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The eigenvalues of a non-Hermitian Hamilton operator are complex and provide not only the energies but also
the lifetimes of the states of the system. They show a nonanalytical behavior at singular (exceptional) points
(EPs). The eigenfunctions are biorthogonal, in contrast to the orthogonal eigenfunctions of a Hermitian operator.
A quantitative measure for the ratio between biorthogonality and orthogonality is the phase rigidity of the wave
functions. At and near an EP, the phase rigidity takes its minimum value. The lifetimes of two nearby eigenstates
of a quantum system bifurcate under the influence of an EP. When the parameters are tuned to the point of
maximum width bifurcation, the phase rigidity suddenly increases up to its maximum value. This means that
the eigenfunctions become almost orthogonal at this point. This unexpected result is very robust as shown by
numerical results for different classes of systems. Physically, it causes an irreversible stabilization of the system
by creating local structures that can be described well by a Hermitian Hamilton operator. Interesting nontrivial
features of open quantum systems appear in the parameter range in which a clustering of EPs causes a dynamical
phase transition.
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I. INTRODUCTION

In its simplest form, the wave function of a quantum
many-particle fermionic system can be written as a Slater
determinant that satisfies the antisymmetry requirements and
consequently the Pauli principle. However, some corrections
in the wave functions are usually necessary which are caused
by their possible mixing. In nuclei, for example, corrections
arise from the residual interaction between the particles of the
system, with the consequence that the wave functions of all
the states are strongly mixed. Another source is the interaction
between system and environment into which the system is
embedded. In this case, the states of the system interact via the
common environment due to which their wave functions may
be modified.

The natural environment of a localized quantum mechanical
system is the extended continuum of scattering wave functions
in which the system is embedded. This environment can be
changed by means of external forces; however, it can never be
deleted. It causes some communication between distant levels;
for details see the recent review [1] in which theoretical results
are confronted with experimental results. The theoretical re-
sults are obtained by using a non-Hermitian Hamilton operator
H for the description of the system, which contains explicitly
the interaction between system and environment [2]. The
eigenvalues and eigenfunctions of H differ essentially from
those of a Hermitian Hamilton operator: the eigenfunctions
are biorthogonal and the eigenvalues may show, as function
of a certain parameter, deviations from Fermi’s golden rule.
The differences between the eigenvalues and eigenfunctions
of H and those of a Hermitian operator H appear, above all,
at and near to singular points at which two eigenvalues of
H coalesce and the corresponding eigenfunctions differ from
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one another only by a phase. These singular points do not
have any equivalent in the mathematics based on Hermitian
Hamiltonians since the different eigenfunctions of H are
orthogonal (in contrast to those of H, which are biorthogonal).
These singular points are called usually exceptional points
(EPs), according to [3].

The role of EPs in physical systems is considered in many
papers during the past years, e.g. [4–8]; see also the review [2]
and the book [9]. In the present paper, we are interested in the
relation of these singular points to phase transitions occurring
in open quantum systems. Such a relation was first discussed
theoretically some years ago in Refs. [10,11], however,
without rigorous consideration of the biorthogonality of the
eigenfunctions of H. The same holds true for the papers [5]
on the dynamical phase transition observed experimentally and
theoretically in the spin swapping operation in atomic systems.
Only recently, the mixing of the wave functions at an EP and
its relation to a dynamical phase transition is studied for an
open quantum system with more than two states [12]. The
states at both sides of the phase transition are not analytically
related to one another, meaning that this characteristic feature
of any phase transition is fulfilled. The theoretical results are
compared to experimental results in the recent review [1].

In contrast to these differences between Hermitian and
non-Hermitian quantum physics at and near to an EP, the
Hamilton operator of the Schrödinger equation of an open
quantum system is almost Hermitian, to a good approximation,
far from an EP. Here the eigenfunctions of the non-Hermitian
Hamilton operator are almost orthogonal [13], and the system
can be described quite well by a standard Hermitian Hamilton
operator. We underline however that the Hamiltonian remains
definitely non-Hermitian since the non-Hermiticity arises
solely from the fact that the function space of the localized
part of the system is a subsystem of the total function space:
the localized part, we are interested in, is embedded into an
extended environment of scattering wave functions; see Fig. 1
in Ref. [1]. The eigenfunctions of a non-Hermitian Hamilton
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operator are always biorthogonal [2] (see also Sec. 3.2 in
Ref. [1]). This includes the case with well-separated resonance
states as shown theoretically [14] and experimentally [15].

It is the aim of the present paper to consider the influence
of EPs onto the eigenfunctions (including their phases) of a
non-Hermitian Hamiltonian in detail. We are interested, above
all, in the behavior of the eigenfunctions and their phases in
approaching an EP and, furthermore, in the role they play in a
dynamical phase transition.

First, we sketch in Sec. II the characteristic features of
the eigenvalues and eigenfunctions of a non-Hermitian 2 × 2
Hamiltonian which are known in literature, and provide
the definitions of typical values such as, among others,
the phase rigidity. This is a quantitative expression for the
biorthogonality of the wave function and thus, ultimately, of
the degree of opening of the system.

In the following Sec. III we consider the conditions for
the appearance of EPs in different systems consisting of two
states. Analytical results are obtained and discussed for cases
with two EPs. Then, we consider in Sec. IV the more general
case of a system with more than two states where a clustering
of EPs may occur. In Sec. V we provide numerical results
for systems under typical conditions and compare them with
analytical results, if such results exist. We discuss the obtained
results in Sec. VI. Some of the results are expected and agree
with our general understanding of open quantum systems.
Other results are completely unexpected. These results are
considered and discussed in detail. They allow us to receive
a deeper understanding of dynamical phase transitions. We
conclude the paper with some remarks on the stabilization of
open quantum systems due to the existence of EPs; and discuss
the possibility to describe them by means of a Hermitian
Hamiltonian.

