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In this work, we extensively study the problem of broadcasting of quantum correlations (QCs). This includes
broadcasting of quantum entanglement as well as correlations that go beyond the notion of entanglement
(QCsbE). It is quite well known from the “no-broadcasting theorem” that perfect broadcasting of QCs is not
possible. However, it does not rule out the possibility of partial broadcasting of QCs where we can get lesser
correlated states from a given correlated state. In order to have a holistic view of broadcasting, we investigate this
problem by starting with a most general representation of two qubit mixed states in terms of the Bloch vectors. As
a cloning transformation we have used universal symmetric optimal Buzek-Hillery (BH) cloner both locally and
nonlocally. Unlike entanglement, we find that it is impossible to broadcast QCsbE optimally. Lastly, we generalize
these results for any symmetric or asymmetric cloning machines as well. This result brings out a fundamental
difference between the correlations defined from the perspective of entanglement and the correlations measure
which claims to go beyond entanglement.
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I. INTRODUCTION

The impossibility to clone quantum states is regarded
as one of the most fundamental restrictions which nature
provides us [1]. The “no-cloning theorem” states that there
exists no quantum mechanical process that can take two
different nonorthogonal quantum states |ψ1〉, |ψ2〉 into states
|ψ1〉 ⊗ |ψ1〉, |ψ2〉 ⊗ |ψ2〉, respectively. Even though we cannot
copy an unknown quantum state perfectly, quantum mechanics
never rules out the possibility of cloning it approximately
[1–9]. It also allows probabilistic cloning as one can always
clone an arbitrary quantum state perfectly with some nonzero
probability of success [9,10].

In 1996, Buzek et al. introduced the concept of approx-
imate cloning with certain fidelity. In this process, the state
independent quantum copying machine was introduced by
keeping the fidelity of cloning independent of the input state
parameters. This machine is popularly known as universal
quantum cloning machine (UQCM) [2] which was later proven
to be optimal [3,11]. Apart from this state independent quan-
tum cloning machine (QCM), there are also state dependent
QCMs for which the quality of copies depend on the input
state [3,9,12].

Quantum entanglement [13] which lies at the heart of
quantum information theory is one of the key factors for better
achievement of fidelity of QCMs [14]. Not only that, it also
plays a significant role in computational and communicational
processes such as quantum key distribution [15,16], secret
sharing [17], teleportation [18], superdense coding [19],
entanglement swapping [20,21], remote entanglement distri-
bution [22], and in many more tasks [23]. At least in the
context of quantum information processing, the purer the
entanglement, the more valuable the given two-qubit state.
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Therefore, extraction of pure quantum entanglement from a
partially entangled state is considered to be an important task.
Consequently, there have been many works on purification
procedures by many researchers over the last few years
showing how one can compress the amount of quantum
entanglement locally [24,25]. The possibility of compression
of quantum correlations naturally raises the question if the
opposite, i.e., decompression of correlations, is realizable or
not. Many researchers have answered this query using the
process known as “broadcasting of inseparability” [12,26,27].
This question becomes important when there is an exigency in
increasing the number of available entangled pairs rather than
the purity of it. In a simple sense, broadcasting here refers to
local or nonlocal copying of quantum correlations [26,28].

In general, the term broadcasting can be used in different
contexts. Classical theory permits broadcasting of information,
however, that is not the case for all states in quantum theory.
Cloning and broadcasting principles demarcate the boundary
between classical and quantum worlds. In this context, Barnum
et al. were the first to show that noncommuting mixed states
do not meet the criteria of broadcasting [29].

It is impossible to have a process which will perfectly copy
(clone and broadcast) an arbitrary quantum state [1,26,29].
By referring to perfect broadcasting of correlations we mean
that the correlations in a two-qubit state ρab are locally
broadcastable if there exist two operations, �a: S(Ha) →
S(Ha1 ⊗ Ha2 ) and �b: S(Hb) → S(Hb1 ⊗ Hb2 ) such that
I (ρa1b1 ) = I (ρa2b2 ) = I (ρab). Here, I (ρab) is the quantum
mutual information, ρa1a2b1b2 := �a ⊗ �b(ρab) and ρaibi :=
Traībī

(ρa1a2b1b2 ) [30]. Quite recently, many authors showed
that correlations in a single bipartite state can be locally or
unilocally broadcast if and only if the states are classical
(i.e., having classical correlations) or classical quantum,
respectively [30–33].

In the previous cases, we generally discussed broadcast-
ing of a general quantum state or perfect broadcasting of
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correlations. But when we refer to broadcasting of an entangled
state, we generally talk about creating more pairs of lesser
entangled states from a given entangled state where I (ρa1b1 )
and I (ρa2b2 ) are less than I (ρab). This is done via the
application of local cloning operation on each qubit of the
given entangled state, or sometimes by applying global cloning
operations on the total input entangled state itself [4,26,27].
Bandyopadhyay et al. [27] showed that only UQCMs having
fidelity over 1

2 (1 + 1√
3
) can broadcast entanglement and

furthermore that entanglement in the input state is optimally
broadcast only if the quantum cloners used for local copy-
ing are optimal. However, if local cloners are used, then
broadcasting of entanglement into more than two entangled
pairs is impossible. Ghiu et al. addressed the question of
broadcasting of entanglement by using local universal optimal
asymmetric Pauli cloning machines. They presented that if one
employs symmetric cloners instead of asymmetric ones, then
only optimal broadcasting of inseparability is achievable [34].
In other works, authors investigated the problem of secretly
broadcasting of a three-qubit entangled state between two
distant partners with a universal quantum cloning machine and
then the result is generalized to generate secret entanglement
among three parties [28]. Various other works on broadcasting
of entanglement depending on the types of QCMs were also
done in a later period [35,36].

In this work, we mainly investigate the problem of broad-
casting of quantum correlations (QCs). Traditionally, by QCs
we refer to entanglement. The first part of our study is about
broadcasting of quantum entanglement for general two-qubit
mixed states. Here, we provide the broadcasting range for
a general two-qubit state in terms of Bloch vectors. To do
this we apply the Buzek-Hillery (BH) QCM, both locally
and nonlocally. We separately provide broadcasting ranges
for Werner-like and Bell-diagonal states as illustration. In the
second part of our work, while exploring the possibility of
broadcasting of quantum correlations that go beyond entan-
glement (QCsbE), remarkably we find that it is impossible
to broadcast optimally such correlations with the help of any
local or nonlocal cloners. We analytically prove this by first
taking the BH state dependent and independent cloners and
then by logically extending our result for the other cloners
as well. This is indeed one such result which highlights how
fundamentally two approaches, QCsbE and entanglement, are
different. However, we can broadcast QCsbE if we relax the
optimality conditions.

In Sec. II, we first introduce the quantum cloning machines,
more specifically the state independent and dependent versions
of BH cloners, which we will later use for our local as well as
nonlocal cloning processes. In Sec. III, we define broadcasting
of entanglement via local cloning operations as well as
nonlocal cloning operation and then obtain the generalized
optimal broadcasting range for any two-qubit state in terms of
Bloch vectors. In each of the two above cases, we exemplify
our results for two types of mixed states, namely, the Werner-
like and the Bell-diagonal states. In Sec. IV, we give the
definition for broadcasting of QCsbE and explicitly discuss the
possibilities and impossibilities of such broadcasting. Lastly,
in Sec. V, we conclude with a small conjecture by which broad-
casting of correlations beyond entanglement might be possible.

II. QUANTUM CLONING MACHINES BEYOND
NO-CLONING THEOREM

Quantum cloning transformations can be viewed as a com-
pletely positive trace preserving map between two quantum
systems, supported by an ancilla [3,9]. In this section, we
briefly describe the Buzek-Hillery (BH) QCM which we will
later use for analyzing the possibility and impossibility of
broadcasting of entanglement as well as correlations beyond
entanglement, respectively.

BH cloning machine (Ubh) is an M-dimensional quantum
copying transformation acting on a state |�i〉a0

(i = 1, . . . ,M).
This state is to be copied on a blank state |0〉a1

. The copier
is initially prepared in state |X〉x , which subsequently gets
transformed into another set of state vectors |Xii〉x and |Yij 〉x as
a result of application of the cloner. Here a0, a1, and x represent
the input, blank, and machine qubits, respectively. In this case,
these transformed state vectors belong to the orthonormal basis
set in the M-dimensional space. The transformation scheme
Ubh is given by [4]

Ubh|�i〉a0
|0〉a1

|X〉x → c|�i〉a0
|�i〉a1

|Xii〉x

+ d

M∑
j �=i

(|�i〉a0 |�j 〉a1 + |�j 〉a0 |�i〉a1

)|Yij 〉x, (1)

where i,j = {1, . . . ,M}, and the coefficients c and d are real.

A. State independent cloning transformations

An optimal state independent version of the BH cloner
(Ubhsi) can be obtained from Eq. (1) by imposing the unitarity
and normalization conditions which give rise to the following
constraints:

〈Xii |Xii〉 = 〈Yij |Yij 〉 = 〈Xii |Yji〉 = 1, (2)

when 〈Xii |Yij 〉 = 〈Yji |Yij 〉 = 〈Xii |Xjj 〉 = 0, with i �= j and
c2 = 2

M+1 , d2 = 1
2(M+1) . Here, we consider M = 2m where m

is the number of qubits in a given quantum register. In the
above transformation, by demanding the independence of the
scaling (shrinking) property on input state parameters it is
ensured that the quality of the cloning (fidelity of the output
copies) does not depend on the input state [3,4].

1. Local state independent cloner

The above optimal cloner Ubhsi with M = 2 becomes a
local copier (Ul

bhsi). From Eq. (2) it can be easily observed
that the corresponding values of coefficients c and d become√

2
3 and

√
1
6 , respectively. By substituting these values of

the coefficients in Eq. (1), we can obtain the optimal state
independent cloner which can be used for local copying
purposes [26].

