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It has been argued that it is incompatible to maintain unitary time evolution for time-dependent non-Hermitian
Hamiltonians when the metric operator is explicitly time dependent. We demonstrate here that the time-dependent
Dyson equation and the time-dependent quasi-Hermiticity relation can be solved consistently in such a scenario
for a time-dependent Dyson map and time-dependent metric operator, respectively. These solutions are obtained
at the cost of rendering the non-Hermitian Hamiltonian to be a nonobservable operator as it ceases to be
quasi-Hermitian when the metric becomes time dependent.
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I. INTRODUCTION

The time evolution of Hamiltonian systems is a central
and fundamental issue in quantum mechanics, especially with
regard to physical applications. The key principles are very
well understood for a long time for Hermitian Hamiltonian
systems and can be found in almost any standard book on
quantum mechanics. However, the situation is quite different
for the class of non-Hermitian systems that possess real
or at least partially real eigenvalue spectra. Such type of
models have been investigated sporadically for a long time,
but the relatively recent seminal paper [1] has initiated a
more systematic study. For time-independent systems the
governing principles are by now also well understood and
many experiments exist to confirm the key findings, e.g. [2–4].
For recent reviews on the subject area, see for instance [5,6]
or [7,8] for recent special issues.

In contrast, time-dependent non-Hermitian systems are far
less well investigated and it appears that so far no consensus
has been reached about a number of central issues. Whereas
the treatment for systems with time-dependent non-Hermitian
Hamiltonians with time-independent metric operators [9,10]
is widely accepted the more general setting with a time-
dependent metric is still controversially discussed [11–18].
Explicit solutions to the central equations, i.e., the time-
dependent Dyson and the time-dependent quasi-Hermiticity
relation, have not been reported. Instead most authors resort to
a nonunitary time evolution [12,14,16–18] for these systems by
insisting on a quasi-Hermiticity relation between a Hermitian
and a non-Hermitian “Hamiltonian.” The main purpose of this
manuscript is to demonstrate that this is in fact not necessary.
We add some clarifying arguments to the central discussion,
provide some analytic solutions to the key equations, and
discuss some of the consequences.

Our manuscript is organized as follows. In Sec. II we state
the general framework for a description of a unitary time
evolution for time-dependent non-Hermitian Hamiltonians.
In Sec. III we provide two explicit examples that illustrate
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the working of our proposal and in Sec. IV we state our
conclusions.

II. TIME-DEPENDENT DYSON AND
QUASI-HERMITICITY RELATION

As our starting point we take the two time-dependent
Schrödinger equations (TDSE)

h(t)φ(t) = i�∂tφ(t), H (t)�(t) = i�∂t�(t). (2.1)

Both Hamiltonians involved are explicitly time dependent,
with h(t) being Hermitian whereas H (t) is taken to be non-
Hermitian, i.e., h(t) = h†(t) and H (t) �= H †(t). We also insist
here that operators may only be referred to as Hamiltonians
if they generate the time evolution for the system under
consideration, that is if they satisfy the TDSE. Next we assume
that the two solutions φ(t) and �(t) to (2.1) are related by a
time-dependent invertible operator η(t) as

φ(t) = η(t)�(t). (2.2)

It then follows immediately by direct substitution of (2.2) into
(2.1) that the two Hamiltonians are allied to each other as

h(t) = η(t)H (t)η−1(t) + i�∂tη(t)η−1(t). (2.3)

Thus h(t) and H (t) are no longer related by a similarity trans-
formation, or more formally by the adjoint action of the Dyson
operator, as in the completely time-independent scenario [19]
or the time-dependent scenario with time-independent metric,
but instead their mutual dependence involves a gaugelike
term as discussed in [9–11]. We emphasize, however, that
although formally the last term in (2.3) resembles a gauge
connection this is not the role it plays here. We refer to Eq. (2.3)
as the time-dependent Dyson relation as it generalizes its
time-independent counterpart. Taking the Hermitian conjugate
of equation (2.3) and using the Hermiticity of h(t) yields a
relation between H (t) and its Hermitian conjugate

H †(t)η†(t)η(t) − η†(t)η(t)H (t) = i�∂t

[
η†(t)η(t)

]
. (2.4)

Interpreting ρ(t) := η†(t)η(t) as a metric operator this relation
replaces the standard quasi-Hermiticity relation well known
in the context time-independent non-Hermitian quantum
mechanics [20]. The justification for this interpretation
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emerges as a consistency requirement from demanding the
existence of a metric operator ρ(t), such that time-dependent
probability densities in the Hermitian and non-Hermitian
system are related as〈

φ(t)
∣∣φ̃(t)