II. EIGENVALUES AND EIGENFUNCTIONS OF
THE NON-HERMITIAN HAMILTONIAN H(2)

In order to study the interaction of two states via the
common environment it is most convenient to start from the
symmetric 2 × 2 non-Hermitian matrix [13]

H(2) =
(

ε1 ≡ e1 + i
2γ1 ω12

ω21 ε2 ≡ e2 + i
2γ2

)
, (1)

with γi � 0 for decaying states [16]. The ω12 = ω21 ≡ ω

stand for the coupling matrix elements of the two states via
the common environment which are, generally, complex [2].
The diagonal elements εi of (1) contain the energies ei

and decay widths γi of the two states when ωij = 0, i.e.,
they are the two complex eigenvalues εi(i = 1,2) of the
non-Hermitian operator H(2)

0 that describes the system without
any coupling of its states via the environment. In the present
paper, we take ω12 = ω21 ≡ ω, and the self-energy of the
states is assumed to be included into ε1 and ε2. We underline
here that the Hamiltonian H(2) is completely non-Hermitian
(see also [13]) in difference to the many non-Hermitian
operators used in the literature for the description of open
quantum systems. These operators consist mostly of a Her-
mitian part to which a non-Hermitian part is added as a
perturbation.

The model (1) seems to be very simple. This is however
not true from a mathematical point of view. The point is that
singularities are involved in the model (the so-called EPs)
which are known in mathematics for many years; see [3].
They are considered in physics only recently. They cause
counterintuitive results [2] which seem to be, at first glance,
wrong. We will discuss them in the following.

In the case ω = 0, the real part Ek of the eigenvalues of
H(2) does not differ from the original energies ek . It follows,
under this condition, E1,2 = 1

2 (e1 + e2) ± 1
2 (e1 − e2) = e1,2.

A corresponding relation holds for the �k relative to the
original γk .

Most interesting properties ofH(2) are the crossing points of
two eigenvalue trajectories. Since here the two states coalesce
at one point, the influence of all the other states of the system on
the interaction of these two states can be neglected. Therefore,
Eq. (1) describes the characteristics of open quantum systems
that may be related to these points, in spite of its small rank.

The eigenvalues of H(2) are, generally, complex and may
be expressed as

E1,2 ≡ E1,2 + i

2
�1,2 = ε1 + ε2

2
± Z,

Z ≡ 1

2

√
(ε1 − ε2)2 + 4ω2, (2)

where Ei and �i stand for the energy and width, respectively, of
the eigenstate i. Also here �i � 0 for decaying states [16]. The
two states may repel each other in accordance with Re(Z), or
they may undergo width bifurcation in accordance with Im(Z).
When Z = 0 the two states cross each other at a point that is
called usually exceptional point (EP) [3]. The EP is a singular
point (branch point) in the complex plane where the S matrix
has a double pole [2].

The eigenfunctions of any non-Hermitian operator H must
fulfill the conditions H|�i〉 = Ei |�i〉 and 〈�i |H = Ei〈�i |,
where Ei is an eigenvalue of H and the vectors |�i〉 and 〈�i |
denote its right and left eigenfunctions, respectively [2]. When
H is a Hermitian operator, the Ei are real, and we arrive at
the well-known relation 〈�i | = 〈�i |. In this case, the eigen-
functions can be normalized by using the expression 〈�i |�j 〉.
For the symmetric non-Hermitian Hamiltonian H(2), however,
we have 〈�i | = 〈�∗

i |. This means that the eigenfunctions are
biorthogonal and have to be normalized by means of 〈�∗

i |�j 〉.
This is, generally, a complex value, in contrast to the real
value 〈�i |�j 〉 of the Hermitian case. To smoothly describe
the transition from a closed system with discrete states, to a
weakly open one with narrow resonance states, we normalize
the �i according to

〈�∗
i |�j 〉 = δij (3)

(for details, see Secs. 2.2 and 2.3 of [2]). It follows

〈�i |�i〉 = Re(〈�i |�i〉), Ai ≡ 〈�i |�i〉 � 1 (4)

and

〈�i |�j �=i〉 = i Im(〈�i |�j �=i〉) = −〈�j �=i |�i〉,∣∣Bj

i

∣∣ ≡ |〈�i |�j �=i | � 0. (5)

At the EPs, not only the eigenvalues of two states coa-
lesce but also the two corresponding eigenfunctions of the
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non-Hermitian Hamilton operator H(2) are the same, up to a
phase,

�cr
1 → ±i�cr

2 , �cr
2 → ∓i�cr

1 . (6)

These relations follow from analytical as well as from
numerical and experimental studies; see Appendix of [17],
Sec. 2.5 of [2], and Figs. 4 and 5 in Ref. [18]. We underline here
that the coalescence of the two eigenvalues of a non-Hermitian
operator at an EP should not be confused with the well-known
fact that two eigenstates of a Hermitian operator may be
degenerate. The difference consists in the relation (6) between
the two corresponding eigenfunctions which does, of course,
not hold for degenerate states. Furthermore, the eigenfunctions
of a non-Hermitian operator are biorthogonal, while those of
degenerate states are orthogonal.

According to (6), the wave function �1 of the state 1
jumps, at the EP, to ±i�2 [2,19]. This mathematical behavior
of the eigenfunctions �i at the singular EPs causes the
main differences between the physics of Hermitian and non-
Hermitian quantum systems. At an EP, Ai → ∞,|Bj

i | → ∞,
and the influence of the environment onto the system is
extremely large [2].

