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Quantum states may exhibit asymmetry with respect to the action of a given group. Such an asymmetry of states
can be considered a resource in applications such as quantum metrology, and it is a concept that encompasses
quantum coherence as a special case. We introduce explicitly and study the robustness of asymmetry, a quantifier of
asymmetry of states that we prove to have many attractive properties, including efficient numerical computability
via semidefinite programming and an operational interpretation in a channel discrimination context. We also
introduce the notion of asymmetry witnesses, whose measurement in a laboratory detects the presence of
asymmetry. We prove that properly constrained asymmetry witnesses provide lower bounds to the robustness of
asymmetry, which is shown to be a directly measurable quantity itself. We then focus our attention on coherence
witnesses and the robustness of coherence, for which we prove a number of additional results; these include an
analysis of its specific relevance in phase discrimination and quantum metrology, an analytical calculation of its
value for a relevant class of quantum states, and tight bounds that relate it to another previously defined coherence
monotone.
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I. INTRODUCTION

Symmetry is a central concept in physics, as it imposes
constraints and allows simplifications in the study of properties
and evolutions of physical systems. It has a vast range
of applicability, from particle physics, to cosmology, to its
elevation to the status of a principle on which a physical theory
can be based [1]. Symmetry is defined with respect to the
action of a symmetry group. A quantum state, described by a
density operator, may or may not be invariant under the action
of the group. The extent to which the symmetry is broken
by the quantum state constitutes its degree of asymmetry.
The advent of quantum information processing has fostered
the study of asymmetry [2–9], on one hand, because of its
potential applications as a resource in quantum communication
and estimation tasks and, on the other hand, because of
the availability of conceptual and technical tools developed
in quantum information theory, which can be efficiently
borrowed to characterize more rigorously the notions of
symmetry and asymmetry.

Quantum metrology is one of the areas of quantum
information processing more readily deployable in real-
world scenarios and is drawing a large international effort
to exploit effectively quantum features like superposition
and entanglement for enhanced sensing technologies [10].
Related to metrology is also the study of quantum reference
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frames [2–4]. The understanding of quantum reference frames
and of their manipulation is instrumental in harnessing
the advantages promised by quantum communication and
fundamental in building a fully consistent quantum picture
of nature, overcoming the need for the notion of a classical
system of reference. The presence and degree of asymmetry
in a state of a quantum system allow one to distinguish
the actions of different elements of the group, making such
an asymmetry key in quantum communication and quantum
metrology [10,11] and rendering the system at hand a potential
reference frame [2–4]. Finally, in a context where the physical
evolution is constrained by a symmetry, the asymmetry of
(the state of) a system can allow one to overcome the
limitations imposed by the symmetry group and to perform
transformations and measurements on other systems that
would otherwise be forbidden, like preparing those systems
in states that violate the symmetry constraints. In a wide
spectrum of situations, the asymmetry of a state can therefore
be seen as a resource, which allows one to perform tasks,
be they passive—as detection in metrology—or active—as in
the manipulation of quantum systems.

In this article, which is also a companion paper to [12],
we introduce explicitly and study the robustness of asymmetry
(ROA), a measure of asymmetry of quantum states that we
prove to have a number of attractive properties. As a tool on
the way, but relevant in its own right, we also introduce the
notion of asymmetry witness, that is, the general notion of an
observable whose measured value provides qualitative and—
under suitable constraints—quantitative information about the
asymmetry of a state. We then specialize our analysis to the
robustness of coherence (ROC), complementing the dedicated
study in [12]. Although quantum coherence, understood as
the superposition of orthogonal “classical” states, can be seen
as a particular case of asymmetry (namely, with respect to
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the group of time translations generated by a Hamiltonian
diagonal in the basis of such “classical” states), it deserves,
in fact, particular focus for the following reasons. First,
it can be considered the most essential quantum feature
exhibited by a single system; second, it underpins all forms
of quantum correlations in composite systems; and third, it
can be related to quantum enhancements in diverse instances
of quantum information, thermodynamics, condensed matter
physics, and life sciences [10,13–17]. Our work thus directly
contributes to advancing the recently initiated program for a
rigorous operational characterization of quantum coherence as
a resource [7,9,12,13,16,18–25].

