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We consider a system consisting of four independent chains of coupled single-mode superconducting
transmission line resonators and a gap-tunable qubit. When the first four resonators of the chains are coupled to
the qubit properly driven by multicolor fields, we show that the resonators can be prepared in continuous-variable
quadripartite cluster states via the decay of the qubit to its ground state. Moreover, the resulting cluster states can be
replicated in the other resonators in column via the nearest-neighbor swapping interaction of the resonators. This
means that one can generate a set of cluster states, each of which involves the four resonators from the different
chains. By a similar protocol, we show that the generation and replication of continuous-variable quadripartite
Greenberger-Horne-Zeilinger states in the chains of the resonators can be achieved. The numerical simulation
shows that the present scheme is realizable in current accessible on-chip quantum circuit experiments. The present
result may have a potential application for the realization of a large-scale one-way quantum computation.
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I. INTRODUCTION

Quantum entanglement is one of the most fascinating fea-
tures of quantum mechanics and is an indispensable resource
for implementing various quantum information protocols, such
as quantum teleportation [1,2] and quantum dense coding
[3,4]. The generation of quantum entangled states has always
been a central topic in both fundamental research of quantum
mechanics and applications of quantum information and quan-
tum computing. During the past two decades, great progress
on this subject has been made. Entangled states of discrete
variables such as spin, polarization, and energy levels have
successfully been generated and widely used in experiments
[5–11]. Because of high efficiency in the generation, manipula-
tion, and detection of phase-quadrature amplitude components
of optical fields, on the other hand, considerable effort has
also been concentrated on producing continuous-variable (CV)
entanglement [12–21]. Multipartite entanglement has more
sophisticated quantum correlations compared with bipartite
entanglement. Multimode CV entangled states are crucial
resources for constructing quantum communication networks
and implementing quantum computation. Therefore, particular
interest has been directed at generating multicomponent CV
entangled states, such as the CV Greenberger-Horne-Zeilinger
(GHZ) state [22–25] and CV cluster state [26–30]. Among
various types of multipartite CV entangled states, CV cluster
states [26] may be more interesting since one-way quantum
computation [31–33] can be realized based on CV cluster
states. The experimental generation of CV cluster states and
GHZ states has been achieved in linear optics systems [24]. By
means of a pair of nondegenerate optical parametric amplifiers
and linear optics, the target states can be engineered by linear
optical transformation of squeezed light with certain phase
relations. In addition, a scheme was also proposed to create
CV cluster states based on the collective excitation of four
distinct atomic ensembles located inside a ring cavity [28].

*flli@mail.xjtu.edu.cn

Superconducting circuits [34–38], which can be designed
and constructed on demand and possess the advantages of
integration and scaling on a chip, are promising candidates
for studying fundamental quantum physics and implementing
quantum information protocols. In particular, circuit quantum
electrodynamics (QED), an on-the-chip counterpart of cav-
ity QED systems, has attracted great interest. This system
provides an unprecedented level of tunability, flexibility,
and scalability in the implementation of the strong-coupling
limit and allows rapid quantum-state manipulation. Thus, it
becomes a very interesting issue how to generate various
entangled states and implement scalable quantum computation
in circuit QED systems. In fact, a system composed of
one-dimensional coplanar waveguide resonators dispersively
coupled by a single superconducting qubit or qutrit has been
investigated for generating entangled states and implementing
quantum information transfer [39–41]. The deterministic
generation of NOON entangled states in two superconducting
resonators coupled by a phase qubit has been demonstrated
experimentally [42]. In recent work [43], a multicavity system
in which each cavity contains many superconducting qubits
and all the cavities are coupled to a single superconduct-
ing qubit was studied for the generation of GHZ states
[43].

In this paper we investigate the generation and replica-
tion of quadripartite CV clusters in a circuit QED system.
The system under consideration consists of a gap-tunable
superconducting qubit and four chains of linearly coupled
superconducting transmission line resonators. The beginning
four resonators of the chains are simultaneously coupled to
the qubit. With the periodic modulation of the transition
frequency of the qubit, we can simultaneously realize both the
parametric down-conversion-like and the beam-splitter-like
interactions between the qubit and the resonators. It is shown
that quadripartite CV cluster states of the cavity fields of
the resonators can be engineered by employing the energy
relaxation of the qubit. More interestingly, we show that the
resulting CV cluster states of the first four resonators can
be replicated among the whole resonator chains. The present
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FIG. 1. Schematic of a circuit cavity electromechanical system
composed of four independent superconducting transmission line
resonator arrays and a gap-tunable superconducting qubit. The
enlarged inset represents a possible coupling way of the qubit with
the first four resonators.

result may have a potential application for the realization
of a large-scale one-way quantum computation based on
quantum on-chip circuits. Using a similar approach, we also
show that quadripartite CV GHZ states of the cavity fields
can also be generated and replicated in the whole resonator
chains.

The paper is organized as follows. In Sec. II, the model
is introduced. In Sec. III, the four kinds of orthogonal com-
bination modes of the fields of the resonators are introduced
for linear, square, and T-shape cluster states. The effective
Hamiltonian for the generation of single-mode squeezed states
is derived. The generation of the cluster states through four
steps is investigated in detail. In Sec. IV, the generation of the
GHZ states through four steps is discussed in detail. In Sec. V,
a brief discussion and summary are given.