2. Nonlocal state independent cloner

When M = 4 the above optimal cloner Ubhsi becomes a
nonlocal copier (U nl

bhsi). Then the corresponding values of

the coefficients c and d in Eq. (2) become
√

2
5 and

√
1

10 ,
respectively. By substituting these coefficients in Ubh given
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by Eq. (1), we can obtain the optimal state independent cloner
used for nonlocal copying purposes [4].

B. State dependent cloning transformations

The BH state dependent cloner (Ubhsd) was developed
from this BH state independent cloning transformation (Ubhsi),
given in Eq. (1) with Ubh = Ubhsi, by relaxing the universality
condition: ∂D

∂〈inp〉 = 0, where 〈inp〉 represents all the parameters
of the input state. The distortion D describes the distance
between the input and output states of the cloner [12].

With c = d = 1, the unitarity constraints on the BH
cloning transformation in Eq. (1) give rise to the following
conditions on the output states, which are no longer necessarily
orthonormal,

〈Xii |Xii〉 +
M∑

j �=i

2〈Yij |Yij 〉 = 1, 〈Yij |Ykl〉 = 0, (3)

where i �= j and ij �= kl for i,j,k,l = {1, . . . ,M}. We assume
that 〈Xii |Yjk〉 = μ

2 , 〈Yij |Yij 〉 = λ, 〈Xii |Xjj 〉 = 〈Xii |Yij 〉 = 0,
where again i �= j for i,j,k = {1, . . . ,M}; μ and λ are the
machine parameters. By equating the dependence of the
distortion D on the machine parameter λ to zero, in each
of the cases, we can calculate the value of λ for which the BH
state dependent cloners become optimal with respect to that
ensemble of input states.

1. Local state dependent cloner

For the case of a local state dependent cloner (Ul
bhsd), the

distortion D is Dab = Tr[ρ(out)
ab − ρ(id)

a ⊗ ρ
(id)
b ]2. If |ψ (id)

a(b)〉 =
α|0〉a(b) + β|1〉a(b) is an arbitrary pure state of one qubit in
mode “a” or “b,” where α,β represents the input state pa-
rameters with α2 + β2 = 1 being the normalization condition,
then ρ(id)

a = |ψ (id)
a 〉〈ψ (id)

a | and ρ
(id)
b = |ψ (id)

b 〉〈ψ (id)
b | represents

output modes in the case of an ideal copy. However, in a
more realistic situation when cloning fidelity is nonideal then
the output state of the cloner is given by ρ

(out)
ab . Solving

the equation ∂Da

∂α2 = 0, where Da = Tr[ρ(out)
a − ρ(id)

a ]2; with

ρ(out)
a = Trb[ρ(out)

ab ], we can derive the relation between the
parameters λ and μ. It turns out to be μ = 1 − 2λ. So the
permitted range of λ is bounded by {0, 1

2 } in this case. However,
it can be noted that here the value λ = 1

6 is restricted, since for
such values it reduces to the BH optimal state independent local
cloner Ul

bhsi and consequently loses the input state dependence
property.

2. Nonlocal state dependent cloner

For the case of a nonlocal state dependent cloner
(U nl

bhsd), the distortion D is Dabcd = Tr[ρ(out)
abcd − ρ

(id)
ab ⊗ ρ

(id)
cd ]2.

If |φ(id)
ab(cd)〉 = α|00〉ab(cd) + β|11〉ab(cd) is the nonmaximally

entangled state of two qubits in mode “ab” or “cd’, then ρ
(id)
ab =

|ψ (id)
ab 〉〈ψ (id)

ab | and ρ
(id)
cd = |ψ (id)

cd 〉〈ψ (id)
cd | represents output modes

in the case of an ideal copy. However, in a more realistic
situation, when cloning fidelity is nonideal then the output state
of the cloner is given by ρ

(out)
abcd . Solving the equation ∂Dab

∂α2 = 0,

where Dab = Tr[ρ(out)
ab − ρ

(id)
ab ]2; with ρ

(out)
ab = Trc,d [ρ(out)

abcd ], we
can derive the relation between the parameters λ and μ. Here,

it turns out to be μ = 1 − 4λ. So the permitted range of λ is
bounded by {0, 1

4 } in this case. However, it can be noted that the
value λ = 1

10 is restricted, since for such values it reduces to
the BH optimal state independent nonlocal cloner U nl

bhsi thereby
losing the input state dependence property.

III. BROADCASTING OF QUANTUM ENTANGLEMENT

In this section, we consider broadcasting of quantum
entanglement (inseparability) with the help of both local and
nonlocal cloning operations. Let us begin with a situation
where we have two distant parties A and B and they share a
two-qubit mixed state ρ12 which can be canonically expressed
as [11]

ρ12 = 1

4

[
I4 +

3∑
i=1

(xiσi ⊗ I2 + yiI2 ⊗ σi)

+
3∑

i,j=1

tij σi ⊗ σj

⎤
⎦ = {�x, �y, T } (say), (4)

where xi = Tr[ρ12(σi ⊗ I2)], yi = Tr[ρ12(I2 ⊗ σi)], and tij =
Tr[ρ12(σi ⊗ σj )] with [σi ; i = {1,2,3}] are 2 ⊗ 2 Pauli matri-
ces and In is the identity matrix of order n. And �x = {x1,x2,x3},
�y = {y1,y2,y3} are Bloch column vectors and T = [tij ] is the
correlation matrix.

In order to test the separability as well as inseparability for
the bipartite states, we generally use Peres-Horodecki criteria.
This is a necessary and sufficient condition for detection of
entanglement for bipartite systems with dimensions 2 ⊗ 2 and
2 ⊗ 3.

Peres-Horodecki criteria [37]. If at least one of the
eigenvalues of a partially transposed density operator for a
bipartite state ρ defined as ρT

mμ,nν = ρmν,nμ turn out to be
negative, then we can say that the state ρ is inseparable. This
criteria can be equivalently expressed by the condition that at
least one of the two determinants

W3 =
∣∣∣∣∣∣
ρ00,00 ρ01,00 ρ00,10

ρ00,01 ρ01,01 ρ00,11

ρ10,00 ρ11,00 ρ10,10

∣∣∣∣∣∣ and

W4 =

∣∣∣∣∣∣∣
ρ00,00 ρ01,00 ρ00,10 ρ01,10

ρ00,01 ρ01,01 ρ00,11 ρ01,11

ρ10,00 ρ11,00 ρ10,10 ρ11,10

ρ10,01 ρ11,01 ρ10,11 ρ11,11

∣∣∣∣∣∣∣ (5)

is negative; with W2 = |ρ00,00 ρ01,00
ρ00,01 ρ01,01

| being simultaneously
non-negative.

A. Broadcasting of entanglement via local and nonlocal cloning
operations

Local cloning. Each of the parties now individually applies
a local copying operation on their own qubit, i.e., U1 ⊗ U2 to
produce the state ρ̃1234. The BH state independent symmetric
optimal cloning transformation (Ul

bhsi) used for local copying

is obtained by putting M = 2 in Eq. (1) with c =
√

2
3 and

d =
√

1
6 . The corresponding basis vectors are |�1〉 = |0〉 and

042309-3



SOURAV CHATTERJEE, SK SAZIM, AND INDRANIL CHAKRABARTY PHYSICAL REVIEW A 93, 042309 (2016)

1 2

ρ
121 2

3 4ρ~
ρ~
14

23

U1 2U

FIG. 1. The figure shows the broadcasting of the state ρ12 into
ρ̃14 and ρ̃23 through application of local cloning unitaries U1 and U2

on both sides.

|�2〉 = |1〉. After we obtain the composite system ρ̃1234, we
trace out the qubits 2,4 and 1,3 to obtain the local output states
ρ̃13(= Tr24[U1 ⊗ U2(ρ12)]) on A’s side and ρ̃24(= Tr13[U1 ⊗
U2(ρ12)]) on B’s side, respectively. Similarly, after tracing
out the local output states from the composite system, we
have the nonlocal output states ρ̃14(= Tr23[U1 ⊗ U2(ρ12)]) and
ρ̃23(= Tr14[U1 ⊗ U2(ρ12)]) (see Fig. 1).

Nonlocal cloning. Here, the basic idea is that the entire
state ρ12 [given in Eq. (4)] is in the same laboratory and the
intension is to have more than one copy of it. In that process,
we apply a global unitary operation U12 to produce ρ̃1234.
The BH state independent optimal cloning transformation
(U nl

bhsi) used for nonlocal copying is obtained by substituting

M = 4 in Eq. (1) with c =
√

2
5 and d =

√
1

10 . In this case,
the corresponding basis vectors are |�1〉 = |00〉, |�2〉 = |01〉,
|�3〉 = |10〉, and |�4〉 = |11〉. Once we have the composite
system ρ̃1234, we trace out the qubits 3 and 4 to obtain
the output state ρ̃12(= Tr34[U12ρ12]) or the qubits 1 and 2
to obtain ρ̃34(= Tr12[U12ρ12]). Next, proceeding in a similar
manner, we obtain the remaining states ρ̃13(= Tr24[U12ρ12])
and ρ̃24(= Tr13[U12ρ12]) by tracing out the qubits 2,4 and
1,3 from ρ̃1234, respectively. We could have also chosen the
diagonal pairs (ρ̃14 and ρ̃23) instead of choosing the pairs
ρ̃12 and ρ̃34 as our desired pairs. However, we refrain ourselves
from choosing the pairs ρ̃13 and ρ̃24 as the desired pairs [4] (see
Fig. 2).