In Eq. (3), the complex value 〈�∗
i |�j 〉 is normalized to

the real value δij with the consequence that the relative phase
between the biorthogonal eigenfunctions of two neighbored
states changes in such a manner that always Im〈�∗

i |�j 〉 = 0.
A quantitative measure of this change is the so-called phase
rigidity

rk ≡ 〈�∗
k |�k〉

〈�k|�k〉 = A−1
k (7)

of the state k which is defined by the ratio between
biorthogonality and orthogonality of the wave functions �k .
For Hermitian systems for which 〈�∗

k |�k〉 = 〈�k|�k〉 holds,
the phase rigidity is equal to unity. This is an expression
of the fact that the eigenfunctions of Hermitian operators
are orthogonal. For weakly decaying systems, where one
has well-separated resonance states, the wave functions are
almost orthogonal, i.e., the degree of biorthogonality is small.
Under such conditions, Hermitian quantum physics represents
a reasonable approximation to the description of the open
quantum system. However, the wave function �1 jumps at
the EP to ±i�2 and vice versa; and the phase rigidity does not
vary continuously at the EP also in this case.

The Schrödinger equation with the non-Hermitian Hamil-
ton operator H(2) is equivalent to a Schrödinger equation with
H(2)

0 and source term [20]

(
H(2)

0 − εi

)|�i〉 = −
(

0 ωij

ωji 0

)
|�j 〉 ≡ W |�j 〉. (8)

This equation relates �i to �j �=i in a nontrivial manner due to
the source term. That means two states i and j �= i are coupled
via the common environment of scattering wave functions into
which the system is embedded. It is ωij = ωji ≡ ω, and the
coupling between the states i and j �= i vanishes when ω → 0.
The Schrödinger equation (8) with source term can be rewritten
in the following manner [20]:(

H(2)
0 − εi

)|�i〉 =
∑
k=1,2

〈�k|W |�i〉
∑

m=1,2

〈�k|�m〉|�m〉. (9)

According to the biorthogonality relations (4) and (5) of the
eigenfunctions of H(2), Eq. (9) is a nonlinear equation, since
〈�k|�m〉 �= 1 for k = m and 〈�k|�m〉 �= 0 for k �= m. The
most important part of the nonlinear contributions is contained
in

(
H(2)

0 − εn

)|�n〉 = 〈�n|W |�n〉|�n|2|�n〉. (10)

The nonlinear source term vanishes far from an EP where
〈�k|�k〉 approaches 1 and 〈�k|�l �=k〉 = −〈�l �=k|�k〉 ap-
proaches zero. This follows from the normalization (3) which
differs only a little from the standard normalization 〈�k|�k〉 =
1 and 〈�k|�l �=k〉 = 0 for a Hermitian Hamilton operator. Thus
the Schrödinger equation with source term is (almost) linear
far from an EP, as usually assumed. It is however nonlinear in
the neighborhood of an EP.

The nonlinear terms in Eq. (10) cause, among others, a
mixing of the wave functions which can be expressed by

�k =
N∑

l=1

bkl�
0
l , (11)

where the eigenfunctions �k of H(2) are represented in the
set of basic wave functions �0

l of the operator H(2)
0 the

nondiagonal matrix elements of which vanish. For some
numerical results, see [13]. This mixing of the wave functions
appears additionallyto other possible sources of mixing caused
for some other reasons.

The eigenfunctions �i and the eigenvalues Ei of H(2)

contain global features that are caused by many-body forces
induced by the coupling ωik of the states i and k �= i via the
environment. The environment is the continuum of scattering
wave functions and has an infinite number of degrees of
freedom.

III. EXCEPTIONAL POINTS

We consider now the behavior that arises when the paramet-
rical detuning of the two eigenstates of H(2) is varied, bringing
them towards coalescence. According to (2), the condition for
coalescence reads

Z = 1
2

√
(e1 − e2)2− 1

4 (γ1 − γ2)2 + i(e1 − e2)(γ1 − γ2)+4ω2

= 0. (12)

It follows that two interacting discrete states (with γ1 = γ2 = 0
and e1 �= e2) avoid always crossing since ω ≡ ω0 and ε1 − ε2

are real in this case and the condition Z = 0 cannot be fulfilled,

(e1 − e2)2 + 4 ω2
0 > 0. (13)

In this case, the EP can be found only by analytical continua-
tion into the continuum. This situation is called usually avoided
crossing of discrete states. It holds also for narrow resonance
states if Z = 0 cannot be fulfilled due to the small widths of
the two states. The physical meaning of this result has been
very well known for many years: the avoided crossing of two
discrete states at a certain critical parameter value [21] means
that the two states are exchanged at this point, including their
populations (population transfer).
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When γ1 = γ2, and ω = iω0 is imaginary, it follows
from (12)

(e1 − e2)2 − 4ω2
0 = 0 → e1 − e2 = ±2ω0, (14)

such that two EPs appear. It furthermore holds that

(e1 − e2)2 > 4ω2
0 → Z ∈ Re, (15)

(e1 − e2)2 < 4ω2
0 → Z ∈ Im, (16)

independent of the parameter dependence of e1,2.
Also in the case when the widths γ1,2 are parameter

dependent, e1 = e2 and ω is real, we have two EPs. Instead
of (14) to (16) we have

(γ1 − γ2)2 − 16ω2 = 0 → γ1 − γ2 = ±4ω (17)

and

(γ1 − γ2)2 > 16ω2 → Z ∈ Im, (18)

(γ1 − γ2)2 < 16ω2 → Z ∈ Re. (19)

Equations (15) and (18), respectively, describe the behavior
away from the EPs, where the eigenvalues Ek only differ
from the original ones through a contribution to the energy
and width, respectively. The widths (or energies), in contrast,
remain unchanged, and this situation therefore corresponds to
that of level repulsion (or width bifurcation). Equations (16)
and (19), in contrast, are relevant over the range between the
two EPs and indicate that the resonance states undergo width
bifurcation (or level repulsion) according to Im(Z) �= 0 [and
Re(Z) �= 0, respectively]. The bifurcation (or level repulsion)
starts in the neighborhood of either one of the EPs, and grows
to reach a maximum value at the midpoint between them (even
though ω0 and ω, respectively, remain fixed). The condition
for maximum width bifurcation (or level repulsion) is fulfilled
at the crossing point e1 = e2 (and γ1 = γ2, respectively).
Physically, the bifurcation implies that different time scales
may appear in the system, while the states are nearby to
one another in energy (for details, see [17]). In an analogous
manner, level repulsion of states with similar lifetimes causes
a separation of the states in energy. For an illustration of
these analytical results, see the numerical results presented
in Sec. V A, Figs. 1 and 3, left panel.

