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Although the topological order is known as a quantum order in quantum many-body systems, it seems that
there is not a one-to-one correspondence between topological phases and quantum phases. As a well-known
example, it has been shown that all one-dimensional (1D) quantum phases are topologically trivial [X. Chen
et al., Phys. Rev. B 83, 035107 (2011)]. By such facts, it seems a challenging task to understand when a quantum
phase transition between different topological models necessarily reveals different topological classes of them.
In this paper, we make an attempt to consider this problem by studying a phase transition between two different
quantum phases which have a universal topological phase. We define a Hamiltonian as interpolation of the toric
code model with Z2 topological order and the color code model with Z2 × Z2 topological order on a hexagonal
lattice. We show such a model is exactly mapped to many copies of 1D quantum Ising model in transverse field
by rewriting the Hamiltonian in a new complete basis. Consequently, we show that the universal topological
phase of the color code model and the toric code model reflects in the 1D nature of the phase transition. We
also consider the expectation value of Wilson loops by a perturbative calculation and show that behavior of the
Wilson loop captures the nontopological nature of the quantum phase transition. The result on the point of phase
transition also shows that the color code model is strongly robust against the toric code model.
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I. INTRODUCTION

After the symmetry-breaking theory of Landau [1], many
thought science had reached a comprehensive understanding of
different phases of matter. However, a new concept emerged in
condensed matter physics by quantum Hall effect [2], quantum
spin fluids [3–6], and superconductors [7–9] which was called
topological order. Topological order is a different phase of
matter which can not understood by Landau theory so that one
can find different topological phases with the same symmetries
[10].

The ground state of a quantum system with topological
order exhibits a long-range entanglement [11]. Specifically,
the topological entanglement entropy has been defined as a
nonlocal order parameter of topological order [12,13] so that it
can characterize a quantum phase transition from a topological
phase [14]. Another interesting property of a topological phase
is the behavior of the Wilson loop where the expectation value
of the Wilson loop is related to the perimeter of the loop in a
topological phase, while it is related to the area of the loop in
a nontopological phase [14].

Long-range entanglement of the ground state of a topolog-
ical matter also leads to some interesting and exotic properties
which have not been seen in symmetry-breaking phases.
Robust degeneracy of the ground state and exotic statistics
of excitations of the system, which are called anyons, are two
important characteristics of the topological phases [15–17].
Braiding anyons leads to an arbitrary phase factor on a wave
function of the system in the Abelian models and a unitary
operator in the non-Abelian models [18,19]. The robustness
of degeneracy of the ground state and braiding operators
against local perturbations is a key property of the topological
phases which has converted them to important candidates for
fault-tolerant quantum computation [20–22].

*mzarei92@shirazu.ac.ir

In spite of many improvements on defining different
characteristics of a topological phase, recognizing different
topological classes in different quantum systems [23–28] is
still an open problem which has received a great deal of
interest. Since topological order is a kind of quantum order,
it is clear that the same quantum phases have also the same
topological phases. Consequently, considering quantum phase
transition between different topological models is a useful
approach for classification of topological models. Specifically,
there are some recent papers which show a quantum phase
transition can well reveal different topological properties of
two different topological phases [29,30].

This thought that a quantum phase transition reveals
necessarily different topological classes of the quantum phases
is challenged specifically by one-dimensional (1D) quantum
models. It has been shown that all 1D quantum phases belong
to a trivial topological phase [31] so that one can find a
quantum phase transition between two different 1D quantum
models which are topologically trivial [32,33]. In fact, since
topological signature of topological phases such as topological
entanglement entropy or expectation value of the Wilson loop
operators can not be defined for a 1D model, topological order
of 1D models only defines as a symmetry-protected topological
phase [31].

Moreover, 1D quantum models are in the same topological
phases; there are also two-dimensional (2D) quantum models
which belong to a universal topological phase. A well-known
example of universal topological phases has been seen in the
toric code model (TC) with Z2 topological order [22] and the
color code model (CC) with Z2 × Z2 topological order [34].
Since the TC and CC models have different gauge symmetries,
degeneracies of the ground state of them are different. While
the TC model provides a fourfold-degenerate ground state
which can be used as a robust quantum memory, degeneracy
of the ground state of the CC model is 16-fold. Furthermore,
unlike the TC model, there is also possibility of applying
unitary Clifford group in a topological way [34]. Recently,
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there is also an experimental realization of the color code on
trapped-ion qubits [35].

Although different degeneracies of the CC model and the
TC model show that they are in two different quantum phases,
other topological characteristics of both models are completely
the same. Especially, it is possible to show a CC model and
two copies of the TC model are in the same quantum phases
[36,37]. In [36], the authors have emphasized that since there
is an adiabatic evolution without quantum phase transition
between a CC model and two copies of the TC model, they have
the same topological phases. This result shows that different
quantum phases of the TC and CC models are completely
related to their different gauge symmetries and do not have a
topological nature.