In principle, to broadcast the amount of entanglement
between the desired pairs (1,4)/(1,2) and (2,3)/(3,4) we

1 2

1 2
3 4

ρ
12

U12

12
ρ~

ρ
34
~

FIG. 2. The figure shows the broadcasting of the state ρ12 into
ρ̃12 and ρ̃34 through application of a nonlocal (global) cloning unitary
U12.

just maximize the entanglement between the output pairs,
regardless of the states between (1,3) and (2,4). However,
for optimal broadcasting of entanglement across parties we
require one to minimize the amount of entanglement within
parties. This is because the total amount of entanglement (E)
produced is the sum of the entanglement within parties (El) and
the entanglement across the parties (Enl), i.e., E = El + Enl.
The amount of entanglement (E) is strictly less or equal to
the total entanglement of the input state. To maximize Enl, we
must have El = 0. In other words, for optimal broadcasting
we should have no entanglement between the qubits (1,3) and
(2,4).

Definition 2.1. An entangled state ρ12 is said to be broadcast
after the application of local cloning operation (U1 ⊗ U2), if
for some values of the input state parameters, the states {ρ̃14,
ρ̃23} are inseparable.

Definition 2.2. An entangled state ρ12 is said to be broadcast
after the application of nonlocal cloning operation (U12), if for
some values of the input state parameters, the desired output
states {ρ̃12, ρ̃34} are entangled.

Definition 2.3. An entangled state ρ12 is said to be broadcast
optimally after the application of local cloning operation (U1 ⊗
U2), if for some values of the input state parameters, the states
{ρ̃14,ρ̃23} are inseparable and the states {ρ̃13,ρ̃24} are separable.

Definition 2.4. An entangled state ρ12 is said to be broadcast
optimally after the application of nonlocal cloning operation
(U12), if for some values of the input state parameters, the
desired output states {ρ̃12,ρ̃34} are entangled, and the remain-
ing output states {ρ̃13(= Tr24[U12ρ12]),ρ̃24(= Tr13[U12ρ12])}
are separable.

If we consider the nonoptimal broadcasting, then the
broadcasting range will increase whereas for the optimal one
the broadcasting range will be small. Let us consider a general
pure two-qubit state in Schmidt form |ψ12〉 = √

λ|00〉〈00| +√
1 − λ|11〉〈11|, where λ is Schmidt coefficient and 0 � λ �

1. Now if we apply the BH local cloning operation (U1 ⊗ U2)
on this state, the local output states will only be separable when
L− < λ < L+, where L± = 1

16 (8 ± √
39) [26] and hence it is

the optimal broadcasting range. If we relax the optimality
condition, i.e., El �= 0, then we can easily conclude that the
broadcasting of entanglement may be possible for a greater
range of λ. The same analysis is applicable for nonlocal cloning
and the same type of feature will appear. Next, we will discuss
the optimal broadcasting of entanglement [26] in detail.

B. Optimal broadcasting of entanglement via local cloning

In this section, we deal with the problem of broadcasting of
quantum entanglement by using local cloning transformation.

The local output states ρ̃13 are on A’s side and ρ̃24 on B’s
side, respectively, and are given in canonical representation by

ρ̃13 = {
2
3 �x, 2

3 �x, 1
3I3

}
and ρ̃24 = {

2
3 �y, 2

3 �y, 1
3I3

}
, (6)

where �x,�y are the Bloch vectors of the initial state ρ12.
Next, we apply Peres-Horodecki criterion to investigate

whether these local output states on either side of these two
parties are separable or not. After evaluating determinats W2,
W3, and W4 [as given in Eq. (5)] we obtain a range involving
input state parameters within which the local outputs, ρ̃13 and
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ρ̃24, are separable. These ranges for ρ̃13 and ρ̃24 are

0 � ‖�x‖ � 3
4 and ‖�x‖ � 1 + x3 + x2

3 ,

0 � ‖�y‖ � 3
4 and ‖�y‖ � 1 + y3 + y2

3 , (7)

respectively. Here ‖�a‖ = Tr(a†a) with † denoting the Hermi-
tian conjugate.

We have the nonlocal output states ρ̃14 and ρ̃23 as

ρ̃14 = ρ̃23 = {
2
3 �x, 2

3 �y, 4
9T

}
, (8)

where �x,�y are the Bloch vectors and T is the correlation matrix
of the initial state ρ12.

Again with the help of the Peres-Horodecki criterion we
find out the condition under which the nonlocal output states
will be inseparable. This condition for inseparability of the
states ρ̃14 and ρ̃23 involving input state parameters is given as(

Wl
3 < 0 or Wl

4 < 0
)

and Wl
2 ≥ 0. (9)

Here the explicit expressions of Wl
2, Wl

3, and Wl
4 are given by

Eqs. (A1), (A2), and (A3) in Appendix A.
Now combining these two ranges determining the separa-

bility of the local states given by Eq. (7) and inseparability of
the nonlocal states given by Eq. (9), we obtain the range for
broadcasting of entanglement.

To exemplify our above study with a local cloner, we
next consider two different classes of mixed entangled states,
namely, (a) Werner-like states [38,39] and (b) Bell-diagonal
states [20,40] and then separately analyze their broadcasting
ranges.

1. Example 2.1: Werner-like states

First of all, we consider the example of Werner-like states.
These states can more formally be expressed as

ρw
12 = {�xw,�xw,T w}, (10)

where �xw = {0,0,p(α2 − β2)} is the Bloch vector and the
correlation matrix is T w = diag(2pαβ, − 2pαβ,p) with the
condition α2 + β2 = 1 and 0 ≤ p ≤ 1. (Please note that
whenever we use M = diag(·, · ,·), we mean M is a diagonal
matrix with diagonal elements given inside the first bracket.)

The local output states obtained after applying cloning
operation on both the qubits 1 and 2 are given by

ρ̃13 = ρ̃24 = {
2
3 �xw, 2

3 �xw, 1
3I3

}
, (11)

where �xw is the Bloch vector of the state ρw
12.

From the Peres-Horodecki theorem, it follows that by using
Eq. (5) the local output states will be separable if either of the
following two conditions is satisfied:

0 ≤ p ≤
√

3

2
and 0 ≤ α2 ≤ 1, or

√
3

2
< p ≤ 1 and

2p − √
3

4p
≤ α2 ≤

√
3 + 2p

4p
. (12)

Similarly after cloning, we have the nonlocal output states
as

ρ̃14 = ρ̃23 = {
2
3 �xw, 2

3 �xw, 4
9T w

}
, (13)

where �xw is the Bloch vector and T w is the correlation matrix
of the state ρw

12.

FIG. 3. The figure illustrates the states which can be used for
broadcasting of entanglement via local cloning out of the total input
state space of Werner-like states ρw

12.

Using the Peres-Horodecki theorem, the inseparability
range of these nonlocal output states turns out to be

3
4 < p � 1 and N− < α2 < N+, (14)

where N± = 1
16 {8 ± (48 − 81

p2 + 72
p

)1/2}. On merging this in-
separable zone along with the separable zone given by Eq. (12)
we discover that the broadcasting range is exactly the same as
the inseparability range given by Eq. (14). In Fig. 3, we depict
this broadcastable zone [given by Eq. (14)] among the allowed
region of input state parameters p and α.

Next we provide two different tables for a detailed analysis
of the above broadcasting range. In Table I, we give the
broadcasting range of the Werner-like states in terms of p for
different values of the input state parameter α2 and in terms of
α2 for different values of the classical mixing parameter p.

Note 1. We note that for p = 1, Eq. (10) reduces to
a nonmaximally entangled state, for which the range for
broadcasting of entanglement comes out to be [26] L− < α2 <

L+, where L± = 1
16 (8 ± √

39).

TABLE I. Broadcasting ranges obtained using local cloners (i)
in terms of p for different values of α2 and (ii) in terms of α2 for
different values of p.

Broadcasting
α2 range

0.2 0.87 < p ≤ 1
0.4 0.76 < p ≤ 1
0.5 0.75 < p ≤ 1
0.6 0.76 < p ≤ 1
0.8 0.87 < p ≤ 1

(i)
Broadcasting

p range
0.76 0.40 < α2 < 0.60
0.85 0.22 < α2 < 0.78
0.9 0.17 < α2 < 0.83
0.95 0.14 < α2 < 0.87
1 0.11 < α2 < 0.89

(ii)
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Note 2. Similarly we note that for α = β = 1√
2

(i.e.,
when |ϕ〉12 is maximally entangled), Eq. (10) reduces to the
Werner state [38], for which the range for broadcasting of
entanglement becomes 3

4 < p � 1.

2. Example 2.2: Bell-diagonal states

Here our initial resources are Bell-diagonal states to the
local cloner which can be formally expressed as

ρb
12 = {�0,�0,T b}, (15)

where �0 is the Bloch vector which is a null vector and the
correlation matrix is T b = diag(c1,c2,c3) with −1 ≤ ci ≤ 1.

The above input Bell-diagonal state can be rewritten
as [20,40] ρb

12 = ∑
m,n λmn|γmn〉〈γmn| where the four Bell

states |γmn〉 ≡ (|0,n〉 + (−1)m|1,1 ⊕ n〉)/√2 represent the
eigenstates of ρb

12 with eigenvalues,

λmn = 1
4 [1 + (−1)mc1 − (−1)(m+n)c2 + (−1)nc3].

Also, for ρb
12 to be a valid density operator, its eigenvalues

have to be positive, i.e., λmn ≥ 0.
Once again by applying local cloning and tracing out the

qubits we get the local output states as

ρ̃13 = ρ̃24 = {�0,�0, 1
3I3

}
. (16)

It turns out that for these local output states both W3 as well as
W4 given by Eq. (5) are non-negative and independent of the
input state parameters (ci’s). Hence, ρ̃13 and ρ̃24 will always
remain separable.