Under more realistic conditions, ω is complex, and simple
analytical results like (14) to (19) cannot be obtained. For
this case, we will provide some results of numerical studies
in Sec. V A. In order to understand the meaning of these
numerical results, the analytical relations (14) to (19) and their
representation in Figs. 1 and 3, left panel, are very helpful.

In any case, the parametric dependence of the eigenvalues
Ek is nonanalytical in the vicinity of an EP, with the widths
�k , in particular, showing variations that are inconsistent with
the predictions of Fermi’s golden rule (according to which
the widths should increase with increasing coupling strength
of the system to the environment; for details, see [2]). At
these points, the influence of the environment onto the system
properties is extremely strong. In our case, the environment is
the continuum of scattering wave functions which gives to the
eigenstates of H(2) a finite lifetime.

It follows from the normalization condition (3) that
〈�k|�k〉 → ∞ such that rk → 0 [2] when an EP is ap-
proached. In other words, the relative phase of the two
eigenfunctions changes dramatically when the crossing point
is approached. Most significantly, as understood from an-
alytical studies, as well as from numerics and experiment
(see [2,17,19]) is that, in the vicinity of the EP, the eigen-
functions differ from one another by only a phase; see (6).
In a recent theoretical study on a microwave cavity [18], the
relations (6) could be confirmed by the observation that the
real and imaginary components of two nearby eigenstates
are “swapped,” under the influence of an EP, in complete
agreement with (6). The nonrigidity of the phases follows, of
course, directly from the fact that 〈�∗

k |�k〉 is a complex number
(in difference to the norm 〈�k|�k〉, which is a real number)
so that the normalization condition (3) can be fulfilled only
by the additional requirement Im〈�∗

k |�k〉 = 0 (corresponding
to a rotation away from the complex plane). Here, the two
different states of the system develop, according to (6), a
coupling through the continuum, a quantitative measure of
which is the phase rigidity. Thus the biorthogonality of the
eigenfunctions �k causes perceptible physical effects in the
neighborhood of an EP.

Generally speaking, the phase rigidity takes values between
zero and one, with the value rk = 1 for Hermitian systems.
Near to an EP in a non-Hermitian system, however, the
two eigenfunctions differ from one another only by a phase,
according to (6), so that rk � 1. This nonrigidity of the
eigenfunction phases is the most important difference between
Hermitian and non-Hermitian eigenfunctions. Its meaning
cannot be overestimated. On the one hand, the lack of phase
rigidity near to an EP leads very naturally to the appearance
of nonlinear effects in the Schrödinger equation (10) with
source term which describes an open quantum system. On the
other hand, the impact of the environment on the (localized)
system is extremely strong at the EP. Since the environment
is the continuum of scattering wave functions with an infinite
number of degrees of freedom, this impact may induce phase
transitions as discussed in Ref. [12].

IV. CLUSTERING OF EXCEPTIONAL POINTS

According to mathematical studies, more than two eigen-
values of a non-Hermitian operator H may cross in one point,
the so-called higher-order EP. This crossing point is, however,
a point in the continuum and therefore of measure zero [12].
In this respect, it does not differ from the second-order EP
which is the crossing point of two eigenvalues considered
in the foregoing Sec. II. That means, a higher-order EP
cannot directly be identified in a realistic physical system.
Nevertheless, it influences the dynamics of an open quantum
system in a similar manner as a second-order EP does; see the
discussion in the foregoing Sec. II for a two-level system.

In Ref. [12], the influence of a third state onto the two
eigenvalues and eigenfunctions of a non-Hermitian Hamilton
operator that cross at an EP is investigated. As a result, more
than two states of a realistic physical system are unable to
coalesce at one point since, in a certain finite parameter range
around the original second-order EP, the wave functions of
the two states are mixed. When the third state approaches this
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parameter range, it crosses or avoids crossing therefore with
states that differ from the original two states. Accordingly, new
EPs appear and the areas of influence of different EPs overlap.
Altogether, the different EPs amplify, collectively, their impact
onto physical values, and the wave functions of all states are
strongly mixed in the basic wave functions �0

i of H0. This
effect is nothing but some clustering of EPs, wherewith the

characteristic fact is expressed that the ranges of the influence
of different second-order EPs overlap in a finite parameter
range around a higher-order EP.

In the following, we will study the mixing of the wave
functions and, above all, the phase rigidity defined in,
respectively, Eqs. (11) and (7), in the case of clustering of
EPs. To this aim we consider the non-Hermitian Hamiltonian

H(n) =

⎛
⎜⎜⎝

ε1 = e1 + i
γ1

2 ω12 . . . ω1n

ω21 ε2 = e2 + i
γ2

2 0 0
. . . 0 . . . 0
ωn1 0 0 εn = en + i

γn

2

⎞
⎟⎟⎠, (20)

with n = 3 or 4 nearby states coupled to one common
continuum (the first channel). As in Eq. (1), the ei and γi

denote the energies and widths, respectively, of the n states
without account of the interaction of the different states via the
environment. The ωij = ωji simulate the interaction of the two
states i and j via the common environment. In the simu-
lation (20), we used the doorway concept used in nuclear
physics: the n states with the decay widths γi/2 can be
simulated by one doorway state with large decay width γ1

and n − 1 states with small (almost vanishing) decay widths
γi �=1. Then (according to the doorway concept), the doorway
state is coupled to both the environment and the remaining
n − 1 states, while the remaining states are coupled to the
environment only via the doorway state (due to their small
decay widths and the fact that they are distant from EPs). The
coupling strength ω between system and environment is not
varied in our calculations, and the number of parameters for
the widths and energies of all n states is 2n [22].