〉 = 〈
�(t)

∣∣ρ(t)�̃(t)
〉 =:

〈
�(t)

∣∣�̃(t)
〉
ρ
. (2.5)

For unitary time evolution these probabilities are preserved in
time such that the derivative of both sides with respect to time
must vanish. For the left-hand side this is simply guaranteed
by the Hermiticity of h(t) and the validity of the corresponding
TDSE (2.1). The right-hand side yields instead the consistency
relation

H †(t)ρ(t) − ρ(t)H (t) = i�∂tρ(t), (2.6)

which when compared to (2.4) allows for the aforementioned
identification for ρ(t) in terms of η(t) as announced above. We
refer to Eq. (2.6), which may already be found in [11], as the
time-dependent quasi-Hermiticity relation. It is noteworthy to
point out that the reverse statement also holds, i.e., metric
operators that do not satisfy (2.6) do not allow for unitary time
evolution.

It is now evident that in complete analogy to the time-
independent scenario any self-adjoint operator o(t), i.e., an
observable, in the Hermitian system has an observable coun-
terpart O(t) in the non-Hermitain system related to each other
as O(t)= η−1(t)o(t)η(t), since〈

φ(t)
∣∣o(t)φ̃(t)

〉 = 〈
o(t)φ(t)

∣∣φ̃(t)
〉 = 〈

�(t)
∣∣O(t)�̃(t)

〉
ρ

= 〈
O(t)�(t)

∣∣�̃(t)
〉
ρ
. (2.7)

Obviously due to Eq. (2.3), the non-Hermitian Hamiltonian
H (t) does not belong to the set of observables in this system
as it is not related to h(t) by a similarity transformation, which
was already pointed out in [9,10,13,15]. However, there is no
compelling reason why the non-Hermitian Hamiltonian H (t)
ought to be observable. Nonetheless, one may easily find a
closely related operator

H̃ (t) = η−1(t)h(t)η(t) = H (t) + i�η−1(t)∂tη(t), (2.8)

which is observable as it is related to the Hermitian observable
h(t) by means of the aforementioned similarity transformation.
In other words, H̃ (t) is quasi-Hermitian. However, the operator
H̃ (t) has no obvious concrete meaning and is certainly not
a Hamiltonian in the sense that it does not generate the time
evolution in this system and does not satisfy the original TDSE.

The relations above are directly transferred to the time-
evolution operators. Recall that for the Hermitian Hamiltonian
h(t), satisfying (2.1), the unitary time evolution to a state
φ(t) = u(t,t ′)φ(t ′) from a time t ′ to t is governed by the
time-evolution operator

u(t,t ′) = T exp

[
−i�

∫ t

t ′
dsh(s)

]
, (2.9)

satisfying

h(t)u(t,t ′) = i�∂tu(t,t ′), u(t,t ′)u(t ′,t ′′) = u(t,t ′′),

u(t,t) = I. (2.10)

As usual T denotes here time ordering. Evidently we could
replace h(t) by H (t) or H̃ (t) in (2.9), with the effect that in the

former case we no longer have a unitary time evolution and in
the latter we have a contradiction since H̃ (t) does not satisfy
the TDSE for this system, i.e., it is not a Hamiltonian. However,
given the time-evolution operator u(t,t ′) for the Hermitian
system it follows straightforwardly from (2.7) that the unitary
time-evolution operator U (t,t ′) for the non-Hermitian system
evolving ψ(t) = U (t,t ′)ψ(t ′) is given by

U (t,t ′) = η−1(t)u(t,t ′)η(t ′). (2.11)

Thus we are in complete agreement with Mostafazadeh’s
conclusions in [11,13,15] that for time-dependent metric
operators one cannot simultaneously have a unitary time
evolution and an observable arbitrary Hamiltonian; one can
only have one or the other. The treatments in [12,14,16–18]
give up the possibility of a unitary time evolution by insisting
on a quasi-Hermiticity relation between H (t) and h(t), hence
leaving the role of the non-Hermitian operator H (t) in an
obscure state. Since it does not satisfy the TDSE it remains
unclear by what kind of principle it is introduced.

Thus so far the incompatibility between the unitary time
evolution and an observable Hamiltonian is left as a negative
statement [11,13,15], apart from the above mentioned treat-
ments for non-Hermitian Hamiltonians of unclear origin. It
appears that no attempt has been made to solve the relations
(2.3) or (2.6), apart from two examples in [21], where (2.6) has
been solved but no Hermitian counterpart was constructed. A
possible reason is that one may insist on the observability of the
Hamiltonian. However, there is no compelling reason for such
a view. In the time-independent setting it is standard procedure
to commence with non-Hermitian Hamiltonians in terms of
some auxiliary variables x and p, which are not observable.
Here we extend this principle to the Hamiltonian itself and
treat the Hamiltonian H (t) as a mere auxiliary operator, which
does, however, play the role as governing the time evolution.