On the other hand, the nonlocal outputs are given by

ρ̃14 = ρ̃23 = {�0,�0, 4
9T b

}
, (17)

where T b is the correlation matrix of the state ρb
12.

The inseparability range for these nonlocal output states of
the input Bell-diagonal state ρb

12 in terms of ci’s, is given by

− 1 � c1 < − 1
4 and

(
γ < − 9

4 or 9
2 − c− < c2 � 1

)
,

or 1
4 < c1 � 1 & (c− < c2 � 1 or − 1 � c2 < c+),

(18)

along with the condition that λmn ≥ 0, where c± = ∓ 9
4 ±

(c1 ± c3) and γ = Tr(T b). It is evident that the broadcasting
range of the Bell-diagonal state is the same as the inseparability
range in Eq. (18) since the local output states in this case are
always separable.

In Fig. 4, we depict the above broadcastable zone [given
by Eq. (18)] within the permissible region of the input state
parameters, specified by the 3-tuple (c1,c2,c3) from Eq. (15).
Now for −1 ≤ ci ≤ 1, where i = {1,2,3}, the condition that
ρ12 is necessarily a positive operator, i.e., λmn ≥ 0, results
in giving a tetrahedral geometrical representation of Bell-
diagonal states T whose four vertices are the four Bell states or
the eigenstates |γmn〉. The separable part within the geometry
of Bell-diagonal states T comes out to be an octahedron
O which is specified by the relation |c1| + |c2| + |c3| ≤ 1
or λmn ≤ 1

2 . Within the tetrahedron T , the four entangled
(inseparable) zones lie outside the octahedron O , one from
each vertex of T with the value of λmn being greatest at
the vertex points for each of them [40]. Interestingly, we

FIG. 4. The figure illustrates the broadcastable region obtained
using local cloning operations within the geometry of Bell-diagonal
states ρb

12. The translucent tetrahedron T hosts the Bell states
|γmn〉 at the vertex tuples (−1, − 1, − 1), (1,1, − 1), (1, − 1,1), and
(−1,1,1) from each of which a (brown) cone C emerges marking the
broadcastable zones. The (black) octahedron O in the middle of the
tetrahedron T depicts the separable region within the Bell-diagonal
state space.

discover that the broadcastable zone procured by using the
above broadcasting condition in Eq. (18) turns out to be
cones C , fitting as small caps on these entangled zones of
the tetrahedron T . It is also consistent with the fact that the
maximally entangled states |γmn〉 lie at the vertices of T , so
the broadcastable regions start from those and vanish on the
way towards the separable part O . This is because the amount
of entanglement keeps decreasing in the same direction. In
other words, the states beyond the conic regions (C ’s) lack the
amount of initial entanglement required to be able to broadcast
the same by local cloning operations. It is interesting to observe
that if ci = −1, then cj = ck and if ci = 1, then cj = −ck

where for each case −1 ≤ cj (ck) < − 5
8 or 5

8 < cj (ck) ≤ 1
with i �= j �= k and i,j,k = {1,2,3}. This happens due to the
symmetry of the Bell-diagonal states and that of the conic
broadcasting zones as depicted in Fig. 4. For the same reason,
we also find that the four C ’s or the conic zones grow
symmetrically and uniformly from ci’s = −1 (1) and ceases to
exist for any value equal or beyond − 5

8 ( 5
8 ). Hence in Table II,

we give the broadcasting range of Bell-diagonal states ρb
12 for

different values of the first two input state parameters c1,c2

and variable over the third c3, between the valid zone from −1
to −5/8 or 5

8 to 1. In this table, we restrict our results only to
the negative range of inputs for c1 and c2 as the result of the
broadcasting range in terms of c3 remains unchanged when
corresponding positive values of c1 and c2 are substituted in
Eq. (18).
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TABLE II. Broadcasting ranges obtained with local cloners in
terms of c3 for different valid values of c1 and c2.

c1 c2 Broadcasting range

− 7
8 − 7

8 −1 � c3 � − 3
4

− 3
4 − 3

4 −1 � c3 < − 3
4

− 7
8 − 3

4 − 7
8 � c3 < − 5

8

− 3
4 − 7

8 − 7
8 � c3 < − 5

8

C. Optimal broadcasting of entanglement via nonlocal cloning

In this section, we reconsider the problem of broadcasting
of entanglement but this time by using nonlocal cloning
transformation.

The obtained nonlocal output states ρ̃12 and ρ̃34 are identical
and they can be represented as

ρ̃12 = ρ̃34 = {
3
5 �x, 3

5 �y, 3
5T

}
, (19)

where �x and �y are the Bloch vectors and T is the correlation
matrix of the state ρ12.

We apply the Peres-Horodecki criteria to find out the
condition on input state parameters under which the above
output states (ρ̃12 and ρ̃34) will be inseparable. This condition
of inseparability turns out to be

W nl
3 < 0 or W nl

4 < 0 and Wnl
2 ≥ 0, (20)

where the explicit expressions of W nl
2 , W nl

3 . and W nl
4 are given

by Eqs. (B1), (B2), and (B3) in Appendix B.
Next, the remaining states ρ̃13 and ρ̃24 are given by

ρ̃13 = {
3
5 �x, 3

5 �x, 1
5I3

}
and ρ̃24 = {

3
5 �y, 3

5 �y, 1
5I3

}
, (21)

where �x and �y are the Bloch vectors of the state ρ12.
Similarly, here also we apply the Peres-Horodecki criterion

to see whether these output states are separable or not. After
evaluating determinants W2, W3, and W4 [as given in Eq. (5)]
we obtain a range involving input state parameters for which
the output states ρ̃13 and ρ̃24 are separable. This range is given
by

0 � ‖�x‖ � 8
9 and ‖�x‖ − x2

3 � 4
3 (1 + x3),

(22)
0 � ‖�y‖ � 8

9 and ‖�y‖ − y2
3 � 4

3 (1 + y3),

respectively.
Now, clubbing the two ranges given by Eqs. (20) and (22),

we obtain the range for broadcasting of entanglement for ρ12

via nonlocal copying.
Next, in order to exemplify our study with a nonlocal cloner

we look into the broadcasting ranges of two different classes
of input states: (a) Werner-like states [38,39] and (b) Bell-
diagonal states [20,40].

1. Example 3.1: Werner-like state

Quite similar to the previous section, here we reconsider
the class of Werner-like states given earlier by Eq. (10) and
apply nonlocal cloning operation on it.

After cloning, the desired output states are given by

ρ̃12 = ρ̃34 = {
3
5 �xw, 3

5 �xw, 3
5T w

}
, (23)

where �xw is the Bloch vector and T w is the correlation matrix
of the state ρw

12. The inseparability range for these states is
given by

5
9 < p ≤ 1 and H− < α2 < H+, (24)

where H± = 1
2 ± { 1

144p
(27p2 + 30p − 25)}1/2. The remain-

ing output states are given by

ρ̃13 = ρ̃24 = {
3
5 �xw, 3

5 �xw, 1
5I3

}
, (25)

where �xw is the Bloch vector of the state ρw
12. These output

states will be separable if either of the following two conditions
are satisfied:

0 ≤ p ≤ d and (0 ≤ α2 ≤ ξ−, or ξ+ < α2 ≤ 1),
(26)

or 0 ≤ p ≤ 1 and ξ− < α2 ≤ ξ+,

where d =
√

8
9(1−2α2)2 ξ± = 1

6 (3 ± 2
√

2).

After merging the separability and inseparability conditions
given by Eqs. (26) and (24), respectively, the broadcasting
range of the Werner-like state turns out to be the same as the
inseparability range and is thus given by Eq. (24).

In Fig. 5, we demarcate this broadcastable zone, given by
Eq. (24), amidst the prescribed region of input state space.
Quite similar to the local cloning situation here also we
provide two different tables for a detailed analysis of the
broadcasting range. In Table III, we give the broadcasting
range in terms of the classical mixing parameter p for given
values of input state parameter α2 and in terms of the input
state parameter α2 for given values of classical mixing para-
meter p.

Note 3. We note that for the p = 1 case, Eq. (10) reduces
to a nonmaximally entangled state, for which the range for
broadcasting of entanglement comes out to be [4,27] ξ− <

α2 < ξ+.

Note 4. Again for α = β = 1√
2

(i.e., when |ϕ〉12 is max-
imally entangled) Eq. (10) reduces to the Werner state [38],
for which the range for broadcasting of entanglement becomes
5
9 < p � 1.

FIG. 5. The figure illustrates the states which can be used for
broadcasting of entanglement via nonlocal cloning out of the total
input state space of Werner-like states ρw

12.
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TABLE III. Broadcasting ranges obtained using nonlocal cloners
(i) in terms of p for different values of α2 and (ii) in terms of α2 for
different values of p.

Broadcasting
α2 range

0.2 0.64 < p ≤ 1
0.4 0.56 < p ≤ 1
0.5 0.55 < p ≤ 1
0.6 0.56 < p ≤ 1
0.8 0.64 < p ≤ 1

(i)
Broadcasting

p range
0.56 0.42 < α2 < 0.58
0.65 0.19 < α2 < 0.81
0.85 0.06 < α2 < 0.94
0.95 0.04 < α2 < 0.96
1 0.03 < α2 < 0.97

(ii)

2. Example 3.2: Bell-diagonal states

In this example, we once again consider the Bell-diagonal
states [given earlier by Eq. (15)] as our initial entangled state.

Once the nonlocal cloner is applied to it we have the desired
output states as

ρ̃12 = ρ̃34 = {�0,�0, 3
5T b

}
, (27)

where T b is the the correlation matrix of the state ρb
12.