The eigenvalues of (20) can be obtained in analogy to (2).
The eigenfunctions are biorthogonal. We normalize them
according to (3). Further (6) holds at an EP. The values Ai

and |Bj

i | defined in Eqs. (4) and (5), respectively, express how
near the system is to an EP at the considered parameter value.
In the numerical calculations, these values can be seen directly
by studying the mixing coefficients |bij | defined in Eq. (11).
Also the corresponding phase rigidities ri of the different states
can be determined numerically by using (7).

Near to the different EPs, the Schrödinger equation contains
nonlinear contributions according to (10) due to the source
term that describes the coupling between system and envi-
ronment. Accordingly, the whole parameter range in which a
clustering of EPs occurs is controlled by nonlinear contribu-
tions to the Schrödinger equation, the values of which vary
because of their dependence on the concrete parameter value.
They vanish only far from this regime with a clustering of EPs.

V. NUMERICAL RESULTS

A. N = 2 states

In Figs. 1 to 4, we show the results of numerical cal-
culations performed with the parameters given in Table I.
Most impressive is that all results for the phase rigidity show
the same behavior in spite of the different parameters and
the fundamental differences in the eigenvalue pictures. In all
cases, the phase rigidity rk approaches the value rk → 0 at the

position of the EP while it approaches sharply the value rk → 1
when width bifurcation and level repulsion, respectively, is
maximum. These changes occur without any changes of the
coupling strength ω between system and environment, as can
be seen from the parameter values given Table I.

FIG. 1. Energies Ei (full lines) (a),(e), widths �i/2 (b),(f), phase
rigidity r1 = r2 (c),(g), and 1 − rk (d),(h) of the two eigenfunctions
of H(2) as a function of the distance d between the two unperturbed
energies e1 and e2. The parameters are given, respectively, in the first
and second row of Table I. The dashed lines in (a),(e) and (b),(f) show,
respectively, the ei and γi/2 trajectories.
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FIG. 2. Same as Fig. 1 but with the parameters given, respectively,
in the third and fourth row of Table I.

Results for examples with two EPs according to Eqs. (14)
to (16) and (17) to (19), respectively, are shown in Fig. 1. The
numerical results agree with the analytical ones: the phase
rigidity approaches zero at the two EPs, while in between the
EPs, we see width bifurcation in the first case [Fig. 1(b)] and
level repulsion in the second case [Fig. 1(e)]. The result rk →
0 at every EP corresponds to the expectation of theory [2].
However, there is an unexpected sharp transition to rk → 1
at the point of maximum width bifurcation or maximum level
repulsion. This means that here the two eigenfunctions of H(2)

are (almost) orthogonal to one another. Far from the critical
region, the phase rigidity approaches the value 1 according to
the fact that the influence of the environment onto the system
can be neglected, to a good approximation, far from EPs.

The results for the more realistic case with complex
coupling strength ω are shown in Fig. 2. Here, only one EP
appears. In a finite parameter distance from the EP, we see
maximum width bifurcation [Fig. 2(b)] and maximum level
repulsion [Fig. 2(e)], respectively. Again, rk → 0 at the EP
and rk → 1 at maximum width bifurcation or maximum level
repulsion.

The results in Fig. 3 show the eigenvalue and phase rigidity
pictures for the case when not only loss (as in Figs. 1 and 2)
appears but also gain is a possible process. Figure 3, left panel,

FIG. 3. Same as Fig. 1 but with the parameters given, respectively,
in the fifth and sixth row of Table I.

shows the case with balanced loss and gain, corresponding to
�k = 0 in the finite parameter range between the two EPs [see
Fig. 3(b)]. Formally, this case is similar to those discussed
recently in many papers related to non-Hermitian operators
with PT symmetry whose eigenvalues are real in a finite
parameter range; see e.g. [23,24]. The PT -symmetry breaking
is caused by EPs.

The results shown in Fig. 3, left panel, have the same
characteristic features as those shown in Fig. 1, right panel.
The same holds true when the coupling strength ω is complex
(Fig. 3, right panel, as compared to Fig. 2, right panel).

In Fig. 4, some results are shown with, respectively, almost
imaginary (left panel) and almost real (right panel) coupling
strength ω. We see again the characteristic sharp transition
rk → 0 in approaching the EP and rk → 1 at another parameter
value at which we have maximum width bifurcation and
maximum level repulsion, respectively. Additionally, we show
in Fig. 4 the mixing of the wave functions expressed by the
coefficients |bkl| which are defined in Eq. (11). At the EP,
|bkl| → ∞ as shown in Ref. [2]. As in the other figures with
complex coupling strength ω (Figs. 2 and 3 right panel), there
is only one EP. The point of maximum width bifurcation
and maximum level repulsion, respectively, appears at a finite
parameter distance from the EP. In this parameter region, the
two wave functions are strongly mixed. The mixing remains
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FIG. 4. Same as Fig. 1 but with the parameters given, respectively,
in the seventh and eighth row of Table I. In (e) and (j), the mixing
coefficients |bij | of the wave functions, defined by (11), are shown.

when rk → 1 is approached. Beyond rk → 1, we see the hint
to a nearby EP (0 < rk < 1) which limits the extension of the
total critical parameter region. Beyond this critical parameter
region, the wave functions approach their original orthogonal
character. The physical meaning of the mixing of the wave
functions under the influence of EPs is discussed in detail in
Refs. [12,13]. Here, we underline only that the wave functions

TABLE I. Parameters used in the calculations.