II. MODEL

The system under consideration is composed of four
independent arrays a, b, c, and d, each of which consists
of N identical superconducting transmission line resonators,
linked with each other through capacitors. The first four
resonators of the chains are coupled together via a gap-tunable
superconducting qubit [39,44]. The model is schematically
depicted in Fig. 1.

The Hamiltonian of the whole system is (� = 1)

H = H0 + H1 + H2 + Hdrive, (1)

where

H0 = ω0

2
σz +

N∑
n=1

(ωaa
†
nan + ωbb

†
nbn + ωcc

†
ncn + ωdd

†
ndn),

(2)

H1 = (σ+ + σ−)[ga(a1 + a
†
1) + gb(b1 + b

†
1)

+ gc(c†1 + c1) + gd (d†
1 + d1)], (3)

H2 =
N−1∑
n=1

J (a†
nan+1 + b†nbn+1 + c†ncn+1

+ d†
ndn+1 + H.c.), (4)

Hdrive = −σz

∑
k

[ξ+,kω+,k cos(ω+,kt + φ+,k)

+ ξ−,kω−,k cos(ω−,kt + φ−,k)], (5)

with k = a,b,c,d characterizing the four independent res-
onator chains. Here H0 represents the free energies of the
qubit and the four arrays of N identical superconducting
transmission line resonators, respectively, ω0 is the static
energy gap between the ground state |g〉 and the excited
state |e〉 of the qubit, σz = |e〉〈e| − |g〉〈g|, an(bn,cn,dn) are the
annihilation operators for photons in the nth resonator of the
chain a(b,c,d), and ωa(ωb,ωc,ωd ) is the resonant frequency of
the resonators of the chain a(b,c,d). The interaction between
the qubit and the first four resonators is given by H1, in
which ga(gb,gc,gd ) is the coupling strength between the qubit
and the cavity mode a1(b1,c1,d1) and the spin-flip operator
σ+,σ− = |e〉〈g|,|g〉〈e|, and H2 describes the energy exchange
between resonators via the nearest-neighbor linear coupling
with the same strength J .

In addition, we apply a four-pair σz driving to the qubit
whose transition frequency is periodically modulated in time.
The energy levels of the qubit and its driving frequencies
are shown in Fig. 2. Such a manipulation is described by
the time-dependent Hamiltonian Hd [45], in which ω±,k

(k = a,b,c,d) are the driving frequencies, ξ±,k are the ratios
between the driving amplitudes and driving frequencies, and
φ±,k are the tunable phases. In principle, the modulating
process can be implemented with various types of gap-tunable
superconducting qubits, such as flux [46], charge [47], or trans-
mon [48] qubits. For instance, we can adopt four Josephson
junctions, i.e., the smallest two Josephson junctions with the
coupling energy smaller than that of the other two junctions
by a factor α, forming a low-inductance dc superconducting
quantum interference device (SQUID) loop. The σz driving
process can be realized by applying time-dependent external
magnetic fields penetrating the SQUID loop [49].

The dynamics of the whole system is governed by the
master equation

dρ

dt
= −i[H,ρ] + �

2
D[σ−]ρ, (6)

where ρ is the time-evolution density operator of the whole
system and D[σ−]ρ = (2σ−ρσ+ − ρσ+σ− − σ+σ−ρ) is the
standard Lindblad operator. Here we only consider the decay
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FIG. 2. Schematic of sideband transitions of the superconducting
qubit.

process of the qubit with the rate � and ignore other possible
dissipative processes such as photon loss of the resonators
since the decay rate of superconducting transmission line
resonators is typically in the sub-MHz range and much smaller
than that of the qubit [50].

III. GENERATION AND REPLICATION OF
QUADRIPARTITE CONTINUOUS-VARIABLE

CLUSTER STATES

For four entities, there are three different cluster states: a
linear cluster state, square cluster state, and T-shape cluster
state, as shown in Fig. 3. The variances of the quadrature
amplitudes of the fields in CV quadripartite cluster states obey
the conditions [27]

V

⎛
⎝Pj −

∑
i∈Nj

Xi

⎞
⎠ → 0, j = 1,2,3,4, (7)

in the limit of infinite squeezing. In Eq. (7), Xj and Pj are the
phase-quadrature amplitude operators of the j th mode of the
fields according to the definition aj = (Xj − iPj )/

√
2, where

aj is the annihilation operator of the j th mode, and the modes

ia idib ic ia

id

ib

ic

ia

id

ib ic

(a) (c)(b)

FIG. 3. Structure of CV quadripartite cluster states: (a) linear
cluster, (b) square cluster state, and (c) T-shape cluster state.

i ∈ Nj in the summation are all the nearest neighbors Nj of
the mode j .

For a linear cluster state of the four modes an,bn,cn,dn of
the nth resonators of the arrays in Fig. 3(a), we consider the
amplitude combinations

Pan
− Xbn

= − [i(an − a†
n) + (bn + b†n)]/

√
2,

Pbn
− Xan

− Xcn
= − [i(bn − b†n) + (an + a†

n)

+ (cn + c†n)]/
√

2,

Pcn
− Xbn

− Xdn
= − [i(cn − c†n) + (bn + b†n)

+ (dn + d†
n)]/

√
2,

Pdn
− Xcn

= − [i(dn − d†
n) + (cn + c†n)]/

√
2.

