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One of the central features of quantum theory is that there are pairs of quantum observables that cannot
be measured simultaneously. This incompatibility of quantum observables is a necessary ingredient in several
quantum phenomena, such as measurement uncertainty relations, violation of Bell inequalities, and steering. Two
quantum observables that admit a simultaneous measurement are, in this respect, classical. A finer classification
of classicality can be made by formulating four symmetric relations on the set of observables that are stronger than
compatibility; they are broadcastability, one-side broadcastability, mutual nondisturbance, and nondisturbance.
It is proven that the five relations form a hierarchy and their differences in terms of the required devices needed in
a simultaneous measurement are explained. All four relations that are stronger than compatibility are completely
characterized in the case of qubit observables.
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I. INTRODUCTION

It is one of the central features of quantum theory that only
some pairs of quantum observables can be measured simulta-
neously. There are various ways how two quantum observables
may permit a simultaneous measurement. Joint measurability,
or compatibility, is the general concept related to simultaneous
measurements. Compatibility of two observables does not say
anything how those observables can be implemented jointly,
just that there is some measurement setup giving the correct
marginal probability distributions.

In contrast, broadcasting of observables is a modification of
broadcasting of states and it is a very specific way to implement
simultaneous measurement. It requires the existence of a
broadcasting channel that gives two approximate copies of
an arbitrary input state and, even if the copies are not identical
to the original state, there is no difference with respect to
the target observables. A broadcastable pair of observables is
compatible, but it is compatible in a very strong sense.

These two scenarios raise some immediate questions. What
is exactly the additional feature that makes some compatible
pairs broadcastable, especially from the point of view of
implementation of their simultaneous measurement? How
different are these two relations on observables and are there
any intermediate steps between them? In this paper we tackle
these questions.

We will define three relations on observables that are
between broadcastability and compatibility; they are weaker
than broadcastability but stronger than compatibility. These
relations are one-side broadcastability, mutual nondisturbance,
and nondisturbance. All together we then obtain a hierarchy
of five relations on quantum observables (see Fig. 1).

The hierarchy of relations is useful in several different
ways. First, it reveals that there are different levels of joint
measurability and in this sense, different layers of classicality.
Second, if we can show that some pair of observables is, e.g.,
not compatible, then we know that all the stronger relations fail
as well. We will demonstrate the usage of this kind of argument
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and we will completely characterize all four relations that are
stronger than compatibility in the case of qubit observables.

To understand the differences among the five relations, we
will formulate them in a unifying way. We show that the five
relations can be understood in the differences of the needed
devices in the implementation of a simultaneous measurement.
Using the presented framework, we can also demonstrate that
a natural generalization of the compatibility relation is in fact
equivalent to the compatibility.

II. COMPATIBILITY

In the following H is a fixed Hilbert space, either finite
or countably infinite dimensional. We denote by S(H) the
set of all states, i.e., positive trace class operators of trace
1. A quantum observable is mathematically defined as a
positive-operator-valued measure [1,2]. We will restrict our
investigation to observables with a finite number of outcomes,
hence we will understand an observable as a map A from a
finite set of measurement outcomes �A to the set of bounded
linear operatorsL(H) onH such that A(x) � 0 and

∑
x A(x) =

1. For a subset X ⊆ �A, we define A(X) = ∑
x∈X A(x). The

probability of getting an outcome x in a measurement of A in
an initial state � is given by the formula tr[�A(x)].

We denote by O(H) the set of all observables A on H
with �A ⊂ Z. A binary relation on O(H) is a subset R of
the Cartesian product O(H) × O(H). Hence, a binary relation
can be thought of as a property that a pair of observables
may or may not possess. The relations that we will study are
all symmetric: If (A,B) ∈ R, then also (B,A) ∈ R. For this
reason, we can talk about properties of A and B rather than
(A,B). If R and R′ are two binary relations on O(H) such
that R ⊂ R′, then we say that R is stronger than R′ and that
R′ is weaker than R. The complement of a binary relation
R is the subset of those pairs (A,B) ∈ O(H) × O(H) that do
not belong to R. The complementary relation of a symmetric
relation is also symmetric and the inclusion of two relations is
reversed in their complementary relations.