Figure e1 e2 γ1/2 γ2/2 ω

Figs. 1(a)–1(d) 2/3 2/3 + d −0.5 −0.5 0.05i

Figs. 1(e)–1(h) 1/2 1/2 −0.5 −0.5 a 0.05
Figs. 2(a)–2(d) 2/3 2/3 + d −0.5 −0.55 0.025 (1 + i)
Figs. 2(e)–2(h) 0.55 0.5 −0.5 −0.5 a 0.025 (1 + i)
Figs. 3(a)–3(d) 0.5 0.5 0.05 a −0.05 a 0.05
Figs. 3(e)–3(h) 0.55 0.5 0.05 a −0.05 a 0.025 (1 + i)
Figs. 4(a)–4(e) 0.5 a −0.05 −0.06 0.05 ( 1

10 + i)
Figs. 4(f)–4(j) 0.5 0.51 −0.5 −0.3 a 0.05 (1 + 1

10 i)

FIG. 5. Energies Ei (full lines) (a),(e), widths �i/2 (b),(f), phase
rigidity ri (c),(g), and 1 − ri (d),(h) of the two eigenfunctions of
H(2) (left panel) and of the three eigenfunctions of H(3) (right panel),
respectively, as a function of the parameter a. The dashed lines in
(a),(e) and (b),(f) show, respectively, the ei and γi/2 trajectories. The
parameters are as follows: ω = 0.01i, e1 = 1 − 1/2a, e2 = a, e3 =
−1/3 + 3/2a (e)–(h); γ1/2 = γ2/2 = −0.495, γ3/2 = −0.4853
(e)–(h).

are mixed when rk → 1, i.e., when they are almost orthogonal
in the critical parameter region.

B. N > 2 states

In Fig. 5, we show the influence of a “third” state onto
the eigenvalue picture and the phase rigidity around an EP in
a system that is symmetric around the crossing point of the
ei trajectories. New EPs can be identified in the three-level
case in the eigenvalue pictures and, correspondingly, in the
values of the phase rigidity (ri < 1). The two EPs near to the
crossing point of the ei trajectories are well expressed, and we
see clear hints to the existence of two other distant EPs. The
most interesting result is the sharp transition from a reduced
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FIG. 6. Same as Fig. 5 but ω = 0.005(1 + i) and γ1/2 =
−0.5, γ2/2 = −0.51, e1 = 0.5, e2 = a (left panel) and γ1/2 =
−0.5, γ2/2 = −0.505, γ3/2 = −0.51, e1 = 0.5, e2 = a, e3 = 2a −
0.5 (right panel).

value ri < 1 of the phase rigidity (which is characteristic of an
EP in the neighborhood) back to ri → 1 at maximum width
bifurcation. This abrupt transition occurs in both the two-level
system and the three-level one. At this parameter value, the
eigenfunctions of the non-Hermitian Hamiltonian H(2) as well
as those of H(3) become almost orthogonal. At and around this
critical parameter value, the wave functions of the states are
strongly mixed in both the two-level case and the three-level
case [12].

Figure 6 shows results for a more realistic case with com-
plex coupling strength ω between system and environment. In
the three-level case, hints to the existence of different (distant)
EPs can be seen. The sharp transition ri → 1 at maximum
width bifurcation however appears very clearly not only in the
two-level case but also in the three-level case.

The results shown in Figs. 5 and 6 characterize the generic
behavior of many-level open quantum systems under the
condition that the width bifurcation is maximum. The results

FIG. 7. Energies Ei (full lines) (a),(f), widths �i/2 (b),(g), phase
rigidity ri (c),(h), 1 − ri (d),(i), and mixing coefficients |bij | of the
wave functions, defined by (11), of the four eigenfunctions of H(4)

as a function of the parameter a. The dashed lines in (f),(g) show,
respectively, the ei and γi/2 trajectories. The parameters are ω =
0.01 i, e1 = 1 − a/2, e2 = a, e3 = −1/3 + 3/2a, e4 = 2/3, γ1/2 =
γ2/2 = −0.4950, γ3/2 = −0.4853, γ4/2 = −0.4950 (left panel)
and ω = 0.005 (1 + i), e1 = 0.5, e2 = a, e3 = 2a − 0.5, e4 = 1 −
a, γ1/2 = −0.5, γ2/2 = −0.505, γ3/2 = −0.51, γ4/2 = −0.505
(right panel).

are confirmed by those which we received in many other
calculations performed with different parameters (including
for systems which allow loss and gain), or with a larger number
N of states. For illustration we show numerical results obtained
for N = 4 states in Fig. 7. Again we see hints to several EPs
as well as the sharp transition of ri to a value almost 1 at a
critical parameter value. Here, the wave functions of all four
states are strongly mixed.

VI. DISCUSSION OF THE RESULTS

A. N = 2 states

The most surprising result of our study is the strong
parameter dependence of rk in a certain critical region around
an EP. The variation rk → 0 in approaching an EP is expected
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from Eq. (6). The rapid variation rk → 1 when, respectively,
the maximum width bifurcation and level repulsion is ap-
proached is however unexpected. The width bifurcation or
level repulsion starts at the EP without any enhancement
of the coupling strength between system and environment.
It is driven exclusively by the nonlinear source term of the
Schrödinger equation (10) which describes the open quantum
system. When rk → 1 the wave functions of the two states, the
eigenfunctions of which coalesce (up to a phase factor) at the
EP (correspondingly to rk → 0), become almost orthogonal to
one another. The transition from rk → 0 (at the EP) to rk → 1
(where width bifurcation and level repulsion, respectively,
is maximum) occurs suddenly as a function of the varied
parameter in all our calculations. The wave functions of the
two states behave smoothly, i.e., they remain mixed also when
rk → 1.