By the above facts, there is a good chance that one considers
how the same topological characteristics of the CC and the TC
models reflects in the properties of a quantum phase transition
between them. To this end, in this paper we consider a CC
model on a hexagonal lattice besides a single TC model instead
of two copies of it on the same lattice. We show the universal
topological phase of the CC and the TC models reflects in
properties of the quantum phase transition where we show
that the quantum phase transition has a 1D nature. Our result
is also another proof for the universal topological phase of the
CC model and the TC model. We emphasize that our proof
has a recent and important point that generally shows how the
universal topological phase of two 2D topological models can
be revealed even in presence of a quantum phase transition.

In deriving results, we define a specific version of the
TC model on the hexagonal lattice. We show that a model
Hamiltonian as interpolation of the CC and TC models is
mapped to many copies of 1D Ising models in transverse field
which belong to the 2D classical Ising universality class. The
mapping is based on rewriting the Hamiltonian of the model in
a new complete basis. Our method is equivalent with unitary
transformation on the Hamiltonian which does not change the
spectrum of the model. We also study the behavior of Wilson
loops and explicitly show that the expectation value of the
Wilson loops in our model captures the nontopological nature
of the phase transition.

From another point of view, we find the point of the phase
transition of our model which is the same as the 1D Ising
model in transverse field at gt

gc
= 1 [38] where gt and gc are

the couplings of the TC and the CC models, respectively. It
shows when we add the TC Hamiltonian as a small perturbation
against the CC model, such a perturbation can never change the
quantum phase of the CC model. The quantum phase transition
occurs only when a considerable perturbation gt > gc is
applied. Such a result shows that unlike the small robustness
of the CC model against local perturbations such as magnetic
field or Ising interaction [39–43], it is strongly robust against
a topological perturbation like the TC model.

In Sec. II, we review different properties of the topological
phases of the TC and the CC models. In Sec. III, we present
our model as an interpolation of the CC and the TC models.
We define both topological models on a hexagonal lattice and
qualitatively show how a quantum phase transition happens.
In Sec. IV, we use a mathematical method to map our model
to 1D Ising models in transverse field which have a well-
known phase transition point. Finally, in Sec. V we consider the

behavior of Wilson loop operators by a perturbative approach
to show the quantum phase transition in our model does not
have a topological nature.

II. BRIEF REVIEW OF THE TORIC CODE AND THE
COLOR CODE MODELS

In this section, we review the topological structure of
the TC and the CC models. We specifically emphasize on
different topological degeneracies and different topological
structures of them by representation of the ground states
as loop-condensate states. For more details, there is also a
comparative study of these models which was done in [44].

A. Toric code model

A TC model is ordinarily defined as the ground state of
a model Hamiltonian on an oriented graph where qubits live
on edges of the graph. Two commutative operators Bp and
As are defined corresponding to each plaquette and vertex of
the graph in the following form [see Fig. 1 (left) for a square
lattice]:

Bp =
∏
i∈p

Zi, As =
∏
i∈s

Xi, (1)

where i ∈ p refers to qubits around a plaquette and i ∈ s refers
to qubits around a vertex and Z,X are the Pauli operators. The
Hamiltonian of the model is a summation of these operators on
all plaquettes and vertices of the graph in the following form:

H = −
∑

p

Bp −
∑

s

As. (2)

By the fact that the vertex and plaquette operators commute
with each other, it is simple to show the following state is a
ground state of Hamiltonian (2):

|φt 〉 =
∏

s

(1 + Bp)| + + + . . . +〉, (3)

where the state |+〉 is eigenstate of the operator X correspond-
ing to eigenvalue +1 and we ignore the normalization factor
for this state.

There is also a simple representation for the state (3) which
helps for better understanding of the topological order of such a
state. To this end, let us span the product of operators (1 + Bp)
on all plaquettes in the relation (3) as follows:∏

p

(1 + Bp) = 1 +
∑

p

Bp +
∑
p,p′

BpBp′ + . . . , (4)

where the right-hand side of this relation is the summation
of all possible products of the plaquette operators. Since each
plaquette operator can be interpreted as a loop operator on the
lattice, the right-hand side of the relation (4) is the summation
of all possible loop operators.

Finally, since Z|+〉 = |−〉 where the state |−〉 is the
eigenstate of the operator X corresponding to eigenvalue −1,
the ground state of the TC model (3) can be interpreted as
uniform superposition of all loop constructions of qubits |−〉
in the sea of qubits |+〉 which is called the loop condensation.
Such a state has a topological order which leads to a robust
degeneracy in the ground state of the model when we define
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FIG. 1. Left: the plaquette and vertex operators have been shown by two different colors corresponding to vertices and plaquettes of the
lattice. There are four nontrivial loop operators which describe topological degeneracy. Right: two charge (flux) anyons are generated by
applying Z (X) operator on each qubit. By applying a sequence of Z (X) operators on qubits, it is possible to move a charge (flux) anyon on
the lattice.

the model Hamiltonian on a torus. In fact, on a torus topology,
there are also noncontractible loop operators in the form of

Lσ
Z =

∏
i∈Lσ

Zi, (5)

where i ∈ Lσ refers to the qubits which live on a noncon-
tractible loop around the torus in two different directions σ = 0
or 1 [see Fig. 1 (left)]. Therefore, the following four quantum
states are the degenerate ground states of Hamiltonian (2):

|ψi,j 〉 = (
L0

z

)i(
L1

z

)j |φt 〉, (6)

where the indices i,j = {0,1} refer to four different quantum
states. Topological order of the TC model is understood by
three important properties: robust degeneracy, nonlocal order
parameter, and anyonic excitations. The robust degeneracy is
due to this fact that four degenerate ground states (6) can
not be converted to each other by any local parameter, so the
degeneracy is robust against each local perturbation.