The inseparability range of the desired output states is given
by

(6c1 − 3γ + 5)(3γ − 6c3 − 5)(3γ − 6c2 − 5)(3γ +
5) < 0 or (3c3 + 5)((5 − 3c3)2 − 9(c1 − c2)2) < 0, (28)

where γ = Tr(T b) along with the condition that λmn ≥ 0 from
the positivity of input density operator ρ12.

The remaining output states are given by

ρ̃13 = ρ̃24 = {�0,�0, 1
5I3

}
. (29)

These output states are independent of the input state
parameter (ci’s) and will be always separable since for them
the W3 and W4 from Eq. (5) comes out to be a positive number.
Hence, the broadcasting range of the Bell-diagonal state is the
same as the inseparability range as given in Eq. (28).

Quite analogous to our geometric analysis in the local
copying case of the broadcasting region of Bell-diagonal state,
in Fig. 6, we depict the above broadcastable zone [given
by Eq. (28)] among the allowed region of the input state
parameters, specified by the 3-tuple (c1,c2,c3) from Eq. (15).

Similarly as in the case with local cloners, here also
we notice that if ci = −1, then cj = ck and if ci = 1, then
cj = −ck where for each case −1 ≤ cj (ck) < − 1

3 or 1
3 <

cj (ck) ≤ 1 with i �= j �= k and i,j,k = {1,2,3}. This happens
due to the symmetry of the Bell-diagonal states and that of the
conic broadcasting zones as depicted in Fig. 6. For the same
reason, we also find that the four C ’s or the conic zones grow
symmetrically and uniformly from ci’s = −1 (1) and ceases to

FIG. 6. The figure illustrates the broadcastable region obtained
using nonlocal cloning operations within the geometry of Bell-
diagonal states ρb

12. The translucent tetrahedron T hosts the Bell
states |γmn〉 at the vertex tuples (−1, − 1, − 1), (1,1, − 1), (1, − 1,1),
and (−1,1,1) from each of which a (brown) cone C ′ emerges
marking the broadcastable zones. The (black) octahedron O in the
middle of the tetrahedron T depicts the separable region within
the Bell-diagonal state space. Interestingly enough, by the use of a
nonlocal cloner we find that the height broadcastable conic regions
have increased considerably compared to that obtained in Fig. 4 with
local cloners.

exist for any value equal or beyond − 1
3 ( 1

3 ). Hence in Table IV,
we give the broadcasting range of Bell-diagonal states ρb

12 for
different values of the first two input state parameters c1,c2

and variable over the third c3, between the valid zone from −1
to − 1

3 or 1
3 to 1. In this table, we restrict our results only to

the negative range of inputs for c1 and c2 as the result of the
broadcasting range in terms of c3 remains unchanged when
corresponding positive values of c1 and c2 are substituted in
Eq. (18).

Interestingly, here we find for the above two cases that the
use of a nonlocal cloner despite being difficult to implement
gives us a much wider broadcasting range for entanglement.
In nonlocal cloning of entanglement, the bipartite system
as a whole gets entangled with a single cloning machine,

TABLE IV. Broadcasting ranges obtained with nonlocal cloners
for different valid values of c1 and c2.

c1 c2 Broadcasting range

− 7
9 − 7

9 −1 � c3 � − 5
9

− 5
9 − 5

9 −1 � c3 < − 5
9

− 7
9 − 5

9 − 7
9 � c3 < − 1

3

− 5
9 − 7

9 − 7
9 � c3 < − 1

3
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whereas in local cloning each individual subsystem separately
gets entangled with a cloning machine. A larger amount of
entanglement transfer to the machine takes place in the local
cloning case. So indeed it is not surprising that nonlocal
cloning will produce a wider range for broadcasting of
entanglement than the local cloning [27].

IV. BROADCASTING OF QUANTUM CORRELATIONS
BEYOND ENTANGLEMENT

In this section, we consider broadcasting of quantum
correlations which go beyond the notion of entanglement.
Here, we analyze the possibility of creating more numbers
of lesser correlated quantum states from an intial quantum
state having correlations using cloning operations.

A. Quantum correlations beyond entanglement

Although QC is synonymous with entanglement for pure
two-qubit quantum states, the precise nature of the QCs is not
well understood for two-qubit mixed states and multipartite
states [38,41]. It has been suggested that QCs go beyond
the simple idea of entanglement [42], i.e., QCsbE. The basic
idea of quantum discord and other measures are to quantify
all types of QCs including entanglement [43–45]. Physically,
quantum discord captures the amount of mutual information
in multipartite systems which are locally inaccessible [46].
There is another approach to quantify QCsbE. This is done by
distance-based measures. Distance-based discord is defined
as the minimal distance between a quantum state and all
other states with zero discord [47–49]. It is similar to the
geometric measure of quantum entanglement [50]. As a result,
this kind of measure is also called the geometric measure of
quantum discord (or simply geometric discord). Here, we use
this particular measure of discord to quantify the amount of
QCsbE present in between a pair of qubits, although our results
hold for any measures of discord (QCsbE).

Geometric discord [49]. Geometric discord (GD) or square
norm-based discord [47,48] of any general two-qubit state ρ12

[of the form given by Eq. (4)] is defined as

DG(ρ12) = min
χ

‖ρ12 − χ‖ 2, (30)

where the minimum is over all possible classical states χ which
is of the form p|ψ1〉〈ψ1| ⊗ ρ1 + (1 − p)|ψ2〉〈ψ2| ⊗ ρ2. Here,
|ψ1〉 and |ψ2〉 are two orthonormal bases of subsystems A.
The states ρ1 and ρ2 are two density matrices of subsystem B.
In the above equation, ‖ρ12 − χ‖2 = Tr(ρ12 − χ )2 is referred
to as the square norm of the Hilbert-Schmidt space. For an
arbitrary two-qubit system [given by Eq. (4)], an analytical
expression of GD has been obtained [48], which is

DG(ρ12) = 1
4 (‖ �x‖ 2 − ‖T ‖ 2 − λmax), (31)

where λmax is the maximal eigenvalue of matrix � (= �x �xt −
T T t ). Here the superscript t stands for transpose of a vector
or matrix.

It is well known that GD defined above can increase under
local unitary, e.g., under a simple channel �: ρ → ρ ⊗ σ ,
i.e., a channel which introduces an ancilla only [51]. In order
to overcome this, it was suggested that we can use different
distance measures (norms) which will overcome this short-

coming [52]. Although information theoretic discord [43,44]
and GD using trace distance norm are invariant under local
unitary, in general QCsbE are not monotone under any local
operations. According to Streltsov et al. [53]: A local quantum
channel acting on a single qubit can create QCsbE in a
multiqubit system if and only if it is not unital.

Hence, we discuss the broadcasting of QCsbE under two
types of channel: (a) unital channel (�u): I → I and (b)
nonunital channel �nu: I � I. We will call this type of oper-
ation on the bona fide states as “processing”: “prepocessing”
(applying the channel on the input state before broadcasting)
or “postprocessing” (applying the channel on the output states
after broadcasting).

B. Definition of broadcasting of QCsbE via local and nonlocal
cloning operations

Here, we define what we mean by the broadcasting of QCs
by using state independent (optimal) and state dependent BH
cloning machines. These cloning machines are applied both
locally and nonlocally.

The scenario of broadcasting of QCsbE is similar to that of
broadcasting of entanglement (see Figs. 1 and 2). Let Q be the
total amount of QCsbE produced as a result of both local or
nonlocal cloning and the sum of the QCsbE within parties (Ql)
and the QCsbE across the parties (Qnl); then Q = Ql + Qnl .
To maximize Qnl, we must have Ql = 0.

Definition 3.3.1. A quantum correlated state ρ12 is said to
be broadcast after the application of local cloning operation
(U1 ⊗ U2), if for some values of the input state parameters, the
amount of QCsbE for the states {ρ̃14,ρ̃23} are nonvanishing.

Definition 3.3.2. A quantum correlated state ρ12 is said to be
broadcast after the application of nonlocal cloning operation
(U12), if for some values of the input state parameters, the
QCsbE for the states {ρ̃12,ρ̃34} are nonvanishing.

Definition 3.3.3. A quantum correlated state ρ12 is said to
be optimally broadcast after the application of local cloning
operation (U1 ⊗ U2), if for some values of the input state pa-
rameters, the QCsbE for the states {ρ̃14,ρ̃23} are nonvanishing
and for the states {ρ̃13,ρ̃24}, the amount of QCsbE are zero.

Definition 3.3.4. A quantum correlated state ρ12 is said to be
optimally broadcast after the application of nonlocal cloning
operation (U12), if for some values of the input state param-
eters, the QCsbE for the states {ρ̃12,ρ̃34} are nonvanishing,
whereas for the states {ρ̃13,ρ̃24} the QCsbE are zero.

C. Optimal broadcasting of QCsbE via local and nonlocal
cloning operations under unital channel (�u)

In this section, we investigate the problem of broadcasting
of QCsbE by using state independent (optimal) and state
dependent BH cloning machines under the unital channel
(�u). These cloning machines are applied both locally and
nonlocally. As QCsbE are nonincrasing under �u, it is evident
that we need not mention it every time.

1. Broadcasting of correlations using Buzek-Hillery (BH) local
cloners

Here we use BH state independent optimal (Ul
bhsi) and state

dependent (Ul
bhsd) cloning operations locally [given by Eq. (1)]
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and we find that it is possible to broadcast QCsbE by such
methods but contrary to the broadcasting of entanglement, we
will not have an optimal one.

Theorem IV.1. Given a two qubit general mixed state ρ12

and BH local cloning transformations (state independent
optimal Ul

bhsi or state dependent Ul
bhsd), it is impossible to

broadcast the QCsbE optimally within ρ12 into two lesser
quantum correlated states: {ρ̃14,ρ̃23}.