The physical meaning of this result consists in the fact
that a stabilization of the localized part of the system occurs
when the interaction ω between system and environment is
strong enough, i.e., when it is of the same order of magnitude
as the widths γi/2. Then, in the case of Eqs. (14) to (16),
one of the two states receives a very short lifetime due to
width bifurcation, and becomes almost indistinguishable from
the states of the environment. Although this process seems
to be reversible according to the figures for the eigenvalues,
this is in reality not the case. The processes occurring in
approaching rk → 1 take place, as mentioned above, by means
of the nonlinear source term of the Schrödinger equation
near an EP. Due to these processes, the long-lived state has
“lost” its short-lived partner with the consequence that the
two original states cannot be reproduced. This evolution is
therefore irreversible. The long-lived state is more stable than
the original one, and the system as a whole (which has lost one
state) is more stable than originally. The wave function of this
long-lived state is mixed in those of the original states.

The stabilization of the system due to Eqs. (17) to (19)
occurs in an analog manner. Due to level repulsion, the two
states separate from one another in energy, such that their
interaction with one another is, eventually, of the same type as
that with all the other distant states of the system. That means
each of the original states has lost its partner, also in this case,
and the reproduction of the two originally neighbored states is
prevented. As a result, the interaction of the states of the system
via the environment is reduced (since all states are distant in
energy), with the consequence that the system can be described
well as a closed (almost stable) system. In difference to the
case with width bifurcation, however, the number of states of
the system as a whole remains unchanged.

Equations (14) to (19) with purely imaginary and real
coupling strength ω, respectively, will seldom be realized.
They allow us however to receive analytical results (see
Sec. II) and to understand the basic mechanism. Our numerical
results for the more realistic cases with complex ω show the
same effects. The interesting critical parameter range is that
between the position of the EP and that of the maximum width
bifurcation or level repulsion, respectively, as shown in the
figures with complex ω. In this parameter range, the wave
functions are strongly mixed and rk varies suddenly from the
value zero at the EP, according to (6), to the value almost 1,
characteristic for almost orthogonal states at maximum width

bifurcation and level repulsion, respectively. When rk → 1,
the wave functions remain strongly mixed in relation to the
original ones in all cases.

The results are very robust and show the same characteristic
features in all cases studied by us. They hold true for systems
with loss (corresponding to decaying systems) and also for
those in which gain may occur (by absorbing particles from
the environment). They hold true also when gain and loss are
balanced.

It should be underlined here once more that a quantum
system is really open and its properties are strongly influenced
by the environment of scattering wave functions only in the
vicinity of EPs. Here, neighboring states may strongly interact
via the environment and may cause some decoupling of the
whole system from the environment, as shown above. As a
result of this decoupling, the system is stabilized, behaves
“linearly,” and Fermi’s golden rule is applicable.

The eigenvalues shown in Fig. 3, left panel, are real in
the parameter range between the two EPs. This might be
interpreted as a signature of PT symmetry. The Hamiltonian
H(2) is non-Hermitian also in this parameter range. The wave
functions are biorthogonal and the phase rigidity is different
from 1 for all parameter values including those for which
the eigenvalues are real. The corresponding ri are near to
1, and not equal to 1. All calculations in this parameter
range for realistic systems can therefore be performed, to
a good approximation, by using a Hermitian Hamiltonian.
Nevertheless, such a calculation for an open quantum system
remains an approximation, although it will provide good
results.

Moreover, the parameters used in Fig. 3, left panel, are
unrealistic for a physical system. The coupling parameter ω is
usually complex as discussed in, e.g., [2,13]. The eigenvalues
obtained in a corresponding calculation are no longer real in a
certain finite parameter range; see the example in Fig. 3, right
panel. Also in this case, PT symmetry breaking may appear
and the behavior of the system at maximum width bifurcation
is determined by the nonlinear source term involved in
the Schrödinger equation for an open quantum system, and
we have the jumplike transition ri → 1 at maximum width
bifurcation also in this less symmetric case.

The phenomenon of almost orthogonal wave functions at
maximum width bifurcation (or maximum level repulsion) is
robust as Figs. 1 to 4 for different two-state systems show. It is
not an artifact of the two-state model (1), since it appears also
in calculations with more than two states (see Sec. V B).

B. N > 2 states

All our calculations with N > 2 states are performed in
the parameter region in which a higher-order EP is expected.
Signatures of the existence of such a higher-order EP are not
found in any of the results. This is, of course, not astonishing
since every EP is a point in the continuum and therefore of
measure zero. Also the second-order EPs (crossing points of
two eigenvalue trajectories) can be identified only by their
influence onto observables in their neighborhood. Our results
show clearly that this holds true also for higher-order EPs.

One of the characteristic features of an EP (i.e., of the
crossing point of two eigenvalue trajectories) is that the
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two eigenfunctions in its surroundings are mixed due to the
coupling of the system to a common environment [13]. This
environmentally induced interaction of the states is large at and
near to an EP (where the phase rigidity of the wave functions is
reduced, as discussed in Sec. II). A nearby state does therefore
not interact with the original states which cross at the EP. It
interacts rather with some states, the wave functions of which
are mixed in those of the original states [according to (11)].
At and near to these crossing points, new EPs of second order
appear, the ranges of influence of which overlap. In other
words, a clustering of EPs occurs; see the discussion in Sec. IV.

It is this phenomenon of clustering of EPs which we see in
Figs. 5 to 7. It occurs in the parameter range of a higher-order
EP. The results are generic and provide us valuable information
on the dynamics of open quantum systems. Most interesting
is the phenomenon of the jumplike enhancement of the phase
rigidity when the maximum width bifurcation is parametrically
approached. This effect is of the same type as that observed
numerically for two states and discussed in detail in Secs. V A
and VI A, respectively.

VII. CONCLUSIONS

In this paper we have described open quantum systems
by means of a Schrödinger equation the Hamiltonian H of
which is completely non-Hermitian. It contains explicitly (in
the nondiagonal matrix elements) the interaction of the states
via the environment. The eigenvalues ofH are complex and the
eigenfunctions are biorthogonal. The most interesting property
is that the eigenvalues of two states may coalesce in one
point (the so-called EP), at which also the corresponding
eigenfunctions are the same, up to a phase [2]. The EPs are
singular points and play an important role for the dynamics of
open quantum systems.