(8)

In terms of the four combined-mode annihilation operators
defined as⎛

⎜⎜⎜⎝
An

Bn

Cn

Dn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

− i√
2

− 1√
2

0 0

− 1√
2

− i√
2

− 1√
2

0

0 − 1√
2

− i√
2

− 1√
2

0 0 − 1√
2

− i√
2

⎞
⎟⎟⎟⎠

⎛
⎜⎝

an

bn

cn

dn

⎞
⎟⎠ (9)

and their Hermitian conjugation operators, Eqs. (8) can be
rewritten as

Pan
− Xbn

= A†
n + An,

Pbn
− Xan

− Xcn
= B†

n + Bn,

Pcn
− Xbn

− Xdn
= C†

n + Cn,

Pdn
− Xcn

= D†
n + Dn.

(10)

It now becomes clear that the condition (7) can be satisfied if
each of those combined modes is in an amplitude squeezed
state. Since the combined modes An,Bn,Cn,Dn are not
orthogonal to each other, however, one cannot independently
prepare each of the combined modes in an amplitude squeezed
state. Thus, we orthogonalize the transformation matrix in
Eq. (9) and redefine the four combined modes

⎛
⎜⎝

Ān

B̄n

C̄n

D̄n

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

− i√
2

− 1√
2

0 0

− 1√
3

− i√
3

− 1√
3

0
i√
10

− 1√
10

−i

√
2
5 −

√
2
5

1√
15

i√
15

− 2√
15

−i

√
3
5

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎝

an

bn

cn

dn

⎞
⎟⎠ (11)

In terms of these annihilation operators of the new combined
modes and their Hermitian conjugates, we have

V (Pan
− Xbn

) = V (Ān + Ā†
n),

V (Pbn
− Xan

− Xcn
) = 3

2V (B̄n + B̄†
n),

V (Pcn
− Xbn

− Xdn
) = 1

4V (Ān + Ā†
n) + 5

4V (C̄n + C̄†
n),

V (Pdn
− Xcn

) = 1
6V (B̄n + B̄†

n) + 5
6V (D̄n + D̄†

n).

(12)

Since the combined modes Ān,B̄n,C̄n,D̄n are independent,
one can separately prepare each of the modes in an amplitude
squeezed state. In this way, the condition (7) will be satisfied
and the original modes an,bn,cn,dn are in a linear cluster state.
Therefore, the generation of a linear cluster state of the four
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modes an,bn,cn,dn is equivalent to the preparation of four
amplitude squeezed states for the combined modes as defined
in Eq. (11).

For a square cluster state of the four modes an,bn,cn,dn

of the nth resonators of the arrays as shown in Fig. 3(b), we
consider the amplitude combinations

Pan
− Xbn

− Xdn
= − [i(an − a†

n) + (bn + b†n)

+ (dn + d†
n)]/

√
2,

Pbn
− Xan

− Xcn
= − [i(bn − b†n) + (an + a†

n)

+ (cn + c†n)]/
√

2,

Pcn
− Xbn

− Xdn
= − [i(cn − c†n) + (bn + b†n)

+ (dn + d†
n)]/

√
2,

Pdn
− Xan

− Xcn
= − [i(dn − d†

n)

+ (an + a†
n) + (cn + c†n)]/

√
2.

(13)

Introducing four independent combined modes by the unitary
transformation

⎛
⎜⎝

Ān

B̄n

C̄n

D̄n

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

i√
3

1√
3

0 1√
3

1√
3

i√
3

1√
3

0

− 2i√
15

1√
15

i

√
3
5

1√
15

1√
15

− 2i√
15

1√
15

i

√
3
5

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎝

an

bn

cn

dn

⎞
⎟⎠ (14)

we can rewrite Eqs. (13) as

Pan
− Xbn

− Xdn
= −

√
3√
2

(Ān + Ā†
n),

Pbn
− Xan

− Xcn
= −

√
3√
2

(B̄n + B̄†
n),

Pcn
− Xbn

− Xdn
= −

√
5√
6

(C̄n + C̄†
n) − 2√

6
(Ān + Ā†

n),

Pdn
− Xan

− Xcn
= −

√
5√
6

(D̄n + D̄†
n) − 2√

6
(B̄n + B̄†

n).

(15)

Therefore, the original modes an,bn,cn,dn will be in a square
cluster state if each of the four combined modes defined in
Eq. (14) is in a single-mode amplitude squeezed state.

For a T-type cluster state of the four modes an,bn,cn,dn

of the nth resonators of the arrays, as shown in Fig. 3(c), we
consider the amplitude combinations

Pbn
− Xan

− Xcn
− Xdn

= −[i(bn − b†n) + (an + a†
n)

+ (cn + c†n) + (dn + d†
n)]/

√
2,

Pan
− Xbn

= −[i(an − a†
n) + (bn + b†n)]/

√
2,

Pcn
− Xbn

= −[i(cn − c†n) + (bn + b†n)]/
√

2,

Pdn
− Xbn

= −[i(dn − d†
n) + (bn + b†n)]/

√
2.

(16)

Introducing four independent combined modes by the unitary
transformation

⎛
⎜⎝

Ān

B̄n

C̄n

D̄n

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎝

i√
2

1√
2

0 0
1
2

i
2

1
2

1
2

− i√
6

1√
6

i

√
2
3 0

− i

2
√

3
1

2
√

3
− i

2
√

3
i
√

3
2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎝

an

bn

cn

dn

⎞
⎟⎠ (17)

we can rewrite Eqs. (16) as

Pan
− Xbn

= − (Ān + Ā†
n),

Pbn
− Xan

− Xcn
− Xdn

= −
√

2(B̄n + B̄†
n),

Pcn
− Xbn

= − 1

2
(Ān + Ā†

n) −
√

3

2
(C̄n + C̄†

n),

Pdn
− Xbn

= − 2
√

2√
12

(D̄n + D̄†
n)

− 1√
12

(C̄n + C̄†
n)

−
√

3√
12

(Ān + Ā†
n).

