

(
t2
0 V 2

)
.

Since the action of e−iH t preserves the number of fermions, this
represents an expansion in even powers of fermionic operators.
Thus, provided ζmaxt0 � 1, where ζmax is the largest singular
value of the first excitation subspace of V , this describes
that with high probability the number of fermionic errors is
small and these can be corrected for via our error-correction
procedure. The efficacy of this procedure is tested for the
minimal working example and depicted in Fig. 3. Of course, a
better test would be to utilize state transfer over a greater chain
length to avoid possible confusion with localization due to the
errors in the system.

VI. CONCLUSION

In spite of the fact that CSS codes were designed for
application in the scenario of local independent errors, we

FIG. 3. In the minimal working example, we test faults due to
coupling errors, altering each uniformly at random in the range Jn(1 −
f ) to Jn(1 + f ), assessing the probability of successful corrections
and averaging over 1000 different instances (black) or the minimum
success probability (gray).
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have shown that they can be retasked to correct for the
massively correlated errors that typically arise due to the
intrinsic Hamiltonian dynamics of a spin chain, such as those
intended to perform the perfect quantum state transfer of
spin chains. This in turn shows that additional robustness
against imperfections can be embedded into a fixed-function
Hamiltonian evolution such as an analog quantum simulation,
even if it was dependent on some very specific features of the
Hamiltonian (the free-fermion structure).

The major drawback of encoding in this way is that a block
encoding of size M can tolerate at most O(

√
M) errors, but

a constant per-qubit error rate would require O(M) to be
tolerated, imposing the requirement for rather small error rates.
A future direction would be to try and improve this through
better choice of error-correcting code. We are given heart by
the surface code [39]: This is a CSS code and, although its
distance is short, it is the case that in the presence of local

noise, it is highly unlikely that those short error strings that
cause failure of the code arise. Indeed, the surface code has
an error-correcting threshold consisting of a finite per-qubit
error rate, exactly as we desire [40,41]. However, more work
would be required; the errors in the present model are not
independent. Provided these correlations are local, it is likely
that they could be tolerated, with a mapping from the spin chain
onto the surface code that preserves the locality of the errors.

The error correction succeeds provided the error operators
are well described in terms of a small number of fermionic
operators. This includes terms such as Z, X ⊗ X, and Y ⊗
Y , as well as Hamiltonian perturbations and timing errors.
However, it does not include bit-flip errors: A bit flip on spin
n requires 2n − 1 Majorana fermions to describe it. It remains
an interesting question for the future whether either a different
error-correction strategy or a different class of Hamiltonians
permits error correction of all local errors.
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