III. SOLUTIONS TO THE TIME-DEPENDENT DYSON AND
QUASI-HERMITICITY RELATION

It is of course vital to demonstrate that the above formulas
are not empty and can indeed be solved consistently. As in the
time-independent case we have now various options to solve
these equations depending on the quantity or quantities given
at the starting point. In general, we commence with the non-
Hermitian Hamiltonian H (t) satisfying the TDSE (2.1). One
may then compute, at least in principle, the metric ρ(t) from
the time-dependent quasi-Hermiticity relation (2.6) as ρ(t) is
the only unknown quantity therein. The Dyson map η(t) then
follows directly from its relation to ρ(t), in which for simplicity
one may assume η(t) to be Hermitian such that one just has to
take the square root. When η(t) and H (t) are determined one
can use (2.3) to compute directly the Hermitian counterpart
h(t). The final step then consists of solving either of the TDSE
(2.1) for φ(t) or �(t), obtaining the counterpart simply from
(2.2). Alternatively one may also make a suitable ansatz for
η(t) and compute the right-hand side of (2.3) demanding the
result to be Hermitian. Let us see this in detail for two examples
by solving (2.3) in the first and (2.6) in the second.
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A. Non-Hermitian harmonic oscillator with linear terms

We consider first the time-dependent Hamiltonian for the
harmonic oscillator with additional linear terms in the standard
creation and annihilation operators a and a†, respectively,

H (t) = ω(t)a†a + α(t)a + β(t)a†, ω(t),α(t),β(t) ∈ C.

(3.1)
For convenience we set here and in what follows � = 1.
Evidently H (t) is non-Hermitian when α(t) �= β∗(t). Notice
that when demanding PT symmetry for the Hamiltonian in
the time-independent setting one demands ω(t), α(t), β(t) →
ω,iα,iβ ∈ R, since PT : a → −a, a† → −a†. However, any
real-valued function ω(x), iα(x), iβ(x) may now be replaced
for instance by the complex-valued functions ω(it), iα(it),
iβ(it) still leaving the HamiltonianPT symmetric, sincePT :
t → −t , i → −i. In order to solve the time-dependent Dyson
relation (2.3) we make a natural ansatz for the time-dependent
Dyson map

η(t) = eγ (t)a+λ(t)a†
, γ (t),λ(t) ∈ C (3.2)

as being similar in form to the Hamiltonian in the argument of
the exponential. Substituting η(t) into (2.3) yields

h(t) = ω(t)a†a + u(t)a + v(t)a† + f (t), (3.3)

with the constraints

u = α + ωγ + iγ̇ , v = β − ωλ + iλ̇,

f = i

2

(
γ λ̇ − γ̇ λ

) − ωγλ − αλ + βγ. (3.4)

As common we denote time derivatives by an overhead dot.
For h(t) in (3.3) to be Hermitian we require the additional
constraints ω(t) ∈ R, u = v∗, and f = f ∗, which correspond
to the two equations

α − β∗ + ω(γ + λ∗) + i
(
γ̇ + λ̇∗) = 0, (3.5)

i

2

(
γ λ̇ − γ̇ λ + γ ∗λ̇∗ − γ̇ ∗λ∗) + ω

(
γ ∗λ∗ − γ λ

) + α∗λ∗

−αλ + βγ − β∗γ ∗ = 0. (3.6)

Attempting to solve these equations by assuming η(t) to be
the standard displacement operator fails, as in that case we
have γ = −λ∗, which by (3.5) implies that α(t) = β∗(t) such
that our supposedly non-Hermitian Hamiltonian H (t) becomes
Hermitian. Alternatively, we may take γ = λ∗ and α(t) =
−β∗(t), which reduces the above to the simple constraint

α + ωγ + iγ̇ = 0. (3.7)

Notice that this is just saying that u needs to vanish. We can
in fact solve this equation by

γ (t) = eiχ(t)

[
γ (0) + i

∫ t

0
ds α(s)e−iχ(s)