We used also the equivalent description of the system by
means of a Schrödinger equation with the non-Hermitian
Hamilton operator H0 (with vanishing nondiagonal matrix
elements) and source term. Here, the interaction of the states
via the environment is contained in the source term, and not
in the Hamiltonian. The source term is nonlinear near and at
EPs. It drives the behavior of the open quantum system and
determines the dynamics of open quantum systems.

Our main concern of the present paper is the phase rigidity ri

of the eigenfunction �i ofH. This value provides a quantitative
measure for the biorthogonality of the wave function of the
state i, i.e., for the possibility to influence the properties of the
system by the environment. It holds 1 � ri � 0. At ri ≈ 1,
the wave functions are almost orthogonal, very much like
the eigenfunctions of a Hermitian operator. For vanishing ri ,
however, the eigenfunctions of the non-Hermitian operator
are really biorthogonal, and the influence of the environment
is extremely large. This influence may cause, among others,
a mixing of the wave functions of the different states via
the environment. In Refs. [12,13], the modification of the
eigenfunction �i of the non-Hermitian Hamilton operator
H due to its coupling to other states of the system via the
environment is studied in detail. The resulting mixing of the
wave functions can be expressed by the relation (11). At and
near to an EP, the mixing is extremely large.

We studied first the phase rigidity in a two-level system
around an EP. In all our calculations, the coupling strength ω

between system and environment is fixed. Only the energies
ei or widths γi of the states are parametrically varied. We have
ri ≈ 1 far from an EP and ri → 0 in approaching an EP. This
result is expected from analytical studies.

We observe, however, also another result in the critical
region around an EP which is completely unexpected. In ap-
proaching the maximum width bifurcation and level repulsion,
respectively, the value of the phase rigidity varies rapidly from
its value ri < 1 to ri ≈ 1. That means that the two wave
functions are almost orthogonal when the width bifurcation
or level repulsion is maximum. This jumplike variation of the
phase rigidity is observed at fixed coupling strength between
system and environment. It is caused therefore exclusively
by the nonlinear source term of the Schrödinger equation.
The wave functions of the states remain mixed at this
critical parameter value, although they are almost orthogonal
according to ri → 1.

This phenomenon occurs not only in the simple two-state
model (see Sec. V A) but also in the case with more than two
states (see Sec. V B). In the first case, we have well separated
EPs, while there is some clustering of EPs in the second case.
That means the clustering of EPs does not destroy the effect;
see Figs. 5 to 7. Quite the contrary; the clustering of many EPs
causes a dynamical phase transition from an open quantum
system (with biorthogonal eigenfunctions of its states) to an
almost closed system (with almost orthogonal eigenfunctions
of its states). The underlying process is irreversible and causes
a stabilization of the whole system, meaning that the open
system can be described approximately as a closed system. The
wave functions at both sides of the dynamical phase transition
are nonanalytically related to one another and differ funda-
mentally from one another. This feature is characteristic of any
phase transition. The wave functions of the states on one side of
the phase transition might be obtained by using the two-body
residual forces derived from forces between free particles. This
will be impossible, however, on the other side of the transition
where the wave functions are modified due to the mixing of
the different states of the system via the common environment.

Our results provide the following generic feature of open
quantum systems. When two states are near to one another
in energy or in lifetime, they may strongly interact with one
another via the continuum of scattering wave functions due to
the existence of a singular point (EP) in their vicinity. Here,
the Schrödinger equation contains nonlinear terms, irreversible
processes occur, and the whole system will be stabilized. As a
result, the system behaves very much like a closed system that
is localized in space: the eigenstates are almost orthogonal
and the eigenvalues are almost real (and sometimes even
completely real [2]). Such a situation can be described well
by a Hermitian operator where the lifetime of a state does
not appear explicitly. By this, the meaning of lifetime for
the characterization of the individual states of the system is
lost. Characteristic of the states are solely their energies and
wave functions, while the lifetimes can be obtained by using
perturbation methods.

Nevertheless, the results presented in our paper show that
energy and time are related to one another in quantum me-
chanical systems. It is shown in Ref. [15] that time is bounded
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from below in non-Hermitian quantum physics. This follows
from the fact that the decay widths (inverse proportional to the
lifetimes of the states) cannot increase limitlessly. Thus time is
bounded from below in the same manner as energy, in contrast
to the assumptions of Hermitian quantum physics. Pauli has
used this argument of Hermitian quantum physics, see e.g.
[25], in order to conclude that the uncertainty relation between
time and energy, on principle, cannot be derived; for details
see e.g. [17]. The uncertainty relation between energy and
time remained therefore a puzzling phenomenon in Hermitian
quantum physics. As our results show, this phenomenon is not
at all puzzling in non-Hermitian quantum physics.

Concluding, we recall the phenomenon of resonance
trapping [2] observed many years ago. Resonance trapping
occurring in an open quantum system coupled strongly to the
environment prevents the overlapping of individual resonance

states. Consequently, the system is practically always in
the regime of weakly (or not) overlapping resonances; see
e.g. [2,26]. In analogy to this phenomenon, an open quantum
system can be described quite well by a Hermitian Hamiltonian
on both sides of the dynamical phase transition. This statement
agrees completely with experience. Interesting nontrivial
features of open quantum systems appear only in the parameter
range in which a clustering of EPs and therewith a dynamical
phase transition occurs. One of many examples is the relation
between reduced phase rigidity and enhanced transmission
through a quantum dot [27].

The results presented in this paper are generic. We believe
that they will initialize further studies for concrete systems
under concrete conditions. By this, they will provide new
interesting results for open quantum systems, especially in
the parameter range of a dynamical phase transition.
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