Another property is that any local operator can not dis-
tinguish four degenerate ground states. In fact, there are two
nonlocal operators which have different expectation values in
different degenerate ground states. Such operators are defined
in the following form:

Lσ
X =

∏
i∈Lσ

Xi, (7)

where i ∈ Lσ refers to the qubits which live on a noncon-
tractible loop around the torus in two different directions:
σ = 0 or 1 [see Fig. 1 (left)]. The expectation values of these
operators in each one of the four degenerate ground states are
as follows:

〈ψ00|L0
x |ψ00〉 = 1, 〈ψ00|L1

x |ψ00〉 = 1,

〈ψ01|L0
x |ψ01〉 = −1, 〈ψ01|L1

x |ψ01〉 = 1,

(8)
〈ψ10|L0

x |ψ10〉 = 1, 〈ψ10|L1
x |ψ10〉 = −1,

〈ψ11|L0
x |ψ11〉 = −1, 〈ψ11|L1

x |ψ11〉 = −1.

Therefore, these two nonlocal operators can distinguish the
different ground states.

Finally, excitations of the TC model are quasiparticles with
anyonic statistics. An excitation is generated by applying the
Pauli operators X or Z on a qubit of the lattice [see Fig. 1
(right)]. An operator X on a qubit does not commute with
two plaquette operators which are shared in that qubit and
it is interpreted as two flux anyons m in two corresponding
plaquettes. Also, an operator Z does not commute with two
neighbor vertex operators and it is interpreted as two charge
anyons e in two corresponding vertices. By applying a string
of X (Z) operators, a flux (charge) anyon moves on plaquettes
(vertices) of the lattice [see Fig. 1 (right)]. It is simple to show
that if a charge anyon winds around a flux anyon, it leads to a
minus sign on wave function. Such a factor shows that charge
and flux anyons are not fermions or bosons.

B. Color code model

The CC model is another well-known kind of the topolog-
ical lattice models with Z2 × Z2 topological order. Although
topological properties of this model seem similar to the TC, an
additional freedom degree of color in this model leads to some
important differences with the TC. Specifically, the CC is more
efficient than the TC for computational tasks. For example, in
the CC on a hexagonal lattice, all the Clifford operators can be
applied in a topological way while it is not possible in the TC
model [34].

The CC model can be defined on three-colorable lattices
which are technically called colexes and can be generalized
to arbitrary dimensions [45]. As an example, we consider a
hexagonal lattice where qubits live on vertices of the lattice
(see Fig. 2). Corresponding to each hexagonal plaquette of
the lattice which is denoted by symbol “h,” we define two
operators in the following form:

hx =
∏
i∈h

Xi, hz =
∏
i∈h

Zi, (9)
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FIG. 2. Left: the qubits live on the vertices of the lattice and two operators hx and hz are attached to each hexagonal plaquette. Edges of
the lattice are colored by three different colors corresponding to three different colors of the hexagonal plaquettes. There are 12 nontrivial
loop operators corresponding to two directions on torus and three different colors of the plaquettes. Right: corresponding to each hexagonal
plaquette of the lattice, there is a triangular plaquette where two qubits live on each edge. In this way, there are three triangular lattices with
three different colors. Since there are two triangular plaquettes with different colors corresponding to each hexagonal plaquette, only two colors
are enough for representation of plaquette operators on the triangular lattices.

where i ∈ h refers to all qubits belonging to the plaquette h.
The Hamiltonian of the model is defined as

H = −
∑

h

hx −
∑

h

hz. (10)

Since all plaquette operators commute with each other, the
ground state of this Hamiltonian is in the following simple
form:

|φc〉 =
∏
h

(1 + hz)| + + . . . +〉, (11)

where we ignore the normalization factor. Similar to the TC
model, there is a loop representation for the state (11). To this
end, let us span a product of operators (1 + hz) in the relation
(11) as the following form:∏

h

(1 + hz) = 1 +
∑

h

hz +
∑
h,h′

hzh
′
z + . . . . (12)

We color all plaquettes of a hexagonal lattice by three
different colors (red, blue, green) so that any two neighbor
plaquettes of the lattice are not in the same color [see Fig.
2 (left)]. We also color all the edges of the hexagonal lattice
with three colors so that each of the two plaquettes with the
same color connect together with an edge with the same color.
Each hexagonal plaquette of the hexagonal lattice can also be
considered as a triangle plaquette of a triangular lattice where
two qubits of each hexagonal plaquette live on each edge of this
triangular plaquette [see Fig. 2 (right)]. In this way, we insert
the edges of the lattice in three categories corresponding to
each color and we can draw a triangular lattice corresponding
to each category of colored edges [see Fig. 2 (right)]