The present paper is organized as follows. In Sec. II we
recall the notions of symmetric and asymmetric quantum
states, respectively, nonresources and resources in a resource
theoretic approach to asymmetry. In Sec. III we study in
general the ROA by defining it (Sec. III A), proving its
fundamental properties (Sec. III B), proving that its evalu-
ation can be cast as a semidefinite program (Sec. III C),
introducing the notion of asymmetry witnesses and providing
(observable) bounds (Sec. III D), and providing an operational
interpretation in terms of advantage for channel discrimination
tasks (Sec. III E). In Sec. IV we focus on the robustness of
coherence, presenting the details of the results announced
in [12], in particular, obtaining explicit and analytical bounds
on it (Sec. IV A), and calculating it analytically for relevant
cases (Sec. IV B).

II. RESOURCE THEORY OF ASYMMETRY

The notion of asymmetry with respect to a given repre-
sentation of a symmetry group G has recently been studied
in quantum mechanics adopting the information theoretic
paradigm of resource theories [5–9]. In general, the overall
objective of any resource theory is to understand and formalize
the quantification and manipulation of a given physical
phenomenon, in order to facilitate its exploitation in the most
efficient way [26]. This framework can be applied even beyond
the domain of physical sciences [27].

In quantum mechanics, any resource theory is defined by
the (typically convex) set of free states and by a set of free
operations (see, e.g., [26] and [28]). The free states are states
not possessing the resource under consideration, while any
nonfree state can be defined as a resource state or, briefly, a
resource. On the other hand, the free operations are defined
so that they are unable to create the resource from free states,
that is, they must map the set of free states into (a subset
of) itself. Depending on the context and framework, some
additional limitations may or may not be taken into account
when defining the free operations. A typical example of a
resource theory is the theory of entanglement in composite
quantum systems [29,30], where free states are identified
as separable (i.e., unentangled) states, and free operations
are conventionally taken to be local operations and classical
communication (LOCC), which nonetheless form a proper
subset of the maximal set of all possible operations mapping
separable states into separable states and even of the set of the
so-called separable operations [31].

Once free states and free operations are defined, the
main aim of a resource theory resides in the study of the

manipulation of the resource by the (chosen) free opera-
tions [26,28]. We remark that in this paper our concern lies
mainly in the quantification of a resource—asymmetry—and
not so much in its manipulation. Nonetheless, we do refer to
the notion of free operations for a meaningful reason.

One of the merits of a resource theory framework is indeed
that it naturally leads to a set of conditions which should
be satisfied by any proposed quantifier of the resource. In
particular, any valid resource measure should vanish on the
set of free states (and is termed faithful if it vanishes only on
such a set) and should be nonincreasing under the chosen free
operations: given that the latter are unable to create resources
from free states, they should also be unable to increase the
resource content of nonfree states. Any resource measure
which obeys such a fundamental constraint can be regarded as
a resource monotone [32]. Additionally, it is often demanded
that a resource measure be convex, i.e., nonincreasing under
mixing, if the set of free states is convex. Once a resource
theory is established, therefore, it proves useful to validate any
proposal for a resource measure.

This is precisely the case for the robustness of asymmetry,
on which this paper is focused. To proceed, we first recall
the main ingredients that define the resource theory of
asymmetry [7].

A. Symmetric states as free states

Given a Hilbert space H and the convex set D(H ) of
density operators acting on it, let us consider a symmetry
group G with associated unitary representation {Ug}g∈G on
H . Let us define the action of Ug on a state ξ ∈ D(H ) in
terms of the superoperator Ug as follows:

Ug(ξ ) = UgξU †
g . (1)

A state σ ∈ D(H ) is defined as symmetric with respect to G
if and only if

Ug(σ ) = σ (2)

for all g ∈ G. Note that this is equivalent to the condition
E(σ ) = σ , with

E(ξ ) = 1

|G|
∑
g∈G

Ug(ξ ) (3)

denoting the average of the action of the group [6].
We indicate by

S := {σ ∈ D(H ) : E(σ ) = σ } (4)

the set of all symmetric states σ according to the above
definition. This constitutes the set of free states for the resource
theory of asymmetry [7], and it is evidently convex. Any other
state ρ ∈ D(H ) is asymmetric with respect to G, that is, is a
resource state. Explicitly, ρ is asymmetric if and only if there
exists a g ∈ G such that

Ug(ρ) �= ρ. (5)

Equivalently, ρ is asymmetric if and only if E(ρ) �= ρ.