The most general formulation of simultaneous measura-
bility is based on the concept of a joint observable [3,4]. A
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FIG. 1. The whole area depicts the set of all pairs of quantum
observables. The strictest condition for a pair of observables is
broadcastability and the loosest is compatibility. The other three
properties are between these two.

joint observable of two observables A and B is an observable
J : �A × �B → L(H) such that

J(x,�B) = A(x), J(�A,y) = B(y) (1)

for all x ∈ �A and y ∈ �B, where we have used the
shorthand notation J(x,�B) = ∑

y∈�B
J(x,y) and J(�A,y) =∑

x∈�A
J(x,y). The existence of a joint observable determines

the following symmetric relation on the set of observables.
Definition 1. Two observables A and B are called compatible

or jointly measurable if they have a joint observable; otherwise
they are incompatible.

In the following sections we formulate and study four
symmetric relations on the set of observables that are related
to simultaneous measurability of two observables and are
all stronger than compatibility (see Fig. 1). Hence, they
correspond to stronger and weaker levels for two observables to
be simultaneously measurable. Their complementary relations
refer to the impossibility of simultaneous measurement using
specified resources.

III. BROADCASTING AND ONE-SIDE BROADCASTING

A quantum channel � is a completely positive linear map
from an input state space S(H) to an output state space S(H′).
In the following we consider quantum channels that take
a single system as an input and give two similar systems
as outputs, so that H′ = HA ⊗ HB and HA = HB = H.
This kind of channel is called a broadcasting channel. A
broadcasting channel � : S(H) → S(HA ⊗ HB) broadcasts
a state � if the reduced states of the output state �(�) coincide
with the input state, i.e.,

trB[�(�)] = �, trA[�(�)] = �. (2)

A subset T of states is broadcastable if there is a channel �

that broadcasts each state � belonging to T . It is known that
a subset T is broadcastable if and only if all the states in T
commute with each other [5,6].

The broadcasting conditions in (2) for a state � are
equivalent to the requirement that the equations

tr[�A(x)] = tr[�(�)A(x) ⊗ 1] = tr[�(�)1 ⊗ A(x)] (3)

hold for all observables A and outcomes x ∈ �A. This
formulation allows us to change the aim of the broadcasting
procedure; we may want to satisfy these equations for all states
but only for some chosen observables. Hence, we arrive at the
following definition.

Definition 2. A channel � broadcasts an observable A if
the condition (3) holds for all states � ∈ S(H). A subset A
of observables is broadcastable if there is a channel � that
broadcasts every observable A ∈ A.

The requirement that the equations in (3) hold for all states
� ∈ S(H) is equivalent to the condition

A(x) = �∗(A(x) ⊗ 1) = �∗(1 ⊗ A(x)), (4)

where �∗ is the dual channel of �. We will mostly use the
Schrödinger picture of � and the condition (3) to make the
physical content more visible, but the Heisenberg picture �∗
is useful when we write joint observables.

The idea of concentrating on observables rather than states
was presented in [7] and further investigated in [8,9]. In
these works the cloning of an observable was identified with
the cloning of its mean value, so our definition is slightly
different from that. However, the essential fact that cloning
of observables is more related to joint measurement than is
cloning of states was observed already in [7].

Let us then focus on the broadcastability of two observables.
By Definition 2, a channel � broadcasts two observables A and
B if

tr[�A(x)] = tr[�(�)A(x) ⊗ 1] = tr[�(�)1 ⊗ A(x)], (5)

tr[�B(y)] = tr[�(�)B(y) ⊗ 1] = tr[�(�)1 ⊗ B(y)] (6)

for all states � ∈ S(H) and outcomes x ∈ �A and y ∈ �B.
We can think of the broadcastability of two observables in
the following way. Two approximate copies are made of an
unknown initial state �. One copy is sent to Alice and another
one to Bob. Both Alice and Bob can choose if they want
to measure either A or B on their respective copies. The
conditions (5) and (6) guarantee that the measurement outcome
probabilities are the same as in separate measurements of A
and B on the initial state �.