(18)

Therefore, the original modes an,bn,cn,dn will be in a T-type
cluster state if each of the four combined modes defined in
Eq. (17) is in a single-mode amplitude squeezed state.

Based on the above discussion, it becomes clear that the
generation of a CV quadripartite cluster state is equivalent
to the preparation of each of four proper linearly combined
modes in a single-mode amplitude squeezed state [27]. In the
following we will investigate how to engineer an effective
Hamiltonian and find a procedure to generate single-mode
squeezed states of the combined modes and the cluster states.
Since the strategies for the generation of the linear, square, and
T-shape cluster states are similar, as an example, here we only
discuss the case of preparing a linear cluster state.

First, we work out an effective Hamiltonian for the gener-
ation of single-mode squeezed states of the combined modes
defined in Eq. (11). By performing the unitary transformation
U1(t) = e−iH0t to the Hamiltonian (1), the total Hamiltonian
can be changed to

H = {gaσ+eiω0t (a1e
−iωa t + a

†
1e

iωat ) + gbσ+eiω0t

× (b1e
−iωbt + b

†
1e

iωbt ) + gcσ+eiω0t (c1e
−iωct + c

†
1e

iωct )

+ gdσ+eiω0t (d1e
−iωd t + d

†
1e

iωd t ) + H.c.} + Hdrive + H2.

(19)

Then another unitary transformation U2(t) =
T exp[−i

∫ t

0 Hdrive(t ′)dt ′] is applied to the Hamiltonian (19),
where T is the time order operator. If the parameters ξ±,k are
sufficiently small, by only keeping the parameter ξ±,k to first
order, the first two parts of Eq. (19) can be written as

H =
{
σ+eiω0t [ga(a1e

−iωat + a
†
1e

iωat ) + gb(b1e
−iωbt + b

†
1e

iωbt )

+gc(c1e
−iωct + c

†
1e

iωct ) + gd (d1e
−iωd t + d

†
1e

iωd t )]
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×
(

1 −
∑

j

{ξ+,k[ei(ω+,k t+φ+,k ) − e−i(ω+,k t+φ+,k )]

+ξ−,k[ei(ω−,k t+φ−,k ) − e−i(ω−,k t+φ−,k )] + H.c.}
)}

. (20)

Choosing the frequencies ω+,k = ω0 + ωk and ω−,k = ω0 −
ωk [51] and ignoring the fast oscillation terms in Eq. (20)
because of the condition {ωk,ω0,ω±,k,ωk − ωk′ } � gj , we
arrive at the effective Hamiltonian

H eff = {σ+[(G+,ae
−iφ+,a a

†
1 + G−,ae

−iφ−,a a1)

+(G+,be
−iφ+,b b

†
1 + G−,be

−iφ−,b b1)

+(G+,ce
−iφ+,c c

†
1 + G−,ce

−iφ−,c c1)

+(G+,de
−iφ+,d d

†
1 + G−,de

−iφ−,d d1)] + H.c.}, (21)

with G+,k = ξ+,kgk and G−,k = ξ−,kgk .
In the following we will show that the combined modes

Ā1,B̄1,C̄1,D̄1 defined in Eq. (11) can be respectively prepared
in single-mode squeezed states by properly choosing the
parameters of the effective Hamiltonian (21). Note that the
Hamiltonian H2 is not changed by the above two unitary
transformations. Therefore, the generation of cluster states of
the modes a1,b1,c1,d1 of the first four resonators is realized by
the first part of the effective Hamiltonian (21) that involves the
modes a1,b1,c1,d1 and the replication of the resulting cluster
states in the other resonators is realized by the Hamiltonian
H2. In terms of the operators of the combined modes defined
in Eq. (11), the Hamiltonian H2 can be expressed in the form

H̄2 =
N−1∑
n=1

J (Ā†
nĀn+1 + B̄†

nB̄n+1 + C̄†
nC̄n+1

+ D̄†
nD̄n+1 + H.c.). (22)

This represents the energy swapping between the modes of the
nearest-neighbor resonators αn and αn+1 (α = Ā,B̄,C̄,D̄).

The generation of the single-mode squeezed states of the
four combined modes can be implemented by the following
steps. In the first step of preparation, we switch on the σz

driving fields only to the resonators a1,b1 by choosing

ξ±,a = ξ±,b = ξ±,

ξ+,c = ξ−,c = ξ+,d = ξ−,d = 0
(23)

and the phases of the driving fields

φ+,a = 3
2π, φ−,a = 1

2π, φ+,b = φ−,b = π. (24)

Here we have also assumed the coupling constants of the
qubit with the superconducting transmission line resonators
to be same, i.e., ga = gb = gc = gd = g. Finally, we obtain
the effective Hamiltonian

H̄ eff
1,1st =

√
2(G2− − G2+)σ+[Ā1 cosh r + Ā

†
1 sinh r] + H.c.,

(25)

with G± = ξ±g, cosh r = G−√
G2−−G2+

, sinh r = G+√
G2−−G2+

, and

r = tanh−1 G+
G−

. To make the system to be stable, it is required
that ξ+ < ξ−.