Finally, we interpret each plaquette operator of the CC
model by a triangular colored loop on one of the three
triangular lattices. By such an interpretation, the summation in

the relation (12) is regarded as a superposition of all possible
loop operators with three different colors on the triangular
lattices. A closer look to the hexagonal lattice shows that a
plaquette of the initial hexagonal lattice corresponds to two
different triangles of two different colored triangular lattices
[see Fig. 2 (right)]. Therefore, we have this freedom to select
one of the colors for each hexagonal plaquette. By such a
freedom, it is simple to show that the relation (12) can be
interpreted as a superposition of all loop operators with only
two different colors. Therefore, it is well understood that the
topological order in the CC is similar to the TC with additional
freedom degree of color. Such an order is called Z2 × Z2

topological order versus the Z2 topological order for the TC.
The topological order in the CC also leads to some impor-

tant properties similar to the TC such as robust degeneracy,
nonlocal order parameter, and anyonic excitations. As a
sample, if we insert the hexagonal lattice on a torus, there
will be many noncontractible loop operators which lead to
degeneracy of the ground states. These loop operators are
defined similar to the TC model with a difference that there
are three kinds of loop operators corresponding to each color
[see Fig. 2 (left)] in the following form:

Lσ,r
z =

∏
i∈Lσ,r

Zi, Lσ,g
z =

∏
i∈Lσ,g

Zi, Lσ,b
z =

∏
i∈Lσ,b

Zi, (13)

where i ∈ Lσ,r(g,b) refers to the qubits which live on a
noncontractible loop around the torus on a red (green, blue)
triangular lattice in two different directions σ = 0 or 1. Since
the three above operators are not independent so that the
product of them as Lσ,r

z L
σ,g
z Lσ,b

z is equal to a product of
plaquette operators, we can generate the 16 degenerate ground
states of the model by applying only two colored loop operators
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in the following form:

|φi,j,k,l〉 = (
L0,r

z

)i(
L1,r

z

)j (
L0,b

z

)k(
L1,b

z

)l|φc〉, (14)

where the indices i,j,k,l = {0,1} refer to 16 ground states
of the model. Similar to the TC model, there are also four
nonlocal order parameters in the following form which can
characterize different ground states of the CC model [see Fig.
2 (left)]:

Lσ,r
x =

∏
i∈Lσ,r

Xi, Lσ,b
x =

∏
i∈Lσ,b

Xi, (15)

where we apply operators X on noncontractible loops with
two different colors.

III. INTERPOLATION OF THE CC AND THE TC MODELS

In this section, we consider both the TC and the CC models
on the same lattice and define a new Hamiltonian in the
following form:

H = −gtHt − gcHc, (16)

where Ht and Hc are Hamiltonians of the TC and the CC
models, respectively. Such a Hamiltonian is defined on the
qubits which live on the vertices of a hexagonal lattice.
Definition of the CC on such a lattice is the same as we
explained in the previous section. Since qubits live on the
vertices of this lattice, we can not define an ordinary TC
model on such a lattice. However, there is a simple way to
present a TC model on such lattice. To this end, we divide
each hexagonal plaquette to two trapezoid-shaped parts as it
is shown in Fig. 3. Then, we paint all trapezoids as chess
pattern with dark and light colors. In this way, we can use
a rotated version of the Kitaev model [44] where we relate
an operator Bp = Z1Z2Z3Z4 to each light plaquette and an
operator As = X1X2X3X4 to each dark plaquette (see Fig. 3).
It is very simple to show that such a model is exactly the same
TC model. Specifically, one can check that the ground state of
this model is

|ψ〉 =
∏
p

(1 + Bp)| + + . . . +〉. (17)

Such a state is the same as Eq. (3) in the definition of the
TC model.

After definition of the TC and CC models on the same
hexagonal lattice, we are ready to study the properties of the
Hamiltonian (16). On the one hand, in limit of gt � gc, we
have a TC model which has a fourfold degeneracy. On the other
hand, in limit of gt � gc, we have a CC model which has a
16-fold degeneracy. Hence, by tuning of the coupling gt from
zero to infinity, we expect to see a quantum phase transition.
Since noncontractible loop operators generate degeneracy in
the CC and the TC models, it is useful to consider how the
subspace of the ground states in the CC model changes by
adding the TC model. To this end, consider nontrivial loop
operators in the TC and the CC on the hexagonal lattice. As it
is shown in Fig. 3, we consider four nontrivial loop operators
L0,r

x , L0,r
z , L0,b

x , and L0,b
z for the CC model and two nontrivial

loop operators L0
x and L0

z for the TC model. It is possible
to describe 16-fold degenerate subspace of the CC by the
projectors which are constructed by nontrivial loop operators
in the following form:[