To provide an example of broadcastable pairs of observ-
ables, we consider the following special class of observables.

Definition 3. Let {ϕj }dj=1 be an orthonormal basis. An
observable A is diagonal in {ϕj }dj=1 if

A(x) =
d∑

j=1

αj (x)|ϕj 〉〈ϕj |, (7)

where 0 � αj (x) � 1 and
∑

x αj (x) = 1 for all j = 1, . . . ,d.
The observable A defined in (7) is commutative, i.e.,

A(x)A(y) = A(y)A(x) for all x,y ∈ �A. If the dimension of
H is finite, then a commutative observable is diagonal in
some orthonormal basis. However, if the dimension of H
is infinite, then not all commutative observables are of the
form (7) since a positive operator need not have a pure point
spectrum. We also observe that two observables A and B that
are diagonal in the same basis are mutually commuting, i.e.,
A(x)B(y) = B(y)A(x) for all x ∈ �A,y ∈ �B.
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The following observation is analogous to the fact that a set
containing two commuting states is broadcastable.

Proposition 1. Let A be a set of observables that are
diagonal in the same orthonormal basis {ϕj }dj=1. Then A is
broadcastable.

Proof. We define a channel � as

�(�) =
d∑

j=1

〈ϕj |�ϕj 〉|ϕj ⊗ ϕj 〉〈ϕj ⊗ ϕj |. (8)

If A has the form (7), then

tr[�A(x)] = tr[�(�)A(x) ⊗ 1] = tr[�(�)1 ⊗ A(x)],

hence � broadcasts A. �
In a finite-dimensional Hilbert space a commutative set

of self-adjoint operators can be diagonalized in the same
orthonormal basis. The following statement is hence a direct
consequence of Proposition 1.

Proposition 2. Let dimH < ∞. A mutually commuting
pair of commutative observables is broadcastable.

A relaxation of the broadcasting conditions (5) and (6) is
that we require only

tr[�A(x)] = tr[�(�)A(x) ⊗ 1], (9)

tr[�B(y)] = tr[�(�)1 ⊗ B(y)] (10)

for all states � ∈ S(H) and outcomes x ∈ �A and y ∈ �B.
This still refers to a process where we first make approximate
copies of � by using the channel � and then measure A and B
on those copies [see Fig. 2(a)]. The difference from the earlier
broadcasting setup is that now the sides of the measurements
are relevant: Alice must measure A and Bob must measure B
on their respective subsystems. We are led to the following
definition.

Definition 4. Two observables A and B are one-side broad-
castable if there exists a channel � : S(H) → S(H ⊗ H) such
that (9) and (10) hold for all states � ∈ S(H) and outcomes
x ∈ �A and y ∈ �B.

It is clear that if two observables are broadcastable,
then they are one-side broadcastable. Further, a one-side
broadcastable pair is compatible; if A and B are one-side
broadcastable with a channel �, then they have a joint
observable J defined as

J(x,y) = �∗(A(x) ⊗ B(y)). (11)

The conditions (9) and (10) guarantee that J is indeed a joint
observable.