The evolution of the system follows the master equation

d

dt
ρ̄ = −i

[
H̄ eff

1,1st + H̄2,ρ̄
] + �

2
D[σ−]ρ̄. (26)

We now apply a unitary transformation U = ⊗N
n=1 S(Ān) to

the master equation (26), where S(αn) = exp{(−1)n r
2 [α†2

n −
α2

n]} is the single-mode squeezing operator of mode αn.
After the squeezing transformation, the master equation (26)
becomes

d

dt
ρ̄ ′ = −i[

√
2(G2− − G2+)(σ+Ā1 + σ−Ā

†
1)

+H̄2,ρ̄
′] + κD[σ−]ρ̄ ′. (27)

In the squeezing representation, the engineering process of the
squeezing states becomes clear. The qubit continually absorb
photons from the combined mode Ā1 and then the absorbed
energy leaks out of the system via the decay of the qubit, which
is described by D[σ−]ρ̄ ′. Meanwhile, other combined modes
Ān (n 	= 1) are cooled via the swapping interaction H̄2. Finally,
the qubit is in its ground state and all the combined modes are
in the vacuum. The steady state of the whole system is a
tensor product of the vacuum state for all the combined modes
and the qubit ground state, i.e., |ψs〉 = ⊗N

n=1 |0Ān
〉 ⊗ |g〉. In

the original representation, the steady state can be written
in the form |ψs〉 = ⊗N

n=1 exp{(−1)n r
2 [Ā†2

n − Ā2
n]}|0Ān

〉 ⊗ |g〉.
Since the remaining modes B̄n,C̄n,D̄n are decoupled from
the modes Ān and the qubit, we suppose that they are in a
undetermined state

⊗N
n=1 ρB̄nC̄nD̄n

. Then the total system is in
a state described by the density operator

ρ̄ = |g〉〈g|
N⊗

n=1

S(Ān)|0(Ān)〉〈0(Ān)|S†(Ān) ⊗ ρB̄nC̄nD̄n
. (28)

Now the combined modes Ān have been prepared in the single-
mode squeezed states.

In the second step, we turn off the driving fields in the first
step and switch on another set of the driving fields to place
the combined modes B̄n in a single-mode squeezed vacuum
state. To this end, we choose the following parameters in the
effective Hamiltonian (21):

ξ±,a = ξ±,b = ξ±,c = ξ±,

ξ±,d = 0
(29)

and the phases of the driving fields

φ±,a = φ±,c = π,

φ+,b = 3
2π, φ−,b = 1

2π,

φ±,d = 0.

(30)

Aa a result, we obtain the effective Hamiltonian

H̄1,2nd =
√

3(G2− − G2+)σ+[B̄1 cosh r + B̄
†
1 sinh r] + H.c.

(31)
In the third step, we turn off the driving fields in the

second step and switch on a set of driving fields to prepare
the combined modes C̄n in a single-mode squeezed state. For
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this purpose, we choose

ξ±,a = ξ±,b = ξ±,

ξ±,c = ξ±,d = 2ξ±
(32)

and the phases of the driving fields

φ−,a = φ+ c = 3
2π, φ+,a = φ−,c = 1

2π,

φ±,b = φ±,d = π.
(33)

The effective Hamiltonian (21) has the form

H̄1,3rd =
√

10(G2− − G2+)σ+[C̄1 cosh r + C̄
†
1 sinh r] + H.c.

(34)
In the final step, we turn off the driving fields in the third step

and switch on a set of driving fields to prepare the combined
modes D̄n in a single-mode squeezed state. For this purpose,
we choose the parameters

ξ±,a = ξ±,b = ξ±,

ξ±,c = 2ξ±, ξ±,d = 3ξ±
(35)

and

φ±,a = 0,

φ+,b = φ−,d = 1
2π, φ−,b = φ+,d = 3

2π,

φ+,c = φ−,c = π.

(36)

In this way, the effective Hamiltonian (21) takes the form

H̄1,4th =
√

15(G2− − G2+)σ+[D̄1 cosh r + D̄
†
1 sinh r] + H.c.

(37)
As shown in the first step, using the effective Hamiltoni-

ans (25), (31), (34), and (37), one can respectively prepare
the combined modes B̄n,C̄n,D̄n in a single-mode squeezed
state. After these four steps, the whole system is in the
state |�〉cluster ⊗ |g〉, where |�〉cluster = ⊗N

n=1 S(Ān)|0Ān
〉 ⊗

S(B̄n)|0B̄n
〉 ⊗ S(C̄n)|0C̄n

〉 ⊗ S(D̄n)|0D̄n
〉.

The variances of quadrature combinations (12) in the state
|�〉cluster are given by

V x1 = V
(
Pan

− Xbn

) = e(−1)n2r ,

V x2 = V
(
Pbn

− Xan
− Xcn

) = 3
2e(−1)n2r ,

V x3 = V
(
Pcn

− Xbn
− Xdn

) = 3
2e(−1)n2r ,

V x4 = V
(
Pdn

− Xcn

) = e(−1)n2r . (38)

All four variances tend to zero in the limit of infinite squeezing
when n is an odd number. This means that the first (third, fifth,
seventh, and ninth) four resonators of the arrays A,B,C,D are
prepared in a linear CV cluster state.