1 + (−1)iL0,r
x

][
1 + (−1)jL0,b

x

]
× [

1 + (−1)kL0,r
z

][
1 + (−1)lL0,b

z

]
, (18)

where i,j,k,l = {0,1}. Let us compare the above subspace
with degenerate subspace of the TC model. As it is shown
in Fig. 3, four nontrivial operators of the CC model on the
hexagonal lattice can also be considered nontrivial operators
of the TC model. But, there is a difference that two operators
L0,r

x and L0,b
x are in the same homology class in the TC

so that they convert to each other by applying product of
plaquette operators As which are involved by the two nontrivial
loops. The same situation is for operators L0,r

z and L0,b
z where

they convert to each other by applying product of plaquette
operators Bp which are involved by two nontrivial loops L0,r

x

and L0,b
x . In this way, by perturbing the CC model by the TC

perturbation, homology classes of the nontrivial loops change
so that two nontrivial loops with different colors belong to the
same homology class and a quantum phase transition occurs.

It is also interesting if we explain equivalency of nontrivial
operators in the TC model in an anyonic picture. In fact, in
the CC model two operators L0,r

z and L0,b
z can be interpreted

as generating two charge anyons er and eb which turn around
torus and annihilate again. In the CC model, these two charge
anyons are not equivalent and they can not fuse together.
Consequently, they generate new degenerate states, while in

pB

sA

0,r
zL

0,r
xL

0,b
zL

0,b
xL 0

zL
0
xL

FIG. 3. Each hexagonal plaquette of the lattice has been divided into two trapezoid-shaped parts. By a chess-pattern painting of such a
lattice, a TC model can be defined where the operators Bp are related to light plaquettes and the operators As are related to dark plaquettes.
Two noncontractible loops which are topologically different in the CC model convert together with product of operators As or Bp which are
involved by the noncontractible loops. It shows that noncontractible loops with different colors are topologically the same in the TC model.
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the TC model, there is only one charge anyon so that er

and eb are equivalent and they can fuse together. Such an
interpretation of the quantum phase transition emphasizes the
role of color in the CC model so that we can claim that the CC
model is topologically equivalent with two TC models with
two different colors. This result is explicitly derived in [36]
where authors showed that the CC model is local equivalent
with two copies of the TC model. In the next section, we show
this result by explicit analysis of the quantum phase transition
where we show the quantum phase transition does not have
a topological nature. As another point, it is also useful to
emphasize the role of different gauge symmetries of the TC
and the CC models in the quantum phase transition. In fact,
the TC is related to the universality class of the 2D Ising
model (classical) with Z2 symmetry, while the CC is related
to the universality class of the 2D three-body Ising model
with Z2 × Z2 symmetry [46]. Therefore, it is expected that
such a quantum phase transition can be characterized as a
symmetry-breaking process and does not have a topological
nature.

IV. EXPLICIT ANALYSIS OF THE QUANTUM
PHASE TRANSITION

As it was explained in the previous section, according to
[36], because of equivalency of a CC model with two copies of
the TC model, both models have a universal topological phase.
In this section, we want to consider properties of the phase
transition between the CC and the TC models to understand
how the universal topological phase of them reveals in the
point of quantum phase transition. We rewrite Hamiltonian
(16) in a new basis and show that it converts to many copies
of 1D Ising model in transverse field which belongs to 2D
Ising universality class. Finally, we conclude that the universal
topological phase of those models reflects in 1D nature of
the phase transition. Consider a set of quantum states in the
following form:∣∣ψi,j

{rp,ws }
〉 = [

1 + (−1)iL0
Z

][
1 + (−1)jL0

x

]
×

∏
p

[1 + (−1)rpBp]
∏

s

[1 + (−1)ws As]|φc〉,

(19)

where |φc〉 = ∏
h(1 + hz)|�〉 is the ground state of the CC

model. Using |φc〉 in the above definition is necessary to find
the effect of operators of the CC model on the state (19).
The values of 0,1 for indices refer to different eigenstates of
this basis. Such a basis has been constructed by the projector
operators related to loop operators of the TC model. It is
simple to check that such states generate a complete basis.
In fact, the indices i,j characterize topological degenerate
subspace of the TC model and rp’s (ws’s) refer to binary
variables which correspond to each light (dark) plaquette of
the lattice; we call them the virtual spins which are equivalent
with anyonic excitations of the TC model. In other words,
the values 0 and 1 for a virtual spin correspond to presence or
absence of an anyon in the related plaquettes. It is clear that the
operators Bp and As in this new basis have a simple form. Since
Bp[1 + (−1)rpBp] = (−1)rp [1 + (−1)rpBp], we conclude that

Bp|ψi,j

{rp,ws }〉 = (−1)rp |ψi,j

{rp,ws }〉. We can also represent the state

|ψi,j

{rp,ws }〉 as |r1,r2, . . .〉|w1,w2, . . .〉 where |rp〉 and |ws〉 are
eigenstates of operator Z of the virtual spins which live in the
center of each light and dark plaquette of the lattice, respec-
tively. By such a definition, since Bp|r1,r2, . . .〉|w1,w2, . . .〉 =
(−1)rp |r1,r2, . . .〉|w1,w2, . . .〉, it is clear that the operator Bp

plays role of the Pauli operator Zp on a virtual spin correspond-
ing to light plaquette p. There is a similar situation for oper-
ators As . Since As[1 + (−1)ws As] = (−1)ws [1 + (−1)ws As],
we will have As |ψi,j