IV. NONDISTURBING MEASUREMENTS

An observable A can be measured without disturbing an-
other observable B if the measurement outcome distributions
of B are the same if we measure A before B or not measure A
at all. To formulate this relation in the standard mathematical
formalism, we recall the concept of an instrument [10]. An
instrument that implements a measurement of A is a map
x �→ Ix such that each Ix is a completely positive linear map
and

tr[Ix(�)] = tr[�A(x)] (12)

FIG. 2. (a) In the one-side broadcasting scenario two approximate
copies of the input state are produced and the target observables
are measured on these copies. (b) In a nondisturbing sequential
measurement one of the measured observables is allowed to be
different from the corresponding target observable. The auxiliary
observable can operate on a Hilbert space different from the target
observable. (c) In the most general setup a global measurement is
allowed. Two observables can be obtained in this way exactly when
they are compatible.

for all states � and outcomes x ∈ �A. We will again use
the notation IX ≡ ∑

x∈X Ix for all subsets X ⊆ �A. The
nondisturbance condition for an observable B then reads

tr[�B(y)] = tr[I�(�)B(y)], (13)

required to hold for all states � ∈ S(H) and outcomes y ∈
�B. We say that an observable A can be measured without
disturbing B if there exists an instrument I such that (12)
and (13) hold for all states � ∈ S(H) and outcomes x ∈ �A
and y ∈ �B.

If A can be measured without disturbing B, then A and B
are compatible. This is clear since a sequential measurement
of A followed by B is a joint measurement of A and B if the
first measurement does not disturb B. A joint observable J is
defined as J(x,y) = I∗

x (B(y)) and the marginal conditions (1)
follow from (12) and (13).

To see a connection to the one-side broadcasting, we recall
that every instrument can be written in the measurement model
form

Ix(�) = trK[Uη ⊗ �U ∗A′(x) ⊗ 1],
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where η is a fixed initial state of an ancillary system K, A′
is a probe observable on K, and U : K ⊗ H → K ⊗ H is a
unitary operator describing a measurement interaction [11].
The condition (12) can then be written as

tr[�A(x)] = tr[Uη ⊗ �U ∗A′(x) ⊗ 1] (14)

and the nondisturbance condition (13) takes the form

tr[�B(y)] = tr[Uη ⊗ �U ∗1 ⊗ B(y)]. (15)

By defining �(�) = Uη ⊗ �U ∗ we can write these equations
as

tr[�A(x)] = tr[�(�)A′(x) ⊗ 1], (16)

tr[�B(y)] = tr[�(�)1 ⊗ B(y)]. (17)

These are exactly the same equations as in one-side broadcast-
ing, except that in the latter case it is required that K = H and
A′ = A. This difference is illustrated in Fig. 2(b).

To see that the previous conditions are equivalent to the
existence of a nondisturbing measurement, assume there is a
channel � : S(H) → S(K ⊗ H) and an observable A′ on K
such that (16) and (17) hold for all states � and outcomes
x ∈ �A and y ∈ �B. For each x ∈ �A, we then define a map
Ix as

Ix(�) = trK[
√

A′(x) ⊗ 1�(�)
√

A′(x) ⊗ 1]. (18)

As Ix is a composition of completely positive maps, it
is completely positive. A direct calculation shows that I
satisfies (12) and (13). We summarize the previous discussion
in the following proposition.

Proposition 3. An observable A can be measured without
disturbing an observable B if and only if there exists an
ancillary system K, a probe observable A′ on K, and a channel
� : S(H) → S(K ⊗ H) such that

tr[�A(x)] = tr[�(�)A′(x) ⊗ 1], (19)

tr[�B(y)] = tr[�(�)1 ⊗ B(y)] (20)

hold for all states � and outcomes x ∈ �A and y ∈ �B.
We are interested on symmetric relations on the set of

observables, hence we make the following definitions.
Definition 5. Two observables A and B are
(a) mutually nondisturbing if A can be measured without

disturbing B and B can be measured without disturbing A.
(b) nondisturbing if A can be measured without disturbing

B or B can be measured without disturbing A.
If A can be measured without disturbing B, it does not

imply that B can be measured without disturbing A. An
example demonstrating this fact was given in [12]. We
thus conclude that the mutual nondisturbance is a strictly
stronger relation than the disturbance relation. As we noted
earlier, nondisturbing observables are compatible. Further, a
comparison of Proposition 3 with Definition 4 shows that one-
side broadcastable observables are mutually nondisturbing.
We have thus reached the hierarchy depicted in Fig. 1.