Note that the variances (38) with an even number n are
divergent when the squeezing approaches infinity. This means
that the combined modes Ān,B̄n,C̄n,D̄n with an even number
n are not in an amplitude squeezed state. For the second
(fourth, sixth, eighth, and tenth) four resonators of the arrays
A,B,C,D, one should consider the following combinations of

quadrature components:

Xan
+ Pbn

=i(Ān − Ā†
n),

Xbn
+ Pan

+ Pcn
=

√
3
2 i(B̄n − B̄†

n),

Xcn
+ Pbn

+ Pdn
=1

2
i(Ān − Ā†

n) +
√

5

2
i(C̄n − C̄†

n),

Xdn
+ Pcn

=
√

1
6 i(B̄n − B̄†

n) +
√

5
6 i(D̄n − D̄†

n).

(39)

These combinations can be obtained from Eqs. (12) by the
canonical transformations P → X and X → −P and also
satisfy the definition (7) for a linear cluster state. The variances
of the combinations of quadrature components Eqs. (39) in the
state |�〉cluster can be found to be

Vp1 = V
(
Xan

+ Pbn

) = e−2r ,

Vp2 = V
(
Xbn

+ Pan
+ Pcn

) = 3
2e−2r ,

Vp3 = V
(
Xcn

+ Pbn
+ Pdn

) = 3
2e−2r ,

Vp4 = V
(
Xdn

+ Pcn

) = e−2r . (40)

When the squeezing gets infinity, all the variances are to be
zero. Therefore, the second (fourth, sixth, eighth, and tenth)
four resonators of the arrays A,B,C,D are also in a CV linear
cluster state.

To confirm the above scheme, we numerically solve
the master equation (26) with the effective Hamiltonians
(25), (31), (34), and (37), respectively. Because of the limita-
tion of available numerical calculation capacity, here we only
consider the system consisting of eight resonators (n = 2) in
the numerical simulation. In the present calculation, the system
is initially prepared in the state |g〉 ⊗ |0a1 ,0b1 ,0c1 ,0d1〉 ⊗
|0a2 ,0b2 ,0c2 ,0d2〉. We assume that the change of the driving
fields is sudden. In Figs. 4 and 5, the variances (38) with n = 1
and the variances (40) with n = 2 are shown. It is observed in
Fig. 4 that in each of the steps one of the variances (38) rapidly
decreases and approaches a constant close to zero. This means
that the modes of the first four resonators are definitely brought
to a linear cluster state by the decay of the qubit. The relaxation
time to the steady state is about 100/κ . It is shown in Fig. 5
that when the variances (38) become constant, the variances

FIG. 4. Time evolution of the variances (38) with n = 1 versus the
dimensionless time �t . In the calculation, the parameters are chosen
as g/2π = 0.025 GHz, �/2π = 0.02 GHz, J/2π = 0.01 GHz, ξ− =
0.2, and ξ+ = 0.16.
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FIG. 5. Time evolution of the variances (40) with n = 2 versus the
dimensionless time �t . In the calculation, the parameters are chosen
as g/2π = 0.025 GHz, �/2π = 0.02 GHz, J/2π = 0.01 GHz, ξ− =
0.2, and ξ+ = 0.16.

(40) approach constants close to zero. Thus, the replication of
the resulting cluster state in the second four resonators can be
completed via the swapping interaction during the generation
of the cluster state in the first four resonators. It is also shown in
Fig. 4 that the relaxation times to the steady state in each of the
steps for the generation of the single-mode squeezed states are
different. This phenomenon can be understood by the effective
Hamiltonians (25), (31), (34), and (37). One may notice that the
coupling strengths between the qubit and the combined mode
to be cooled down to a single-mode squeezed state are different
in each of the steps, i.e.,

√
x(G2

− − G2
+) (x = 2,3,10,15).

When the coupling strength is large, the energy can be rapidly
transferred from the combined mode to the qubit and then the
absorbed energy is leaves the resonators via the decay of the
qubit. Thus, the larger the effective coupling strength is, the
shorter the relaxation time is to the steady state.

IV. GENERATION AND REPLICATION OF
QUADRIPARTITE GHZ STATES

The GHZ state is also an important multipartite entangled
state and has different entanglement properties from the cluster
states [22,26]. In this section we investigate how to generate
quadripartite GHZ states in the system as shown in Fig. 1.

Consider the four combinations of quadrature components
of the fields of the nth-column resonators of the arrays a,b,c,d,

Xan
+ Xbn

+ Xcn
+ Xdn

= [(an + a†
n) + (bn + b†n)

+ (cn + c†n) + (dn + d†
n)]/

√
2,

Pan
− Pbn

= −[i(an − a†
n) − i(bn − b†n)]/

√
2,

Pbn
− Pcn

= −[i(bn − b†n) − i(cn − c†n)]/
√

2,

Pcn
− Pdn

= −[i(bn − b†n) − i(dn − d†
n)]/

√
2.

(41)

If the variances of these combinations in a state get to zero, the
state is said to be a CV GHZ state [23]. We introduce the four

orthogonal combined modes by the unitary transformation

⎛
⎜⎜⎝

Ãn

B̃n

C̃n

D̃n

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1
2

1
2

1
2

1
2− i√

2
i√
2

0 0

0 0 − i√
2

i√
2

− i
2 − i

2
i
2

i
2

⎞
⎟⎟⎟⎠

⎛
⎜⎝

an

bn

cn

dn

⎞
⎟⎠.