042107-2



ROBUSTNESS OF ASYMMETRY AND COHERENCE OF . . . PHYSICAL REVIEW A 93, 042107 (2016)

B. An example of free operations: Covariant operations

As mentioned, we are not particularly concerned with the
manipulation of asymmetry. For this reason, we do not need to
be very specific about the class of free operations. Furthermore,
the quantity we set out to study, the ROA (and later, more
specifically, the ROC), turns out to be a resource monotone
in a very general sense (see Sec. III B for more details).
Nonetheless, for concreteness, we provide an example of free
operations which have been adopted for the resource theory of
asymmetry. This is the set of covariant operations with respect
to the group G (or, in short, G-covariant operations) [7]. Any
such operation is defined by a superoperator L : D(H ) →
D(H ) such that

L(Ug(ξ )) = Ug(L(ξ )), ∀ g ∈ G, ξ ∈ D(H ). (6)

Equivalently, any covariant operation is defined by [L,Ug]
= 0,∀ g ∈ G.

III. ROBUSTNESS OF ASYMMETRY

In this section we define and investigate a quantifier of
the asymmetry of quantum states with respect to a group
representation {Ug}g∈G, in compliance with the resource
theory formalism introduced in the previous section.

A. Definition

Definition 1 (ROA). Given a state ρ ∈ D(H ), we define
the robustness of asymmetry of ρ as

AR(ρ) = min
τ∈D(H )

{
s � 0

∣∣∣∣ρ + s τ

1 + s
=: σ ∈ S

}
, (7)

that is, as the minimum weight s, parametrized as in (7), of
another state τ , such that its normalized convex mixture with
ρ results in a symmetric state σ .

If we denote by s� the value of s achieving the minimum
in Eq. (7), with corresponding states τ � (a generic state,
not necessarily symmetric) and σ � (a symmetric state), then
AR(ρ) = s�, and

ρ = (1 + AR(ρ))σ � − AR(ρ)τ � (8)

is said to realize an optimal pseudomixture for ρ.
It is immediate to realize that AR(ρ) can also be character-

ized as

AR(ρ) = min
σ∈S

{s � 0|ρ � (1 + s) σ }. (9)

This follows since Eq. (8) implies ρ � [1 + AR(ρ)]σ �, with
σ � ∈ S , which means that AR(ρ) is lower-bounded by the
minimum on the right-hand side of Eq. (9). On the other hand,
suppose ρ � (1 + s)σ for some σ ∈ S . Then we can write

σ = ρ + sτ

1 + s
,

with τ = [(1 + s)σ − ρ]/s a valid state. This proves that the
minimum in Eq. (9) is also an upper bound for AR(ρ), hence
we conclude that (9) holds.

Note that the robustness of a resource can be defined for any
general resource theory [28]. Previously, robustness quantifiers
have been studied for entanglement, steering-type correlations,
nonlocality, and even correlations beyond quantum [33–36].

Nonetheless, to our knowledge, the notion of ROA has not
been explored yet.

B. Properties

Here we prove that the ROA satisfies a number of properties
which qualify it as a valid asymmetry monotone. We remark
that the properties listed here are valid, with suitable adap-
tations, for all measures of robustness defined in a resource
theoretic context [28], with respect to a convex set of free states
(in our case, symmetric states) that is closed under a chosen
set of free operations (in our case, e.g., covariant operations).
The first such example of a robustness measure was defined
for entanglement theory [33,34]. Most of the proofs reported
here are in fact straightforward translations of those originally
produced for the robustness of entanglement.

Property 1. The ROA is bounded as

0 � AR(ρ) � dim(H ) − 1 (10)

for any ρ ∈ D(H ). Furthermore, the ROA is faithful, that is,

AR(ρ) = 0 ⇐⇒ ρ ∈ S . (11)

Proof. That AR(ρ) � 0 and that AR(ρ) = 0 if and only
if ρ ∈ S are evident by definition (7). Let d = dim(H ).
The bound AR(ρ) � d − 1 is proven by considering that
the maximally mixed state 1/d is symmetric for any unitary
representation on H and that

ρ � 1 = [1 + (d − 1)]
1

d

for every ρ ∈ D(H ). We get the claim by comparing this with
Eq. (9).