]
, (3.8)

where χ (t) := ∫ t

0 ds ω(s). Thus given the model defining
functions α(t) and ω(t) via our starting Hamiltonian H (t),
we can directly compute γ (t). For the presented solution our
Hermitian Hamiltonian turns out to be simply the harmonic
oscillator with a time-dependent frequency and overall shift.
Of course, there could be more involved solutions to (3.5)

and (3.6). The solution φ(t) to the TDSE for the Hermitian
Hamiltonian h(t) is then easily found as a special case of
the treatment in [22], such that we have now also obtained a
solution �(t) = η−1(t)φ(t) to the TDSE for the non-Hermitian
Hamiltonian H (t) subject to the above-mentioned constraints.
For the convenience of the reader we recall the solution from
[22]. The ground state |φ0(t)〉 was found to be a coherent state
|θ (t)〉 dressed with a time-dependent Lewis-Riesenfeld phase
�0(t)

|φ0(t)〉 = eiϕ0(t)|θ (t)〉, (3.9)

given by

|θ (t)〉 = e−|ϑ(t)|2 ∑∞
n=0

ϑn(t)√
n!

|n〉, ϑ(t) = ϑ(0)e−iχ (t),

ϕ0(t) = ϕ0(0) −
∫ t

0
ds f (s), (3.10)

with |n〉 being a standard Fock eigenstate of the number
operator a†a. Excited states are constructed in a similar
fashion; see also [23,24] for further details.

The observables in the non-Hermitian system are easily
computed. For instance, the quadratures (X,P ) corresponding
in the Hermitian system to the coordinate and momentum
operators x = (a† + a)/

√
2 and p = i(a† − a)/

√
2, respec-

tively, are now simply shifted operators in the original variables

X = η−1xη = x − i
√

2 Im γ,

P = η−1pη = p − i
√

2 Re γ. (3.11)

The observable operator related to the Hermitian Hamiltonian,
albeit not satisfyimg the original TDSE, results to

H̃ (t) = η−1(t)h(t)η(t) = ω(t)
[
a†a − γ (t)a + γ ∗(t)a†]

+ i

2

[
γ̇ (t)γ ∗(t) − γ (t)γ̇ ∗(t)

]
. (3.12)

We notice that H̃ (t) and H (t) have the same structure in their
operator content.

B. Non-Hermitian spin chain

Next we consider a discretized lattice version of the Yang-
Lee model proposed originally in [25]. The model is an Ising
quantum spin chain in the presence of a magnetic field in the
z direction together with a longitudinal imaginary field in the
x direction

HN (t) = −1

2

N∑
j=1

[
σ z

j + λ(t)σx
j σ x

j+1 + iκ(t)σx
j

]
,

λ(t),κ(t) ∈ C. (3.13)

The boundary conditions for the Pauli spin matrices are taken
to be σ1 = σN+1. Here we modify the model by introducing a
time dependence into the coupling constants by replacing λ, κ
in previous studies by time-dependent functions λ(t), κ(t) . The
PT symmetry of the Hamiltonian is PT : σx → −σx , σ z →
σ z, t → −t , i → −i. For small length N time-independent
Dyson maps, metric operators and isospectral counterparts
have been constructed in [26]. We present here the simplest
example for the time-dependent scenario by taking N = 1,
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such that the Hamiltonian acquires the form of a simple non-Hermitian 2 × 2 matrix

H1(t) = −1

2

[
σ z

1 + λ(t)σx
1 σx

1 + iκ(t)σx
1

] = −1

2

(
1 + λ(t) iκ(t)
iκ(t) λ(t) − 1

)
. (3.14)

Instead of solving Eq. (2.3) as in the previous subsection, we now attempt here to solve the time-dependent quasi-Hermiticity
relation (2.6) for the metric operator ρ(t) by assuming the most general Hermitian form as an ansatz

ρ(t) =
(

α(t) β(t) + iγ (t)
β(t) − iγ (t) δ(t)

)
, α(t),β(t),γ (t),δ(t) ∈ R. (3.15)

Taking λ(t),κ(t) ∈ R, the substitution of ρ(t) into (2.6) yields(
α̇ − βκ γ − κ

2 (α + δ) + β̇ + iγ̇ − iβ

γ − κ
2 (α + δ) + β̇ + iβ − iγ̇ δ̇ − βκ

)
= 0. (3.16)

The equations resulting from each matrix entry are solved by

α(t) = α0 +
∫ t

0
ds β(s)κ(s), δ(t) = δ0 +

∫ t

0
ds β(s)κ(s), γ (t) = γ0 +

∫ t

0
ds β(s), (3.17)

with β(t) constraint to

β̇(t) +
∫ t

0
ds β(s) − κ(t)

∫ t

0
ds β(s)κ(s) − κ(t)

2
(α0 + δ0) + γ0 = 0. (3.18)

The latter equation is nontrivial, but we will demonstrate that it actually possesses meaningful solutions. A great simplification is
achieved by assuming β(t) = κ̇(t), since then the two integrals may be solved easily, leaving us with a second-order differential
equation for the time-dependent function κ(t)