(42)
In terms of these combined annihilation operators and their
Hermitian conjugates, the combinations of quadrature compo-
nents (41) can be rewritten as

Xan
+ Xbn

+ Xcn
+ Xdn

=
√

2(Ãn + Ã†
n),

Pan
− Pbn

= B̃n + B̃†
n,

Pbn
− Pcn

= −1

2
(B̃n + B̃†

n) − 1

2
(C̃n + C̃†

n)

+ 1√
2

(D̃n + D̃†
n),

Pcn
− Pdn

= C̃n + C̃†
n. (43)

Therefore, the modes an,bn,cn,dn are in a CV GHZ state if
each of the combined modes Ãn,B̃n,C̃n,D̃n is in a single-
mode amplitude squeezed state. In the following we show
how to engineer the effective Hamiltonian to generate these
single-mode squeezed states by switching on or off suitable
sets of the driving fields.

In terms of the annihilation operators defined in Eq. (42)
and their Hermitian conjugates, the Hamiltonian H2 can be
written as

H̃2 =
N−1∑
n=1

J (Ã†
nÃn+1 + B̃†

nB̃n+1 + C̃†
nC̃n+1

+D̃†
nD̃n+1 + H.c.). (44)

Therefore, the Hamiltonian H2 keeps the same form as
expressed in the operators of the original modes.

Now we try to find a process for putting the four modes
Ãn,B̃n,C̃n,D̃n in single-mode squeezed states. Similar to
the generation of cluster states in the previous section, the
whole process is composed of four steps. In the first step of
preparation, we choose the parameters

ξ±,a = ξ±,b = ξ±,c = ξ±,d = ξ± (45)

and the phases of the driving fields

φ±,a = φ±,b = φ±,c = φ±,d = 0. (46)

As a result, the Hamiltonian (21) becomes

H̃1,1st = 2
√

(G2− − G2+)σ+[Ã1 cosh r + Ã
†
1 sinh r] + H.c.

(47)
In the second step, by choosing the parameters

ξ±,a = ξ±,b = ξ±, (48)

and the phases of the driving fields

φ+,a = φ−,b = 3
2π,

φ−,a = φ+,b = 1
2π.

(49)
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we obtain the effective Hamiltonian

H̃1,2st =
√

2(G2− − G2+)σ+[B̃1 cosh r + B̃
†
1 sinh r] + H.c.

(50)
In the third step, by choosing the parameters

ξ±,c = ξ±,d = ξ± (51)

and the phases of the driving fields

φ+,c = φ−,d = 3
2π,

φ−,c = φ+,d = 1
2π,

(52)

we have the effective Hamiltonian

H̃1,3st =
√

2(G2− − G2+)σ+[C̃1 cosh r + C̃
†
1 sinh r] + H.c.

(53)
In the fourth step, by choosing the parameters

ξ±,a = ξ±,b = ξ±,c = ξ±,d = ξ± (54)

and the phases of the driving fields

φ+,a = φ+,b = φ−,c = φ−,d = 3
2π,

φ−,a = φ−,b = φ+,c = φ+,d = 1
2π,

(55)

we have the effective Hamiltonian

H̃1,4st = 2
√

(G2− − G2+)σ+[D̃1 cosh r + D̃
†
1 sinh r] + H.c.

(56)
Substituting the effective Hamiltonians (47), (50), (53),

and (56) into the master equation (26) and following the
same procedure as discussed in the previous section, one
can easily show that the combined modes Ãn,B̃n,C̃n,D̃n can
be respectively prepared in a single-mode squeezed state
via the decay of the qubit and the swapping interaction
between the nearest neighbors of the resonators. After the
four steps, the system is prepared in the state |�̃〉GHZ =⊗N

n=1 S(Ãn)|0Ãn
〉 ⊗ S(B̃n)|0B̃n

〉 ⊗ S(C̃n)|0C̃n
〉 ⊗ S(D̃n)|0D̃n

〉.
In terms of the original operators, the resulting state
|�〉GHZ = exp{(−1)n r

4 [a2
n + b2

n + c2
n + d2

n − 2anbn −
2ancn − 2andn − 2bncn − 2bndn − 2cndn] − H.c.}. The
variances of the combinations of quadrature components (43)
in the state |�〉GHZ are given by

V x1 = V
(
Xan

+ Xbn
+ Xcn

+ Xdn

) = 2e(−1)n2r ,

V x2 = V
(
Pan

− Pbn

) = e(−1)n2r ,

V x3 = V
(
Pbn

− Pcn

) = e(−1)n2r ,

V x4 = V
(
Pcn

− Pdn

) = e(−1)n2r . (57)

It is clear that all the variances get to zero in the limit of
infinite squeezing if n is odd. This means that the first (third,
fifth, seventh, and ninth) four resonators of the arrays a,b,c,d

are prepared in a CV GHZ state.
For the second (fourth, sixth, eighth, and tenth) four res-

onators, one should consider the combinations of quadrature
components

Pan
+ Pbn

+ Pcn
+ Pdn

= −i
√

2(Ãn − Ã†
n),

Xan
− Xbn

= i(B̃n − B̃†
n),

FIG. 6. Time evolution of the variances (57) with n = 1 versus the
dimensionless time �t . The parameters are chosen as g/2π = 0.025
GHz, �/2π = 0.02 GHz, J/2π0.01 GHz, ξ− = 0.2, and ξ+ = 0.16.

Xbn
− Xcn

= − i

2
(B̃n − B̃†

n) − i

2
(C̃n − C̃†

n)

+ i√
2

(D̃n − D̃†
n),

Xcn
− Xdn

= i(C̃n − C̃†
n). (58)

The variances of these combinations in the state |�〉GHZ are

Vp1 = V
(
Pan

+ Pbn
+ Pcn

+ Pdn

) = 2e−2r ,

Vp2 = V
(
Xan

− Xbn

) = e−2r ,

Vp3 = V
(
Xbn

− Xcn

) = e−2r ,

Vp4 = V
(
Xcn

− Xdn

) = e−2r . (59)

It is obvious that all these variances tend to zero in the limit
r → ∞. Thus, the second (fourth, sixth, eighth, and tenth) four
resonators of the arrays a,b,c,d are also in a CV GHZ state,
where each of the combined modes (42) is in a single-mode
phase squeezed state.