Proof. When BH state dependent cloning transformation
Ul

bhsd [given by Eq. (1)] is applied locally to clone the
qubits “1 → 3” and “2 → 4” of an input most general
mixed quantum state ρ12, then we have the local out-
put states as ρ̃13 = {μ�x,μ�x,T sd

l } and ρ̃24 = {μ�y,μ�y,T sd
l },

where T sd
l = diag(2λ,2λ,1 − 4λ) and the nonlocal output

states, ρ̃14 = ρ̃23 = {μ�x,μ�y,μT }. Here μ = 1 − 2λ; �x and
�y represent the Bloch vectors and T denotes the corre-
lation matrix of the input state ρ12. The GD DG, calcu-
lated using Eq. (31), of the local output states are given
by DG(ρ̃13) = 1

2 (1 + μ2‖�x‖ − 8λ + 20λ2) and DG(ρ̃24) =
1
2 (1 + μ2‖�y‖ − 8λ + 20λ2) which always remains nonvanish-
ing for 0 ≤ λ ≤ 1

2 . This is because the minima of DG(ρ̃13) and
DG(ρ̃24) come out to be Dmin

G = w
2 − 2

5 at λ = 1
5 , where w =

1 + μ2‖�x‖ or w = 1 + μ2‖�y‖, giving w ≥ 1 and ensuring
always that Dmin

G > 0.
Hence we will never have an optimal broadcasting of

QCsbE although it is possible that we can have a task oriented
one.

2. Broadcasting of correlations using Buzek-Hillery (BH)
nonlocal cloners

In this approach, we use symmetric BH state independent
optimal (U nl

bhsi) as well as state dependent (U nl
bhsd) nonlocal

cloning operations [given by Eq. (1)] and we find that, here
also it is possible to broadcast QCsbE by such approaches but
not the optimal one.

Theorem IV.2. Given a two qubit general mixed state ρ12

and BH nonlocal cloning transformations (state independent
optimal U nl

bhsi or state dependent U nl
bhsd), it is impossible to

broadcast the QCsbE optimally within ρ12 into two lesser
quantum correlated states: {ρ̃12,ρ̃34}.

Proof. When BH state dependent nonlocal cloning trans-
formation U nl

bhsd [given by Eq. (1)] is applied to clone the
qubits 1 and 2 of an input most general mixed two-qubit
state ρ12 [given in Eq. (4)], then we have the output
states ρ̃13 = {μ�x,μ�x,T sd

nl } and ρ̃24 = {μ�y,μ�y,T sd
nl }, where

T sd
nl = diag(2λ,2λ,1 − 8λ) and the desired output states,

ρ̃12 = ρ̃34 = {μ�x,μ�y,μT }, where μ = 1 − 4λ. Here �x as
well as �y represent the Bloch vectors and T denotes the
correlation matrix of the input state. The GD DG, calcu-
lated using Eq. (31), of the local output states are given
by DG(ρ̃13) = 1

2 (1 + μ2‖�x‖ − 16λ + 68λ2) and DG(ρ̃24) =
1
2 (1 + μ2‖�y‖ − 16λ + 68λ2) which always remains nonvan-
ishing for 0 ≤ λ ≤ 1

4 . This is because the minima of DG(ρ̃13)
and DG(ρ̃24) come out to be Dmin

G = 1+5w
34+8w

at λ = 2+w
17+4w

,
where w = ‖�x‖ or w = ‖�y‖, giving 0 ≤ w ≤ 1 and ensuring
always that Dmin

G > 0. Hence we will never have an optimal
broadcasting of QCsbE although it is possible that we can have
a task oriented one.

Now moving beyond the realms of the above theorems,
we claim that if in the case of BH state independent optimal
cloners, when applied locally or nonlocally, we are unable
to broadcast the QCsbE optimally, then no other state
independent deterministic cloner can do so. It is mainly
because of the recent result by Sazim et al. that for a given
input state, the outputs of an optimal cloner are least correlated
since as the fidelity of cloning increases the correlations
transfer to the machine state also grows [14]. Again in
2003, Ghiu et al. showed that entanglement is optimally
broadcast and maximal fidelities of the two final entangled
states are obtained only when symmetric cloning machines
are applied [34]. So by combining the above two results by
Sazim et al. and Ghiu et al., we can logically infer that even
asymmetric Pauli cloning machines will be unable to broadcast
QCsbE optimally since for those also the local outputs will
always possess nonvanishing GD [14,34]. This enables us
to comprehensively conclude that optimal broadcasting of
QCsbE for any two-qubit state via cloning operations is
impossible.

D. Optimal broadcasting of QCsbE via local and nonlocal
cloning operations under nonunital channel (�nu)

In this section, we will discuss the possibilities and impossi-
bilities of broadcasting QCsbE under nonunital channel (�nu).
Here many situations can occur depending on the free will of
the parties: (a) preprocessing the state with unital channel and
postprocessing with nonunital channel, (b) preprocessing with
nonunital channel and postprocessing with unital channel, and
(c) pre- and postprocessing with nonunital channel. All these
situations are equivalent in the sense that QCsbE can increase
under �nu.

It is also evident that we can have task oriented broadcasting
of QCsbE and can increase the QCsbE of the broadcasted
states if needed. And conceptually the notion of optimal
broadcasting of QCsbE is not clear as we can have quantum
correlated broadcast states although we start with totally
classical correlated states.

V. CONCLUSION

In literature, generalized approaches exist for purification
or compression of entanglement procedures but no such
generalization exists for broadcasting (decompression) of en-
tanglement via cloning operations [25,26]. Such a study can aid
in discovering operational meaning of quantifying the amount
of entanglement [50]. In a nutshell, in this work we present
a holistic picture of broadcasting of quantum entanglement
via cloning from any input two-qubit state. We explicitly
provide a set of ranges in terms of input state parameters
for a most general representation of two-qubit states for which
broadcasting of entanglement will be possible. We exemplify
our generalized results by examining them for two class of
states: (a) Werner-like and (b) Bell-diagonal. We perform
this study with both types of cloning techniques, local and
nonlocal, to examine how the range of broadcasting increases
under nonlocal cloning operations. Thereafter, we focus on
the question whether broadcasting of QCsbE via cloning
operations is possible or not. Contrary to the broadcasting
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of entanglement, we find that it is impossible to broadcast
such QCsbE optimally via cloning operations, whether local
or nonlocal, from a given quantum mechanically correlated
pair to two lesser correlated pairs. But we can have task
oriented broadcasting for QCsbE. We also explicitly reason
out why the local outputs from the cloner (state dependent
or state independent) will never possess vanishing QCsbE
which is imperative to broadcast QCsbE. However, we can
intuitively conjecture that if one tries to broadcast QCsbE to
more than two pairs, say N pairs, from an initial two-qubit
state, then for some N > 2 pairs there is a possibility of success
in broadcasting such correlations optimally. This is because
the nonlocal outputs become unentangled when 1 → 3 and
1 → 7 pairs are generated by the optimal local and nonlocal
cloners, respectively, which hints that the QCsbE in the output
states decreases as more pairs are produced by the cloner
[27].

Our findings bring out a fundamental difference between
the correlation defined from the perspective of entanglement

and the correlation measure which claims to go beyond
entanglement.
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APPENDIX A: INSEPARABILITY RANGE OF NONLOCAL
OUTPUTS OBTAINED USING LOCAL CLONERS

In this Appendix, we evaluate the determinants W2, W3,
and W4 [as given in Eq. (5)] of the Peres-Horodecki criterion
for the states ρ̃14 and ρ̃23 given by Eq. (8), and denote them as
Wl

2, Wl
3, and Wl

4, respectively. The mathematical expressions
of these determinants are given as follows:

Wl
2 = − 1

64

[
4

3∑
i=1

(−1)δ3i (t3i + 3yi)
2 + 9(2x3 + 3)2

]
, (A1)

Wl
3 = Lf + 1

36

⎡
⎣2

2∑
i,j

tij ti3t3j + t33

⎛
⎝ 3∑

i=1

t2
i3 +

2∑
i=1

t2
3i −

2∑
i,j

t2
ij

⎞
⎠ − 9

4

⎧⎨
⎩t33

3∑
i,j

t2
ij + 3

3∑
i=1

(ti3xi + t3iyi)

⎫⎬
⎭

− 3

2

⎧⎨
⎩

3∑
j=1

g3

2∑
i

{
t2
ij − x3t

2
3j − y3t

2
j3

} − 3

⎛
⎝ 3∑

i,j

tij xiyj −
2∑

i=1

⎧⎨
⎩2ti3xiy3 −

2∑
j=1

(tij xj yi − tiixj yj )

⎫⎬
⎭

⎞
⎠

⎫⎬
⎭

+ 3
2∑

i �=j

{(tii − tjj )(xit3i + yiti3) + (tij − tj i)(xit3j + yitj3) + (xiti3 + yit3i)t33}
⎤
⎦, (A2)

Wl
4 = 1

68

⎡
⎣K2 + 64

3∑
i,j

{
4tij xiyj − t2

ij

} + 2

9

⎧⎨
⎩1

2

3∑
i,j

t4
ij −

2∑
i,j

3∑
p=j+1,q=i+1

(
t2
ij t

2
qp − 4tij tiptqj tqp

)

+
3∑

j=1

3,j∑
p=j+1,q

Sq t
2
1j t

2
pq + 4

⎧⎨
⎩

3∑
i,j

xiyj

3∑
p �=i,j

(tj i tpp − tjptpi) −
3∑

i<j

⎛
⎝xixj

3∑
p=1

tiptjp + yiyj

3∑
p=1

tpi tpj

⎞
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⎫⎬
⎭

+
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i=1

t2
2i t

2
3i +

2∑
i≥j

3∑
p=j+1

t2
ij t

2
ip + 9

4

3∑
p=1

3∑
i,j

{(−1)δpi xp + (−1)δpj yp}t2
ij

⎫⎬
⎭

⎤
⎦, (A3)

where δ is the determinant of correlation matrix T of the initial
state ρ12, Lf = 1