As a demonstration, let us recall a class of mutually
nondisturbing pairs of observables: Two mutually commuting
observables A and B are mutually nondisturbing [13]. This

can be seen by using the Lüders instruments of A and B. The
Lüders instrument of A is defined as

Ix(�) =
√

A(x)�
√

A(x). (21)

It follows from A(x)B(y) = B(y)A(x) that
√

A(x)B(y) =
B(y)

√
A(x). Hence,

tr[I�(�)B(y)] =
∑

x

tr[
√

A(x)�
√

A(x)B(y)]

=
∑

x

tr[�B(y)A(x)] = tr[�B(y)],

so A can be measured without disturbing B.

V. REFORMULATION OF COMPATIBILITY

All four relations that are stronger than compatibility have
been formulated as certain requirements on a broadcasting
channel and auxiliary observables. We will now put the
compatibility relation into this same framework.

Let us look at relaxation of the nondisturbance as it was
formulated in Proposition 3. We can ask about the existence
of two ancillary systems K1 and K2, a channel � : S(H) →
S(K1 ⊗ K2), and observables A′ and B′ on systems K1 and
K2, respectively, such that

tr[�A(x)] = tr[�(�)A′(x) ⊗ 1], (22)

tr[�B(y)] = tr[�(�)1 ⊗ B′(y)] (23)

for all states � and outcomes x ∈ �A and y ∈ �B. This is
a relaxation of the nondisturbance relation as now auxiliary
observables are allowed on both sides of the output. We can
go one step further and ask about the existence of a channel
� : S(H) → S(H′) and observable G on an arbitrary output
space H′ such that

tr[�A(x)] = tr[�(�)G(x,�B)], (24)

tr[�B(y)] = tr[�(�)G(�A,y)] (25)

for all states � and outcomes x ∈ �A and y ∈ �B. This
includes the case when H′ = K1 ⊗ K2 and G is a global
observable [see Fig. 2(c)]. Both of the above generalizations
are equivalent to the compatibility; this is the content of the
following result.

Proposition 4. For two observables A and B, the following
are equivalent.

(a) A are B compatible.
(b) There exist ancillary systems K1 and K2, probe

observables A′ onK1 and B′ onK2, and a channel � : S(H) →
S(K1 ⊗ K2) such that (22) and (23) hold for all states � and
outcomes x ∈ �A and y ∈ �B.

(c) There exist an ancillary system K, a channel �, and an
observable G such that (24) and (25) hold for all states � and
outcomes x ∈ �A and y ∈ �B.

Proof. We have that (c)⇒(a) as J(x,y) = �∗(G(x,y))
defines a joint observable of A and B. It is clear that (b)⇒(c)
since there are fewer constraints in (c) than in (b). To see that
(a)⇒(b), assume that A are B compatible, so there exists a
joint observable J. We fix Hilbert spaces K1 and K2 with the
dimensions �A and �B, respectively. On both of these Hilbert
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spaces we fix orthonormal bases {ϕx} and {ηy}, labeled with
the elements of �A and �B. We then define a channel � as

�(�) =
∑
x,y

tr[�J(x,y)]|ϕx ⊗ ηy〉〈ϕx ⊗ ηy | (26)

and we define the observables A′ and B′ as

A′(x) = |ϕx〉〈ϕx |, B′(y) = |ηy〉〈ηy |. (27)

With these choices the requirements (22) and (23) are
satisfied. �

VI. QUALITATIVE DIFFERENCES

The qualitative differences of the two extreme relations,
broadcasting and compatibility, from the other relations link
to the fundamental theorems of no broadcasting [5] and no
information without disturbance [14]. In the following we
explain these connections, which are both based on the concept
of an informationally complete observable. By definition, a
collection A of observables is informationally complete if the
measurement data {tr[�A(x)] : A ∈ A,x ∈ �A} are unique for
every state � ∈ S(H) [15]. Even a single observable can be
informationally complete [16] and a standard example of such
observable is a covariant phase-space observable (in either
finite or infinite phase space) satisfying certain criteria [17].