{rp,ws }〉 = (−1)ws |ψi,j

{rp,ws }〉. Consequently,
the operator As also plays role of the Pauli operator Zs on a
virtual spin corresponding to dark plaquette s. Therefore, the
TC model in the new basis is written in the following form:

HKitaev = −
∑

p

Zp −
∑

s

Zs. (20)

It is clear that the operators of the TC model never change
indexes i,j in the basis (19). In other words, we have four
degenerate subspaces where there are the same forms for the
Hamiltonian of the TC model. An interesting point is that there
is the same situation in the Hamiltonian of the CC model. It
is simple to show that the nontrivial operators L0

z and L0
x

commute with all operators hx and hz in the Hamiltonian of
the CC model. Consequently, the Hamiltonian of the CC model
has also the same form in the four degenerate states of the TC
model so that the Hamiltonian of the CC can not generate any
transition between those states.

By attention to the above argument, we consider just one
of the degenerate subspaces of the TC model for rewriting
Hamiltonian (16). Finally, we consider the following states as
new basis:

|ψ{rp},{ws }〉 = (
1 + L0

Z

)(
1 + L0

x

)∏
p

[1 + (−1)rpBp]

×
∏

s

[1 + (−1)ws As]|φc〉. (21)

We are ready to find the new form of the CC model in the
above basis. In the CC model, we have two operators hx and
hz corresponding to each hexagon of the hexagonal lattice.
We should find the effect of such operators on the states
(21). To this end, consider a hexagon h of the hexagonal
lattice as it has been shown in Fig. 4. The corresponded
hexagonal operator hx involves six qubits which are common
with few dark and light plaquettes of the TC model. It is
clear that the operator hx commutes with all operators As

on dark plaquettes and all operators Bp on light plaquettes
except of two light-plaquette operators B1 and B2 which
have only one joint qubit with the hexagon h [see Fig. 4
(left)]. Therefore, we have hx[1 + (−1)r1B1][1 + (−1)r2B2] =
[1 + (−1)r1+1B1][1 + (−1)r2+1B2]hx . Since hx |φc〉 = |φc〉,
we conclude that the effect of operator hx on the state (21)
leads to rising binary variables r1 and r2. Such an operation
is the same as operator X1X2 on the basis of virtual spins
in (21).

The situation is the same for operators hz. This operator
does not commute with two dark plaquettes Aa and Ab of the
TC model [see Fig. 4 (left)]. Therefore, the effect of operator
hz is the same as operator XaXb on the basis (21). In the next
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h 'h
1B 2B

aA bA

3B

cA

FIG. 4. Left: an operator hx (hz) does not commute with two light (dark) plaquette operators B1 (Aa) and B2 (Ab) and it is equivalent with
operator X1X2 (XaXb) on virtual spins in the center of the light (dark) plaquettes. Similarly, the operator h′

x (h′
z) is equivalent with operator

X2X3 (XbXc) on virtual spins living in the center of light (dark) plaquettes which are denoted by green circles (red stars). Right: by applying
all hexagonal operators in the new basis, we will have 2N copies of 1D Ising model corresponding to each row of the lattice.

step, consider another hexagonal plaquette in the neighbor of
the plaquette h, we denote it by h′ [see Fig. 4 (left)]. Similar
to plaquette h, operator h′

x does not commute with two light-
plaquette operators B2 and B3 so that it is equal to a operator
X2X3 on virtual spins in (21). If we repeat this work for other
plaquettes of the lattice which are in the same row with h and
h′, we will have an Ising model as

∑
〈i,j〉 XiXj on virtual spins

which live in light plaquettes of the corresponded row of the
lattice [see Fig. 4 (right)]. The same situation is for operator
h′

Z where it is equal to operator XbXc on virtual spins in the
dark plaquettes of corresponded row of the lattice [see Fig. 4
(right)].

Finally, we can find the effect of operators hx and hz

associating with all plaquettes of the hexagonal lattice as∑
h(hx + hz) on the basis (21). As it is shown in Fig. 4 (right),

the hexagonal lattice inserts on a 2D torus where there are
N rows so that each row of the lattice contains N plaquettes.
If we divide all plaquettes of the lattice into N parts which
correspond to rows of the lattice, we can write the Hamiltonian
of the CC model in the following form:

H = −
∑

i

∑
h∈ri

(hx + hz), (22)

where h ∈ ri refers to plaquettes which belong to the ith row of
the lattice. As it is already discussed, summation of operators
hx (hz) on a row of the lattice in the basis (21) is equal
to the Ising model on virtual spins in light plaquettes (dark
plaquettes) of that row of the lattice. Therefore, the CC model
in Eq. (22) is converted to 2N one-dimensional Ising model
on dark and light virtual spins of each row of the lattice in the
following form:

Hc =
∑
row

⎛
⎝−

∑
i∈Lr

XiXi+1 −
∑
j∈Dr

XjXj+1

⎞
⎠, (23)

where Dr (Lr ) refers to dark plaquettes (light plaquettes) of
the row “r .” After rewriting both the TC model and the CC

model in the basis (21) according to relations (20) and (23),
the Hamiltonian of the our model (16) is converted to the
following model in the basis (21):

H =
∑
row

{
−

∑
i∈Dr

(gcXiXi+1 + gtZi)

−
∑
j∈Lr

(gcXjXj+1 + gtZi)

⎫⎬
⎭, (24)

where there are 2N 1D Ising models in transverse field which
have a well-known phase transition point at gt = gc which
belong to the universality class of 2D classical Ising model.