κ̈(t) + κ(t)

(
1 − α0 + δ0

2
+ κ2(0)

2

)
− 1

2
κ3(t) + γ0 − κ(0) = 0. (3.19)

Given the values for the entries in the matrix ρ as in (3.17), with the above assumption and implementing (3.19) we find an
additional constraint on the combination of initial values

|ρ(t)| = 1

4

[
κ2(0) − 2α0

][
2δ0 − κ2(0)

] − [
γ0 − κ2(0)

]
> 0, (3.20)

to guarantee a positive definite metric.
In general solution to (3.19) are Jacobi elliptic functions, that is complex, which are however excluded by the fact that α(t) ,

β(t), γ (t), and δ(t) have to be real by assumption. Nonetheless, for special values of the elliptic modulus we may also obtain
several real solutions. For instance,

κ(t) = 2 tan(t), with γ0 = 0, α0 = 6 − δ0, |ρ(t)| = −4 + 6δ0 − δ2
0, (3.21)

κ(t) = 2 sec(t), with γ0 = 2, α0 = 4 − δ0, |ρ(t)| = −4 + 4δ0 − δ2
0, (3.22)

κ(t) = 2 tanh(t), with γ0 = 0, α0 = −2 − δ0, |ρ(t)| = −4 − 2δ0 − δ2
0 (3.23)

solve the constraining equation (3.19) with δ0 left as a free parameter. We observe that not all of these solutions are permissible
as (3.22) and (3.23) will always lead to nonpositive operators ρ(t). However, solution (3.21) admits the possibility |ρ(t)| > 0 in
the range 3 − √

5 < δ0 < 3 + √
5. For convenience, we take now δ0 = 1 in what follows and analyze this solution further. Using

the above values, the time-dependent metric operator is computed to

ρ(t) =
(

5 + 2 tan2(t) 2 sec2(t) + 2i tan(t)
2 sec2(t) − 2i tan(t) 1 + 2 tan2(t)

)
, (3.24)

such that |ρ(t)| = 1. Assuming the Dyson operator to be Hermitian we may compute it by first diagonalizing ρ(t) = η2(t) =
UDU−1, with D being a diagonal matrix, and subsequently computing

√
ρ(t) = η(t) = U

√
DU−1. As ρ(t) is positive definite

this operation is well defined. In this manner we obtain the time-dependent Dyson operator

η(t) = 1√
sec2(t) + 1

(
2 + sec2(t) sec(t)[sec(t) + i sin(t)]

sec(t)[sec(t) − i sin(t)] sec2(t)

)
. (3.25)

These expressions allow us to compute the Hermitian Hamiltonian h(t) by means of (2.3)

h(t) = 1

3 + cos(2t)

(− 1
2 {1 + 3λ(t) + [3 + λ(t)] cos(2t)} −i sin(2t)

i sin(2t) 1
2 {1 − 3λ(t) + [3 − λ(t)] cos(2t)}

)
. (3.26)
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Evidently there might be many more solutions when allowing
λ(t),κ(t) to have nonvanishing imaginary parts or when
relaxing the assumption on β(t) in solving (3.18). Here it
suffices to demonstrate that some meaningful solutions exist.

IV. CONCLUSIONS

We have demonstrated that the time-dependent quasi-
Hermiticity relations (2.6) and therefore also the time-
dependent Dyson relation (2.3) possess meaningful solutions.
This means a consistent description of a unitary quantum
time evolution with time-dependent metric is indeed possible.
Unlike as in previous treatments we do not demand a
quasi-Hermiticity relation between a Hermitian Hamiltonian
and a non-Hermitian Hamiltonian, which inevitably leads to
nonunitary quantum evolution. Instead, we do not demand the
observability of the non-Hermitian Hamiltonian that satisfies
the TDSE and simply treat it as an auxiliary operator. Nonethe-
less, the system still possesses a well-defined observable
Hamiltonian in the form of h(t).

Evidently there are still many open problems. Clearly more
explicit solutions for concrete models would shed further
light on the viewpoint we proposed. The uniqueness problem
of the metric operator in the time-independent case is well
known, i.e., given a non-Hermitian Hamiltonian as a starting
point of the construction one obtains numerous consistent
solutions for the metric operator. This issue is still unresolved
to a large extent in the time-independent scenario. For the
time-dependent case this difficulty appears to be much more
amplified and solutions are even more ambiguous. However,
more complex settings often allow one to find special criteria
for very particular solutions and the hope is that one might
be able to extract concrete selection criteria from these
considerations.
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