66 (36 + 26Lδ), Lδ = 2δ + 3g33 + 9
4L5, g3 =

(x3 + y3), L1 = γ+ − 2(x2
3 + y2

3 ), L2 = 9
4 (t33 + γ+ − 2x3y3),

L3 = x3 + y3(γ− + 9
4 ), L4 = −L2 + 3

2L3, L5 = t33L1 + L4,
g33 = (g3 + 3

2 )C33, Sq = (−1)1−δjq , γ± = ‖�x‖ ± ‖�y‖, K1 =
γ 2

− + 9
4γ+, K2 = 38 + 64K1 + 8

9δ, and δij is the Kronecker
delta. Here ‖�a‖ = Tr(a†a) with † denoting the Hermitian con-
jugate. These nonlocal outputs ˜ρ14 and ˜ρ23 will be inseparable
when

Wl
3 < 0 or Wl

4 < 0 and Wl
2 ≥ 0. (A4)

APPENDIX B: INSEPARABILITY RANGE OF DESIRED
OUTPUTS OBTAINED USING NONLOCAL CLONERS

Here, we again evaluate the determinants W2, W3, and W4

[as given in Eq. (5)] of the Peres-Horodecki criterion for the
states ρ̃12 and ρ̃34 given by Eq. (19), and denote them as W nl

2 ,
W nl

3 , and W nl
4 , respectively. The mathematical expressions of

these determinants turn out to be the following:

W nl
2 = 1

202

[
5(5 + 6x3) − 9

(
3∑

i=1

{
t2
3i + yi(2t3i + yi)

}− x2
3

)]
,

(B1)
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W nl
3 = 9

203

⎡
⎣f4 + f33

3∑
i=1

(t3i + yi)
2 −
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⎩�−
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⎭

⎤
⎦, (B2)

W nl
4 = 1
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(
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il
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⎞
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⎫⎬
⎭

⎤
⎦, (B3)

where f33 = [3(x3 + y3 + t33) − 5], f3 = 1
9 (5 + 3x3)2, S+ = (−1)i+j+k+l , f4 = 6y3C33 − f3f33, f5 = −275 − 1080δ, Sδ =

(−1)1−max(δil ,δjk ), �± = 5 ± 3t33 + 3x3, Cij is the cofactor of tij in correlation matrix T , and �ij are elements of coefficient

matrix [�ij ] = (
43 25 25
25 7 7
7 7 7

). These desired output states ρ̃12 and ρ̃34 will be inseparable when

W nl
3 < 0 or W nl

4 < 0 and W nl
2 ≥ 0. (B4)
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[48] B. Dakić, V. Vedral, and Č. Brukner, Phys. Rev. Lett. 105,
190502 (2010).

[49] D. Girolami and G. Adesso, Phys. Rev. A 83, 052108 (2011).
[50] V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, Phys.

Rev. Lett. 78, 2275 (1997).
[51] M. Piani, Phys. Rev. A 86, 034101 (2012); T. Tufarelli, D.

Girolami, R. Vasile, S. Bose, and G. Adesso, ibid. 86, 052326
(2012); X. Hu, H. Fan, D. L. Zhou, and W. M. Liu, ibid. 87,
032340 (2013).

[52] F. M. Paula, T. R. de Oliveira, and M. S. Sarandy, Phys. Rev. A
87, 064101 (2013); D. Spehner and M. Orszag, New J. Phys. 15,
103001 (2013); W. Roga, S. M. Giampaolo, and F. Illuminati,
J. Phys. A: Math. Theor. 47, 365301 (2014).

[53] A. Streltsov, H. Kampermann, and D. Bruss, Phys. Rev. Lett.
107, 170502 (2011).