Property 2. Let {�l}ml=1 be an instrument, that is, a collection
of m completely positive subchannels, summing up to a com-
pletely positive trace-preserving channel L(ρ) = ∑m

l=1 �l(ρ),
such that �l(σ )/Tr[�l(σ )] = σl ∈ S ,∀ l = 1, . . . ,m, and for
any σ ∈ S . Then the ROA is monotonically nonincreasing on
average under {�l}ml=1:

AR(ρ) �
∑

l

Tr[�l(ρ)]AR

(
�l(ρ)

Tr[�l(ρ)]

)
. (12)

Proof. Let τ � and σ � denote the (generic and symmetric,
respectively) states in the optimal pseudomixture for AR(ρ)
as in Eq. (8), and let us apply the subchannel �l on both sides,
so that

�l(ρ) = (1 + AR(ρ))�l(δ
�) − AR(ρ)�l(τ

�).

By defining

σl = 1

(1 + sl)

1

pl

(1 + AR(ρ))�l(δ
�),

τl = 1

sl

1

pl

AR(ρ)�l(τ
�),

sl = 1

pl

AR(ρ)Tr[�l(τ
�)],

with pl = Tr[�l(ρ)], we can write

ρl = (1 + sl)σl − slτl,
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where ρl = �l(ρ)/pl . Since the latter pseudomixture for each
ρl is not necessarily optimal, it follows by Eq. (9) that

AR(ρl) � sl.

Taking the weighted average over all subchannels, and recall-
ing that

∑
l Tr[�l(ξ )] = 1 for any state ξ , we finally get∑

l

plAR

(
�l(ρ)

pl

)
�

∑
l

pl

pl

AR(ρ)Tr[�l(τ
�)] = AR(ρ).

Note that this property is expressed in very general terms: If
one has only one subchannel equal to a channel (m = 1), then
Eq. (12) proves standard monotonicity under free operations
that do not create the resource, e.g., under covariant operations.
If, on the other hand, one identifies each subchannel with
a Kraus operator, i.e., �l(ρ) = KlρK

†
l with

∑m
l=1 K

†
l Kl = 1,

then Eq. (12) proves the stronger monotonicity under selective
operations [16,29].

Property 3. The ROA is convex, that is,

AR(pρ1 + (1 − p)ρ2) � pAR(ρ1) + (1 − p)AR(ρ2), (13)

for any probability p ∈ [0,1] and any states ρ1,ρ2 ∈ D(H ).
Proof. Let ρ1 and ρ2 be two states, and consider for each

the optimal pseudomixture as in Eq. (8),

ρk = (1 + AR(ρk))δ�
k − AR(ρk)τ �

k ,

with k = 1,2. Now take the convex combination

ρ = pρ1 + (1 − p)ρ2,

with p ∈ [0,1], and note that a nonoptimal pseudomixture of
the form ρ = (1 + s)σ − sτ can be written, with

σ = 1

1 + s
{p[1 + AR(ρ1)]δ�

1 + (1 − p)[1 + AR(ρ2)]δ�
2},

τ = 1

s
[pAR(ρ1)τ �

1 + (1 − p)AR(ρ2)τ �
2 ],

s = pAR(ρ1) + (1 − p)AR(ρ2).

By definition, the optimal pseudomixture for ρ in the definition
of the ROA will have AR(ρ) = s� � s, which proves Eq. (13).

C. Robustness of asymmetry as a semidefinite program

We now show that the evaluation of the ROA can be recast
as a semidefinite program (SDP) [37]. In the Supplemental
Material [38] we provide a MATLAB [39] code to evaluate
such an SDP for any input state ρ and any group representation
{Ug}, using the open-source MATLAB-based modeling system
for convex optimization CVX [40,41].

Theorem 1. The ROA AR(ρ) corresponds to the SDP:

min Tr[σ̃ ] − 1,

s.t. σ̃ � ρ,

E(σ̃ ) = σ̃ .

(14)

Strong duality holds, and the ROA can be equivalently
calculated via the dual SDP,

max −Tr[Wρ],

s.t. W � 1,

E(W ) � 0,

(15)

where W is a Hermitian operator on H , and the SDP constraint
in the last line of (15) can be restricted to E(W ) = 0; that is,
the achieved maximum is the same in both cases.