A. Broadcastability versus other relations

The no-broadcasting theorem for states implies some
immediate limitations on the broadcastability of subsets of
observables. Namely, let A be an informationally complete
set of observables. The broadcastability of A would then
imply that the reduced states of the bipartite output state
�(�) coincide with the input state �. This cannot hold for
all states by the no-broadcasting theorem, so we conclude
that an informationally complete set of observables is not
broadcastable. In particular, a single informationally complete
observable is not broadcastable.

The formulation of the broadcastability relation implies a
trivial but significant feature: If two observables A and B are
broadcastable, then A is broadcastable with itself. Therefore,
an informationally complete observable is not broadcastable
with any other observable. In the language of binary relations,
this means that informationally complete observables are
isolated elements in the broadcasting relation.

The existence of isolated elements, i.e., observables that
are not related to any other observable, is a distinctive feature
of the broadcasting relation. Too see this, we observe that
every observable is one-side broadcastable with any trivial
observable. By a trivial observable we mean an observable
for which the measurement outcome probabilities do not
depend on the input state at all. Mathematically, this kind
of observable can be written as T(x) = t(x)1, where t is a
probability distribution and 1 is the identity operator. Hence,
to prove the claim, fix a state η ∈ S(H) and define a channel
� as �(�) = � ⊗ η. Let A be any observable and T a trivial
observable. Then

tr[�(�)A(x) ⊗ 1] = tr[�A(x)], (28)

tr[�(�)1 ⊗ T(y)] = tr[ηT(y)] = tr[�T(y)], (29)

so A and T are one-side broadcastable. Due to the hierarchy of
the relations, we conclude that a trivial observable is related to
any other observable in all the relations except broadcasting.

B. Compatibility versus other relations

A specific feature of the compatibility relation is that every
observable is compatible with itself. To see this, let A be
an observable. We define an observable J on �A × �A as
J(x,y) = δxyA(x). Then

J(x,�A) = J(�A,x) = A(x) (30)

for all x ∈ �A, hence J is a joint observable of A and A.
The physical explanation of this feature is the fact that the
measurement outcomes of A are distinguishable classical
states and therefore can be duplicated.

This reflexivity of the compatibility relation is a qualitative
difference from the four other relations: In all of them we
can find an observable A that is not in the given relation
with itself. Due to the hierarchy of the relations, it is enough
to find an observable A such that A cannot be measured
without disturbing A itself. A whole class of this kind of
observable consists of informationally complete observables.
The no-information-without-disturbance theorem states that a
measurement that gives information causes necessarily some
disturbance. Since, by definition, an informationally complete
observable A gives a unique probability outcome distribution
to all states, we conclude that a measurement of A necessarily
disturbs a subsequent measurement of A.

Another distinctive feature, more important but not as
sharply formulated, is the fact that the addition of a sufficient
amount of noise makes any pair of observables compati-
ble [18,19]. By the addition of noise we mean mixing an
observable with a trivial observable. For instance, let us
consider two incompatible observables A and B and their
deformations Ã and B̃, where

Ã(x) = 1
2 A(x) + 1

2 t1(x)1, B̃(y) = 1
2 B(y) + 1

2 t2(y)1 (31)

with t1 and t2 probability distributions on �A and �B,
respectively. Then Ã and B̃ are compatible as they have a
joint observable

J(x,y) = 1
2 t2(y)A(x) + 1

2 t1(x)B(y). (32)

Using the normalizations
∑

x A(x) = ∑
y B(y) = 1 and∑

x t1(x) = ∑
y t2(y) = 1, it is straightforward to verify that J

gives Ã and B̃ as its marginals.
In contrast, the addition of white noise does not make

an arbitrary pair of observables nondisturbing. To see this,
suppose that A is informationally complete. Then a deformed
observable of the form

Ã(x) = λA(x) + (1 − λ)t(x)1 (33)

with 0 < λ � 1 is still informationally complete. This follows
from the fact that an observable is informationally complete
if and only if its range spans L(H) [16] and the deformation
in (33) does not change the span of the range when λ �= 0.
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Therefore, our earlier discussion implies that Ã cannot be
measured without disturbing itself.