042309-13

http://dx.doi.org/10.1103/PhysRevA.53.2046
http://dx.doi.org/10.1103/PhysRevA.53.2046
http://dx.doi.org/10.1103/PhysRevA.53.2046
http://dx.doi.org/10.1103/PhysRevA.53.2046
http://dx.doi.org/10.1103/PhysRevLett.78.574
http://dx.doi.org/10.1103/PhysRevLett.78.574
http://dx.doi.org/10.1103/PhysRevLett.78.574
http://dx.doi.org/10.1103/PhysRevLett.78.574
http://dx.doi.org/10.1103/PhysRevA.57.R4075
http://dx.doi.org/10.1103/PhysRevA.57.R4075
http://dx.doi.org/10.1103/PhysRevA.57.R4075
http://dx.doi.org/10.1103/PhysRevA.57.R4075
http://dx.doi.org/10.1103/PhysRevA.55.3327
http://dx.doi.org/10.1103/PhysRevA.55.3327
http://dx.doi.org/10.1103/PhysRevA.55.3327
http://dx.doi.org/10.1103/PhysRevA.55.3327
http://dx.doi.org/10.1103/PhysRevA.60.3296
http://dx.doi.org/10.1103/PhysRevA.60.3296
http://dx.doi.org/10.1103/PhysRevA.60.3296
http://dx.doi.org/10.1103/PhysRevA.60.3296
http://dx.doi.org/10.1103/PhysRevA.74.032323
http://dx.doi.org/10.1103/PhysRevA.74.032323
http://dx.doi.org/10.1103/PhysRevA.74.032323
http://dx.doi.org/10.1103/PhysRevA.74.032323
http://arxiv.org/abs/arXiv:0804.2568
http://dx.doi.org/10.1103/PhysRevLett.76.2818
http://dx.doi.org/10.1103/PhysRevLett.76.2818
http://dx.doi.org/10.1103/PhysRevLett.76.2818
http://dx.doi.org/10.1103/PhysRevLett.76.2818
http://dx.doi.org/10.1103/PhysRevLett.100.090502
http://dx.doi.org/10.1103/PhysRevLett.100.090502
http://dx.doi.org/10.1103/PhysRevLett.100.090502
http://dx.doi.org/10.1103/PhysRevLett.100.090502
http://dx.doi.org/10.1103/PhysRevLett.99.240501
http://dx.doi.org/10.1103/PhysRevLett.99.240501
http://dx.doi.org/10.1103/PhysRevLett.99.240501
http://dx.doi.org/10.1103/PhysRevLett.99.240501
http://dx.doi.org/10.1007/s11005-010-0389-1
http://dx.doi.org/10.1007/s11005-010-0389-1
http://dx.doi.org/10.1007/s11005-010-0389-1
http://dx.doi.org/10.1007/s11005-010-0389-1
http://dx.doi.org/10.1103/PhysRevA.79.054305
http://dx.doi.org/10.1103/PhysRevA.79.054305
http://dx.doi.org/10.1103/PhysRevA.79.054305
http://dx.doi.org/10.1103/PhysRevA.79.054305
http://dx.doi.org/10.1103/PhysRevA.67.012323
http://dx.doi.org/10.1103/PhysRevA.67.012323
http://dx.doi.org/10.1103/PhysRevA.67.012323
http://dx.doi.org/10.1103/PhysRevA.67.012323
http://dx.doi.org/10.1142/S0219749909004542
http://dx.doi.org/10.1142/S0219749909004542
http://dx.doi.org/10.1142/S0219749909004542
http://dx.doi.org/10.1142/S0219749909004542
http://dx.doi.org/10.1103/PhysRevA.77.042301
http://dx.doi.org/10.1103/PhysRevA.77.042301
http://dx.doi.org/10.1103/PhysRevA.77.042301
http://dx.doi.org/10.1103/PhysRevA.77.042301
http://dx.doi.org/10.1103/PhysRevLett.77.1413
http://dx.doi.org/10.1103/PhysRevLett.77.1413
http://dx.doi.org/10.1103/PhysRevLett.77.1413
http://dx.doi.org/10.1103/PhysRevLett.77.1413
http://dx.doi.org/10.1016/S0375-9601(96)00706-2
http://dx.doi.org/10.1016/S0375-9601(96)00706-2
http://dx.doi.org/10.1016/S0375-9601(96)00706-2
http://dx.doi.org/10.1016/S0375-9601(96)00706-2
http://dx.doi.org/10.1103/PhysRevA.40.4277
http://dx.doi.org/10.1103/PhysRevA.40.4277
http://dx.doi.org/10.1103/PhysRevA.40.4277
http://dx.doi.org/10.1103/PhysRevA.40.4277
http://dx.doi.org/10.1103/PhysRevA.77.032342
http://dx.doi.org/10.1103/PhysRevA.77.032342
http://dx.doi.org/10.1103/PhysRevA.77.032342
http://dx.doi.org/10.1103/PhysRevA.77.032342
http://dx.doi.org/10.1103/PhysRevA.64.030302
http://dx.doi.org/10.1103/PhysRevA.64.030302
http://dx.doi.org/10.1103/PhysRevA.64.030302
http://dx.doi.org/10.1103/PhysRevA.64.030302
http://dx.doi.org/10.1103/PhysRevA.67.022110
http://dx.doi.org/10.1103/PhysRevA.67.022110
http://dx.doi.org/10.1103/PhysRevA.67.022110
http://dx.doi.org/10.1103/PhysRevA.67.022110
http://dx.doi.org/10.1103/PhysRevLett.105.150501
http://dx.doi.org/10.1103/PhysRevLett.105.150501
http://dx.doi.org/10.1103/PhysRevLett.105.150501
http://dx.doi.org/10.1103/PhysRevLett.105.150501
http://dx.doi.org/10.1088/1751-8113/43/23/235302
http://dx.doi.org/10.1088/1751-8113/43/23/235302
http://dx.doi.org/10.1088/1751-8113/43/23/235302
http://dx.doi.org/10.1088/1751-8113/43/23/235302
http://dx.doi.org/10.1103/PhysRevLett.81.5672
http://dx.doi.org/10.1103/PhysRevLett.81.5672
http://dx.doi.org/10.1103/PhysRevLett.81.5672
http://dx.doi.org/10.1103/PhysRevLett.81.5672
http://dx.doi.org/10.1103/PhysRevLett.100.050502
http://dx.doi.org/10.1103/PhysRevLett.100.050502
http://dx.doi.org/10.1103/PhysRevLett.100.050502
http://dx.doi.org/10.1103/PhysRevLett.100.050502
http://dx.doi.org/10.1103/PhysRevLett.83.1054
http://dx.doi.org/10.1103/PhysRevLett.83.1054
http://dx.doi.org/10.1103/PhysRevLett.83.1054
http://dx.doi.org/10.1103/PhysRevLett.83.1054
http://dx.doi.org/10.1103/PhysRevLett.85.2014
http://dx.doi.org/10.1103/PhysRevLett.85.2014
http://dx.doi.org/10.1103/PhysRevLett.85.2014
http://dx.doi.org/10.1103/PhysRevLett.85.2014
http://dl.acm.org/citation.cfm?id=2011489&CFID=766136759&CFTOKEN=68910716
http://dl.acm.org/citation.cfm?id=2011489&CFID=766136759&CFTOKEN=68910716
http://dl.acm.org/citation.cfm?id=2011489&CFID=766136759&CFTOKEN=68910716
http://dl.acm.org/citation.cfm?id=2011489&CFID=766136759&CFTOKEN=68910716
http://dx.doi.org/10.1103/PhysRevA.72.042316
http://dx.doi.org/10.1103/PhysRevA.72.042316
http://dx.doi.org/10.1103/PhysRevA.72.042316
http://dx.doi.org/10.1103/PhysRevA.72.042316
http://dx.doi.org/10.1103/PhysRevA.75.042310
http://dx.doi.org/10.1103/PhysRevA.75.042310
http://dx.doi.org/10.1103/PhysRevA.75.042310
http://dx.doi.org/10.1103/PhysRevA.75.042310
http://dx.doi.org/10.1103/PhysRevLett.101.200501
http://dx.doi.org/10.1103/PhysRevLett.101.200501
http://dx.doi.org/10.1103/PhysRevLett.101.200501
http://dx.doi.org/10.1103/PhysRevLett.101.200501
http://dx.doi.org/10.1103/PhysRevLett.106.220403
http://dx.doi.org/10.1103/PhysRevLett.106.220403
http://dx.doi.org/10.1103/PhysRevLett.106.220403
http://dx.doi.org/10.1103/PhysRevLett.106.220403
http://dx.doi.org/10.1103/PhysRevLett.100.140502
http://dx.doi.org/10.1103/PhysRevLett.100.140502
http://dx.doi.org/10.1103/PhysRevLett.100.140502
http://dx.doi.org/10.1103/PhysRevLett.100.140502
http://dx.doi.org/10.1007/s11433-012-4912-5
http://dx.doi.org/10.1007/s11433-012-4912-5
http://dx.doi.org/10.1007/s11433-012-4912-5
http://dx.doi.org/10.1007/s11433-012-4912-5
http://dx.doi.org/10.1103/PhysRevLett.88.017901
http://dx.doi.org/10.1103/PhysRevLett.88.017901
http://dx.doi.org/10.1103/PhysRevLett.88.017901
http://dx.doi.org/10.1103/PhysRevLett.88.017901
http://dx.doi.org/10.1088/0305-4470/34/35/315
http://dx.doi.org/10.1088/0305-4470/34/35/315
http://dx.doi.org/10.1088/0305-4470/34/35/315
http://dx.doi.org/10.1088/0305-4470/34/35/315
http://dx.doi.org/10.1103/PhysRevA.77.042303
http://dx.doi.org/10.1103/PhysRevA.77.042303
http://dx.doi.org/10.1103/PhysRevA.77.042303
http://dx.doi.org/10.1103/PhysRevA.77.042303
http://dx.doi.org/10.1103/PhysRevLett.104.080501
http://dx.doi.org/10.1103/PhysRevLett.104.080501
http://dx.doi.org/10.1103/PhysRevLett.104.080501
http://dx.doi.org/10.1103/PhysRevLett.104.080501
http://dx.doi.org/10.1038/ncomms3851
http://dx.doi.org/10.1038/ncomms3851
http://dx.doi.org/10.1038/ncomms3851
http://dx.doi.org/10.1038/ncomms3851
http://dx.doi.org/10.1142/S0219749911008283
http://dx.doi.org/10.1142/S0219749911008283
http://dx.doi.org/10.1142/S0219749911008283
http://dx.doi.org/10.1142/S0219749911008283
http://dx.doi.org/10.1142/S0217979213450537
http://dx.doi.org/10.1142/S0217979213450537
http://dx.doi.org/10.1142/S0217979213450537
http://dx.doi.org/10.1142/S0217979213450537
http://dx.doi.org/10.1103/PhysRevA.85.032318
http://dx.doi.org/10.1103/PhysRevA.85.032318
http://dx.doi.org/10.1103/PhysRevA.85.032318
http://dx.doi.org/10.1103/PhysRevA.85.032318
http://dx.doi.org/10.1103/RevModPhys.84.1655
http://dx.doi.org/10.1103/RevModPhys.84.1655
http://dx.doi.org/10.1103/RevModPhys.84.1655
http://dx.doi.org/10.1103/RevModPhys.84.1655
http://dx.doi.org/10.1140/epjd/e2011-20543-y
http://dx.doi.org/10.1140/epjd/e2011-20543-y
http://dx.doi.org/10.1140/epjd/e2011-20543-y
http://dx.doi.org/10.1140/epjd/e2011-20543-y
http://dx.doi.org/10.1103/PhysRevA.82.034302
http://dx.doi.org/10.1103/PhysRevA.82.034302
http://dx.doi.org/10.1103/PhysRevA.82.034302
http://dx.doi.org/10.1103/PhysRevA.82.034302
http://dx.doi.org/10.1088/1751-8113/47/40/405302
http://dx.doi.org/10.1088/1751-8113/47/40/405302
http://dx.doi.org/10.1088/1751-8113/47/40/405302
http://dx.doi.org/10.1088/1751-8113/47/40/405302
http://dx.doi.org/10.1088/1367-2630/15/9/093022
http://dx.doi.org/10.1088/1367-2630/15/9/093022
http://dx.doi.org/10.1088/1367-2630/15/9/093022
http://dx.doi.org/10.1088/1367-2630/15/9/093022
http://dx.doi.org/10.1103/PhysRevA.88.012120
http://dx.doi.org/10.1103/PhysRevA.88.012120
http://dx.doi.org/10.1103/PhysRevA.88.012120
http://dx.doi.org/10.1103/PhysRevA.88.012120
http://dx.doi.org/10.1038/srep10177
http://dx.doi.org/10.1038/srep10177
http://dx.doi.org/10.1038/srep10177
http://dx.doi.org/10.1038/srep10177
http://dx.doi.org/10.1103/PhysRevLett.105.190502
http://dx.doi.org/10.1103/PhysRevLett.105.190502
http://dx.doi.org/10.1103/PhysRevLett.105.190502
http://dx.doi.org/10.1103/PhysRevLett.105.190502
http://dx.doi.org/10.1103/PhysRevA.83.052108
http://dx.doi.org/10.1103/PhysRevA.83.052108
http://dx.doi.org/10.1103/PhysRevA.83.052108
http://dx.doi.org/10.1103/PhysRevA.83.052108
http://dx.doi.org/10.1103/PhysRevLett.78.2275
http://dx.doi.org/10.1103/PhysRevLett.78.2275
http://dx.doi.org/10.1103/PhysRevLett.78.2275
http://dx.doi.org/10.1103/PhysRevLett.78.2275
http://dx.doi.org/10.1103/PhysRevA.86.034101
http://dx.doi.org/10.1103/PhysRevA.86.034101
http://dx.doi.org/10.1103/PhysRevA.86.034101
http://dx.doi.org/10.1103/PhysRevA.86.034101
http://dx.doi.org/10.1103/PhysRevA.86.052326
http://dx.doi.org/10.1103/PhysRevA.86.052326
http://dx.doi.org/10.1103/PhysRevA.86.052326
http://dx.doi.org/10.1103/PhysRevA.86.052326
http://dx.doi.org/10.1103/PhysRevA.87.032340
http://dx.doi.org/10.1103/PhysRevA.87.032340
http://dx.doi.org/10.1103/PhysRevA.87.032340
http://dx.doi.org/10.1103/PhysRevA.87.032340
http://dx.doi.org/10.1103/PhysRevA.87.064101
http://dx.doi.org/10.1103/PhysRevA.87.064101
http://dx.doi.org/10.1103/PhysRevA.87.064101
http://dx.doi.org/10.1103/PhysRevA.87.064101
http://dx.doi.org/10.1088/1367-2630/15/10/103001
http://dx.doi.org/10.1088/1367-2630/15/10/103001
http://dx.doi.org/10.1088/1367-2630/15/10/103001
http://dx.doi.org/10.1088/1367-2630/15/10/103001
http://dx.doi.org/10.1088/1751-8113/47/36/365301
http://dx.doi.org/10.1088/1751-8113/47/36/365301
http://dx.doi.org/10.1088/1751-8113/47/36/365301
http://dx.doi.org/10.1088/1751-8113/47/36/365301
http://dx.doi.org/10.1103/PhysRevLett.107.170502
http://dx.doi.org/10.1103/PhysRevLett.107.170502
http://dx.doi.org/10.1103/PhysRevLett.107.170502
http://dx.doi.org/10.1103/PhysRevLett.107.170502