Proof. By incorporating the factor (1 + s) appearing in (9)
into the unnormalized state σ̃ = (1 + s)σ , we can reexpress
AR(ρ) as the SDP, (14). It is immediate to check that strong
duality holds, since a feasible solution of the primal SDP is
σ̃ = (1 + ε)1, for ε > 0.

The SDP can be cast in the standard form [42]

min Tr[Cσ̃ ] − 1,

s.t. 
(σ̃ ) � B,

σ̃ � 0,

(16)

with

C = 1, 
(σ̃ ) =
⎛
⎝σ̃ 0 0

0 E(σ̃ ) − σ̃ 0
0 0 −E(σ̃ ) + σ̃

⎞
⎠,

and B =
⎛
⎝ρ 0 0

0 0 0
0 0 0

⎞
⎠.

The dual SDP is then [42]

max Tr[BY ] − 1,

s.t. 
†(Y ) � C,

Y � 0,

where (the asterisks indicate irrelevant submatrices)

Y =
⎛
⎝Y1 ∗ ∗

∗ Y2 ∗
∗ ∗ Y3

⎞
⎠,

and


†(Y ) = Y1 + (E(Y2) − Y2) − (E(Y3) − Y3)
= Y1 + E(Y2 − Y3) − (Y2 − Y3).

The dual SDP then simplifies to

max Tr[ρY1] − 1,

s.t. Y1 + E(Y2 − Y3) − (Y2 − Y3) � 1,

Y1,Y2,Y3 � 0.

Noting that the target function can only be larger if the first
condition is saturated with equality, that is, Y1 = 1 − E(Y2 −
Y3) + (Y2 − Y3), and that the latter expression depends on Y2

and Y3 only through the combination W̃ = Y2 − Y3, which is
unrestricted with respect to positivity, we arrive at

max −Tr[(E(W̃ ) − W̃ )ρ],

s.t. E(W̃ ) − W̃ � 1.
(17)

Using the fact that E is idempotent [equivalently, a superop-
erator acting as a projector, that is, E2(ξ ) = E(ξ ) for all states
ξ ], it is easy to see that this is equivalent to

max −Tr[Wρ],

s.t. W � 1,

E(W ) = 0.

(18)
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Indeed, let W̃ be such that E(W̃ ) − W̃ � 1. Then if one defines
W := E(W̃ ) − W̃ , one has E(W ) = 0. Thus the value (17) is
a lower bound for the value (18). On the other hand, let W be
such thatE(W ) = 0, and define W̃ = −W . ThenE(W̃ ) − W̃ =
W . Thus the value (18) is a lower bound for the value (17).

In turn, one sees easily that (18) is equivalent to (15), i.e.,
the optimum in (15) is achieved by a W that satisfies E(W ) =
0. That (15) is an upper bound for (18) is obvious. On the
other hand, take W such that E(W ) � 0, and consider W ′ =
W − E(W ), which satisfies by definition E(W ′) = 0. Since
E(W ) � 0, one has −Tr[W ′ρ] � −Tr[Wρ] and W ′ � W � 1.
Thus, (18) is an upper bound for (15).

The reason that in Theorem 1 we refer to the SDP (15)
rather than (18) is mostly the fact that the condition E(W ) � 0
is more robust than the condition E(W ) = 0, both numerically
and experimentally. That is, for example, directly measuring an
observable W satisfying E(W ) � 0, for the purpose of asym-
metry detection and estimation, is experimentally feasible,
while meeting the exact condition E(W ) = 0 is impossible
in practice (although it might be considered feasible if we are
content with implementing the condition within error bars). We
discuss further the issue of practically measuring or estimating
the ROA in Sec. III D.

For later convenience, we also report an alternative form of
the dual of the SDP in Eq. (18), rewritten as

max Tr[Xρ] − 1,

s.t. X � 0,

E(X) = 1,

(19)

where we have simply made the substitution X = 1 − W for
the SDP variable.

D. Asymmetry witnesses and observable lower bounds
to the robustness of asymmetry

Here we follow up on the previous (rather technical)
subsection by presenting some insightful physical remarks
stemming from Theorem 1 and, in particular, Eq. (15). We first
observe that, thanks to the fact that Tr[E(Y )X] = Tr[YE(X)]
for all X,Y , the condition E(W ) � 0 is equivalent to

Tr[Wσ ] � 0, ∀ σ ∈ S . (20)

This means that any Hermitian operator W such that E(W ) � 0
can be regarded as an asymmetry witness, in analogy with the
theory of entanglement witnesses [30]. For any such W , finding
Tr[Wρ] < 0 implies that the state ρ is asymmetric, that is, a
resource.