It is interesting to explicitly consider the ground state in two
limits gt = 0 and gc = 0 according to relation (24). If gt = 0
we will have an Ising model on all rows of the lattice, and
the ground state will be as product of | + + . . . +〉 or | − − −
. . . −〉 for each row of the lattice. In the following, we briefly
explain how one of the ground states of TC model converts to
four ground states of the CC model in effect of the quantum
phase transition. Consider a state |+a〉 = 1√

2
(|0a〉 + |1a〉) on

one of the virtual spins in the light or dark plaquette a. The
state |0a〉 in the word of the basis (21) is equal to

(
1 + L0

Z

)(
1 + L0

x

)
(1 + Ba)

∏
p 	=a

[1 + (−1)rpBp]

×
∏

s

[1 + (−1)ws As]|φc〉, (25)

where p 	= a refers to all plaquettes except of the plaquette a.
On the other hand, the state |1a〉 in the word of the basis (21)
is equal to

(
1 + L0

Z

)(
1 + L0

x

)
(1 − Ba)

∏
p 	=a

[1 + (−1)rpBp]

×
∏

s

[1 + (−1)ws As]|φc〉. (26)
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In this way, the state |+a〉 will be equal to

|+a〉 = (
1 + L0

Z

)(
1 + L0

x

) ∏
p 	=a

[1 + (−1)rpBp]

×
∏

s

[1 + (−1)ws As]|φc〉. (27)

Therefore, it is simple to show that a state as | + + . . . +〉 on
whole virtual spins in the lattice which is one of the ground
states of the model is equal to

|ψ0〉 = | + + . . . +〉 = (
1 + L0

Z

)(
1 + L0

x

)|φc〉, (28)

where it is exactly one of the ground states of the CC model.
Then, we consider the state |−a〉. By attention to relations

(25) and (26), such a state in the basis (21) is equal to

|−a〉 = Ba

(
1 + L0

Z

)(
1 + L0

x

) ∏
p 	=a

[1 + (−1)rpBp]

×
∏

s

[1 + (−1)ws As]|φc〉. (29)

This relation shows that if we change a row of the virtual spins
on light plaquettes from | + + . . . +〉 to | − − . . . −〉 it is equal
to applying a row of corresponded operators Bp on the state
|ψ0〉 in (28). As it is shown in Fig. 3, a product of operators
Bp on a row of the lattice is equal to a product of nontrivial
operators L0,r

z and L0,b
z in the CC model. While L0,r

z and L0,b
z

are topologically equivalent in the TC model, they are different
in the CC model. Therefore, one can easily show that such an
operation generates another ground state of the CC model.

The same process occurs for the product of As on a row of
the lattice where it is equal to a product of nontrivial operators
L0,r

x and L0,b
x in the CC model and generates a third ground

state. Finally, the fourth ground state of the CC model is
generated by applying a product of As and Bp on a row of
dark and light plaquettes of the lattice. Therefore, one of the
ground states of the TC model splits to four quantum states of
the CC model in effect of the quantum phase transition. In this
way, we showed that the quantum phase transition between the
CC and the TC models is equivalent with the phase transition
in 1D Ising model in transverse field. Such a result is important
in the viewpoint of universal topological phase for the CC and
the TC models. It is well known that a 1D quantum model
does not have a topological order [31]. In fact, for a 1D model,
one can not define any topological signature such as Wilson
loop or topological entanglement entropy. Consequently, our
result shows that the topological difference of the CC and the
TC models has a 1D nature and therefore they are in the same
topological phase.

The point of phase transition at gt = gc also shows that the
CC model is strongly robust against the TC model. In fact, a TC
model with a small coupling gt < gc can not lead to a quantum
phase transition. While the robustness of the CC against local
perturbations such as magnetic field and Ising interactions is
small [43], our result needs a proper interpretation. It seems
that since the topological phase of the TC model is the same as
the CC model, the quantum phase transition in our model only
relates to lifting degeneracy of the ground state. Therefore, the
robustness of the CC model against the TC model relates to the
robustness of the topological degeneracy of the ground state.

In the next section, we approximately study the behavior of
Wilson loop in our model. We show that the Wilson loop does
not behave as expected in a topological phase.