With the effective Hamiltonians (47), (50), (53), and (56),
we solve the master equation (26) and numerically simulate
the four-step generation of the CV GHZ states. In Figs. 6 and 7
we plot the time evolution of the variances (38) and (40) versus
the dimensionless time κt . It is shown in Figs. 6 and 7 that
one of the variances of the combinations of the quadrature
amplitudes can be rapidly reduced to a constant close to zero

FIG. 7. Time evolution of the variances (59) with n = 2 versus
the dimensionless time �t . The parameters are chosen as g/2π =
0.025 GHz, �/2π = 0.02 GHz, J/2π = 0.01 GHz, ξ− = 0.2, and
ξ+ = 0.16.
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in each of the four steps. Thus, after the four steps, all the
combined modes are prepared in single-mode squeezed states
and the original modes of the resonators are in the CV GHZ
state. Note that the first four resonators and the second four
resonators enter the CV GHZ states at the same time scale.

V. DISCUSSION AND SUMMARY

We considered a system composed of a gap-tunable
superconducting qubit and four chains of linearly coupled
superconducting transmission line resonators. The first four
resonators of the chains are simultaneously coupled to the
qubit. By periodically modulating the transition frequency
of the qubit, both the parametric down-conversion-like and
the beam-splitter-like interactions between the qubit and the
resonators can be realized. In this way, we showed that
quadripartite cluster states and GHZ states of the cavity fields
of the first four column resonators can be achieved via the
decay process of the qubit to its ground state. Moreover, the
resulting cluster states and GHZ states can be replicated among
the whole chains via the nearest-neighbor swapping interaction
of the resonators. This result means that one can generate a set
of the cluster states, each of which contains the four resonators
from the different chains. Specifically, it is noted that the first-,
third-, fifth-, and seventh-column resonators and the second-,
fourth-, sixth-, and eighth-column resonators in the chains
are in two complementary cluster states, that is, one set of
the combination of quadrature components is in a singe-mode
amplitude squeezed state but the other set of the combination
of quadrature components is in a single-mode phase squeezed
state. The whole generation and replication process is made
up of four steps; in each step one of the four orthogonal
combination modes of the resonators is cooled down to a
single-mode squeezed state. The four steps are implemented
by simply adjusting the driving parameters of the qubit.

Now let us briefly discuss the experimental feasibility of the
present scheme. Our numerical simulation shows that the CV
cluster states and the CV GHZ states can be achieved within
the operation time about 100/�. To avoid the disturbance
of dissipation of resonators, the coherence time of resonators
(1/κ , where κ is the damping rate of resonators) must be
longer than the operation time, for example, by two orders of
magnitude, i.e., 1/κ � 104/�. The present scheme needs a
bad qubit with a large decay rate �, which can be realized
by coupling it to an extra relaxation channel [51,52]. For
�/2π = 0.05 GHz, the damping rate of resonators should
satisfy κ/2π � 5.0 × 10−6 GHz. Thus, for a frequency of
the resonators ω/2π = 5.0 GHz, the present scheme requires
the quality factor of resonators Q = ω/κ = 106. In current

experiments, actually, the planar superconducting resonator
with a quality factor Q above 107 has been realized [53]. On the
other hand, the values of the coupling strengths required for the
present scheme (J/2π ∼ 0.01 GHz) are also accessible in the
current experiments of superconducting quantum circuits [54].
Therefore, we believe that the present scheme is accessible
with current technologies.

Another important issue is how long the resonator chain
is accessible with current technologies. For the first four end
resonators that are directly coupled to the gap-tunable qubit,
we have shown that the resonators can be prepared in the
cluster states by four steps, each of which cools down one of
the combined modes into a single-mode squeezed state with
the assistance of dissipation of the qubit. The four steps are
completed within a time scale 4/�, where � is the decay
rate of the qubit. The other resonators are prepared in cluster
states via the nearest-neighbor interaction of the resonators,
i.e., the photon hopping process. If there were no photon
loss processes, therefore, the replication mechanism of the
cluster states would be scale-free and independent of the
length of the arrays and one could build a cluster state chain
with an infinite length. In practical situations, however, the
length of the resonator chain is limited due to the photon
loss of the resonators. The photon hopping time for each of
the combined modes is about 1/J , where J is the swapping
interaction strength between the resonators. For each of the
cluster states, one needs to replicate the four combined modes.
Therefore, the hopping time of one cluster state is about 4/J .
On the other hand, the replication of cluster states among the
resonators must be completed within the coherence time of
resonators 1/κ . Thus, the resonator chain length can be roughly
estimated to be J/4κ . With the current feasible experiment
technique, J/2π ∼ 0.01 GHz and, estimated as above, the
decay rate κ/2π of transmission line resonators should be
5.0 × 10−6 GHz. Therefore, the number of resonators that
could be prepared in cluster states is limited to be about the
order of 100.

Finally, we should point out that the present setup can
be directly extended to one including more resonator chains.
Thus, we believe that the present investigation may open an
approach for the realization of large-scale one-way quantum
computing.
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