VII. QUBIT OBSERVABLES

As we noted earlier, a nondisturbing pair of observables
need not be mutually nondisturbing. However, if the dimension
of the Hilbert space is 2, then these relations are the same and
equivalent to the mutual commutativity. Namely, the result
(see [12], Proposition 6) implies the following.

Proposition 5. For two qubit observables A and B, the
following are equivalent.

(a) A and B are mutually commuting.
(b) A and B are mutually nondisturbing.
(c) A and B are nondisturbing.
Using Propositions 2 and 5 we get a complete characteri-

zation of broadcastable pairs of qubit observables.
Proposition 6. Two qubit observables A and B are broad-

castable if and only if A and B are commutative and mutually
commuting.

Proof. The “if” part is a direct consequence of Proposition
2. To show the “only if” part, we assume that A and B are
broadcastable. Then A and B are also mutually nondisturbing,
hence by Proposition 5 mutually commuting. Further, since A
and B are broadcastable, A is broadcastable with itself. By the
hierarchy of the relations this implies that A is nondisturbing
with itself, hence using again Proposition 5 we conclude that
A is commutative. In a similar way we conclude that B is
commutative. �

Further, utilizing the hierarchy of relations and the previous
results, we can also characterize the one-side broadcastability
of qubit observables. The following statement extends Propo-
sition 5.

Proposition 7. For two qubit observables A and B, the
following are equivalent.

(a) A and B are one-side broadcastable.
(b) A and B are mutually nondisturbing.
(c) A and B are nondisturbing.
(d) A and B are mutually commuting.
If one (hence all) of these relations holds and neither A nor

B is trivial, then A and B are broadcastable.
Proof. By the general hierarchy of the relations we have

that (a)⇒(b)⇒(c) and by Proposition 5 we have that (c)⇔(d).
It is thus enough to show that (d)⇒(a). Let A and B be

mutually commuting qubit observables. Then at least one of
the following holds.

(i) A and B are both commutative.
(ii) A is a trivial observable.
(iii) B is a trivial observable.
To see this, let us first note that a self-adjoint operator

on a two-dimensional Hilbert space either has nondegenerate
spectrum or is a multiple of the identity operator. Now assume
that the observable A is not commutative and let A(x) and
A(x ′) be two noncommuting operators. Since B(y) commutes
with both A(x) and A(x ′), it is diagonal in the eigenbases of
A(x) and A(x ′). It follows that B(y) is a multiple of the identity
operator. Therefore, if A is not commutative, then B is trivial
and vice versa.

The one-side broadcastability of A and B follows in all
cases (i)–(iii). If (i) holds, then by Proposition 6 the pair
is broadcastable, hence one-side broadcastable. If (ii) or
(iii) holds, then the pair is one-side broadcastable since we
have seen in Sec. VI A that every observable is one-side
broadcastable with any trivial observable.

The last claim follows from the division into the cases
(i)–(iii) and Proposition 6. �

We recall that two qubit observables can be compatible
even if they are not mutually commuting. For instance, the
compatibility relation for the pairs of two-outcome qubit
observables has been characterized in [20–22] and it is easy
to see that most of the compatible pairs are not mutually
commuting.

VIII. CONCLUSION

The set of bipartite states divides into separable states and
entangled states. Among all separable states, some states are
more classical than others. In particular, the set of zero discord
states is a proper subset of separable states and separable states
with nonzero discord yield an advantage over zero discord
states in certain tasks such as phase estimation [23].