V. BEHAVIOR OF THE WILSON LOOP

In this section, we consider behavior of the Wilson loop
operators in our model. It is well known that behavior of a
Wilson loop in a perturbed topological phase is as e−α|∂wl |
where |∂wl| is the perimeter of the Wilson loop. Such a
behavior for the Wilson loop is a signature of the topological
phase [30]. We consider a Wilson loop operator in the TC
model as Wl = ∏

i∈l Zi where l is a loop on the chess-patterned
hexagonal lattice (see Fig. 5). Such an operator is equal to
product of operators Bp which are involved by the Wilson
loop. One the one hand, it is clear that the expectation value
of such an operator is equal to 1 in the ground state of the TC
model. On the other hand, the expectation value of this Wilson
loop is equal to zero in the ground state of the CC model.
Therefore, the expectation value of the Wilson loop changes
from 1 to 0 when we increase coupling of the CC model from
zero to infinity.

Consider the case that γ = gc

gt
� 1, the ground state of our

model in such a limit can be found by a perturbation method.
To this end, we write a perturbed quantum state in the following
form:

|ψ〉 = |φt 〉 + γ Ô|φt 〉 + γ 2Ô2|φt 〉 + . . . , (30)

where the operator Ô = ∑
h hx + hz is the Hamiltonian of

the CC model and |φt 〉 is the normalized ground state of the
pure TC model. In the next step, we have to calculate the
expectation value of the Wilson loop operator into the above
state as 〈Wl〉 = 〈ψ |Wl |ψ〉

〈ψ |ψ〉 . We approximate the ground state (30)
in first order of γ as the following form:

|ψ〉 = |φt 〉 + γ Ô|φt 〉. (31)

FIG. 5. A Wilson loop on chess-patterned lattice is shown by red
lines. The Wilson loop operator is equal to product of operators Bp

which is denoted by red circles. The Wilson loop operators commute
with all hexagonal plaquette operators except of the operators which
are near two left and right edges of the Wilson loop and are denoted
by Celtic cross.
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Since 〈φt |Ô|φt 〉 = 0, we will have

〈ψ |ψ〉 = 〈φt |φt 〉 + γ 2〈φt |Ô2|φt 〉 = 1 + 2Pγ 2, (32)

where P is the number of hexagonal plaquettes of the lattice.
On the other hand, by the fact that Wl|φt 〉 = |φt 〉 we will have

〈ψ |Wl|ψ〉 = 〈φt |φt 〉 + γ 2〈φt |ÔWlÔ|φt 〉. (33)

One can easily check that the Wilson loop operator Wl

commute with all hexagonal plaquette operators hx and hz

except of operators hx which cross two right and left edges
of the Wilson loop (see Fig. 5). By this and the fact that
Wl|φt 〉 = |φt 〉, we conclude that

〈φt |ÔWlÔ|φt 〉 = 〈φt |Ôf
2|φt 〉 − 〈φt |

(∑
h∈E

hx

)2

|φt 〉, (34)

where Ôf refers to the hexagonal operators which commute
with the Wilson loop and h ∈ E refers to hexagonal operators
which cross two right and left edges of the Wilson loop. If we
denote the length of two left and right edges of the Wilson
loop by L, we will have

〈φt |
(∑

h∈E

hx

)2

|φt 〉 = L ,

〈φt |Ôf
2|φt 〉 = 2P − L. (35)

Finally, the expectation value of the Wilson loop operators is
calculated as

〈Wl〉 = 〈ψ |Wl|ψ〉
〈ψ |ψ〉 = [1 + γ 2(2P − 2L)](1 + 2Pγ 2)−1

= 1 − 2Lγ 2 ≈ e−2Lγ 2
. (36)

Since L is the length of only two edges of the Wilson loop,
the result shows that the expectation value of the Wilson loop
does not behave as e−α∂S that we expect for a topological
phase. In fact, since the rate of closing the expectation value
of the Wilson loops to zero is only related to length of two
edges of the Wilson loops “L”, there are Wilson loops with
different perimeters which have the same behavior in effect of
the CC perturbation. Such a behavior shows that in effect of
quantum phase transition from the TC to the CC models, the
topological phase does not change.

VI. DISCUSSION

Understanding how quantum phase transitions between
different quantum models can characterize different topo-
logical classes seems a challenging task which needs more
exploration in the future. In this paper, by a specific example,
we considered how topological classes of different quantum
phases reflect in the properties of a quantum phase transition
between them. To this end, we considered a quantum phase
transition between two well-known topological models, the
CC and the TC models. We showed that an interpolation of
the CC model and the TC model is mapped to 1D quantum
Ising model in a transverse field. The 1D nature of the phase
transition revealed the same topological nature of the CC
model and the TC model. In fact, since different quantum
phases of both models were related to their different gauge
symmetries, it made the possible interpolating line joining
them a nontopological flow. To be more explicit, we also
calculated the expectation value of the Wilson loop. The result
showed that behavior of the Wilson loop captures the same
topological phase of the CC and the TC models. Finally, since
the 1D Ising model in transverse field is a well-known model
with an exact solution, we could exactly find the point of
the phase transition. The result showed that the CC model is
strongly robust against the TC model.
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