A comparable partitioning on pairs of observables is the
division into compatible pairs and incompatible pairs and then
compatible pairs further into subsets of broadcastable, one-
side broadcastable, nondisturbing, and mutually nondisturbing
pairs. It would be interesting to see if their complement
relations have a similar kind of task oriented characterization
as incompatibility, in which case a pair is incompatible if and
only if it enables steering [24–26].
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[4] P. Lahti and S. Pulmannová, Coexistent observables and effects
in quantum mechanics, Rep. Math. Phys. 39, 339 (1997).

[5] H. Barnum, C. M. Caves, C. A. Fuchs, R. Jozsa, and B.
Schumacher, Noncommuting Mixed States cannot be Broadcast,
Phys. Rev. Lett. 76, 2818 (1996).

[6] H. Fan, Y.-N. Wang, L. Jing, J.-D. Yue, H.-D. Shi, Y.-L. Zhang,
and L.-Z. Mu, Quantum cloning machines and the applications,
Phys. Rep. 544, 241 (2014).

[7] A. Ferraro, M. Galbiati, and M. G. A. Paris, Cloning of
observables, J. Phys. A: Math. Gen. 39, L219 (2006).

[8] A. Ferraro and M. G. A. Paris, Joint measurements on qubits
and cloning of observables, Open Syst. Inf. Dyn. 14, 149
(2007).

[9] U. Alvarez-Rodriguez, M. Sanz, L. Lamata, and E. Solano,
Biomimetic cloning of quantum observables, Sci. Rep. 4, 4910
(2014).

042118-6

http://dx.doi.org/10.1007/BF00734320
http://dx.doi.org/10.1007/BF00734320
http://dx.doi.org/10.1007/BF00734320
http://dx.doi.org/10.1007/BF00734320
http://dx.doi.org/10.1016/S0034-4877(97)89752-2
http://dx.doi.org/10.1016/S0034-4877(97)89752-2
http://dx.doi.org/10.1016/S0034-4877(97)89752-2
http://dx.doi.org/10.1016/S0034-4877(97)89752-2
http://dx.doi.org/10.1103/PhysRevLett.76.2818
http://dx.doi.org/10.1103/PhysRevLett.76.2818
http://dx.doi.org/10.1103/PhysRevLett.76.2818
http://dx.doi.org/10.1103/PhysRevLett.76.2818
http://dx.doi.org/10.1016/j.physrep.2014.06.004
http://dx.doi.org/10.1016/j.physrep.2014.06.004
http://dx.doi.org/10.1016/j.physrep.2014.06.004
http://dx.doi.org/10.1016/j.physrep.2014.06.004
http://dx.doi.org/10.1088/0305-4470/39/14/L02
http://dx.doi.org/10.1088/0305-4470/39/14/L02
http://dx.doi.org/10.1088/0305-4470/39/14/L02
http://dx.doi.org/10.1088/0305-4470/39/14/L02
http://dx.doi.org/10.1007/s11080-007-9043-5
http://dx.doi.org/10.1007/s11080-007-9043-5
http://dx.doi.org/10.1007/s11080-007-9043-5
http://dx.doi.org/10.1007/s11080-007-9043-5
http://dx.doi.org/10.1038/srep04910
http://dx.doi.org/10.1038/srep04910
http://dx.doi.org/10.1038/srep04910
http://dx.doi.org/10.1038/srep04910


SIMULTANEOUS MEASUREMENT OF TWO QUANTUM . . . PHYSICAL REVIEW A 93, 042118 (2016)

[10] E. B. Davies, Quantum Theory of Open Systems (Academic,
London, 1976).

[11] M. Ozawa, Quantum measuring processes of continuous observ-
ables, J. Math. Phys. 25, 79 (1984).

[12] T. Heinosaari and M. M. Wolf, Nondisturbing quantum mea-
surements, J. Math. Phys. 51, 092201 (2010).
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