The SDP formulation in Theorem 1 further implies that

max{0, − Tr[ρW ]} � AR(ρ) (21)

for all the asymmetry witnesses W subject to the constraints
of Eq. (15). By the same statement, it follows that for any state
ρ there exists an optimal (state-dependent) witness W� such
that the ROA of ρ is exactly observable as

AR(ρ) = −Tr[ρW�]. (22)

These observations entail that the ROA can be regarded as an
instance of a quantitative asymmetry witness, in analogy to
quantitative entanglement witnesses [43–48].

By employing suboptimal witnesses W in Eq. (21), e.g.,
tailored on experimental capabilities, one can estimate the
ROA from below. We can now readily provide a chain of
explicit lower bounds to the ROA of an arbitrary state ρ, as
follows.

Theorem 2. For any ρ ∈ D(H ), it holds that

AR(ρ) � ‖ρ − E(ρ)‖2
2

‖E(ρ)‖∞
� ‖ρ − E(ρ)‖2

2

‖E(ρ)‖2
� ‖ρ − E(ρ)‖2

2,

(23)
where ‖ξ‖p denotes the Schatten p norm of an operator ξ ,

‖ξ‖p = (Tr[|ξ |p])
1
p , (24)

with ‖ξ‖∞ amounting to the largest singular value of ξ (also
known as operator norm) and ‖ξ‖2 =

√
Tr[ξ †ξ ] reproducing

the Hilbert-Schmidt norm of ξ .
Proof. Note first that the witness

W = E(ρ) − ρ

‖E(ρ)‖∞
(25)

is by construction an admissible operator in Eq. (18), as

E(ρ) − ρ

‖E(ρ)‖∞
� E(ρ)

‖E(ρ)‖∞
� 1

and

E(W ) = E2(ρ) − E(ρ)

‖E(ρ)‖∞
= 0.

Thus, by Eq. (21), we have

AR(ρ) � −Tr[Wρ]

= −Tr[(E(ρ) − ρ)ρ]

‖E(ρ)‖∞

= −Tr[E(ρ)2] − Tr[ρ2]

‖E(ρ)‖∞

= Tr[ρ2] − Tr[E(ρ)2]

‖E(ρ)‖∞

= ‖ρ − E(ρ)‖2
2

‖E(ρ)‖∞
,

having used that Tr[ρE(ρ)] = Tr[E(ρ)2].
The second inequality in (23) is due to the hierarchical rela-

tion ‖ξ‖∞ � ‖ξ‖2 for any operator ξ , and the third inequality
is due to the fact that ‖E(ρ)‖2 � ‖E(ρ)‖1 = Tr[ρ] = 1.

We remark that

‖ρ − E(ρ)‖2
2 = Tr[ρ2] − Tr[E(ρ)2]

and that

‖E(ρ)‖2 =
√

Tr[E(ρ)2].

Both Tr[ρ2] and Tr[E(ρ)2] are directly measurable, for an
unknown ρ, as long as one can prepare and perform measure-
ments on two identical and independent copies ρ⊗2 of ρ. It is
known [49] that one has in fact

Tr[ρ2] = Tr[ρ⊗2V ]
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and

Tr[E(ρ)2] = Tr[(E(ρ) ⊗ E(ρ))V ] = Tr[ρ⊗2E⊗2(V )],

where V is the swap operator acting on two copies of the
Hilbert space H of the system,

V |ψ〉 ⊗ |φ〉 = |φ〉 ⊗ |ψ〉,
for any |ψ〉,|φ〉 ∈ H .

Immediate lower bounds to the ROA of a state can also be
obtained based on the measurement of any set of observables
{Oi}, i = 1, . . . ,k, conveying the expectation values oi =
Tr[Oiρ], and not necessarily tailored to the measurement of
the ROA. Indeed, one can consider asymmetry witnesses of
the form W = ∑k

i=1 ciOi + m1, for c1, . . . ,ck,m ∈ R, and
lower-bound the ROA by the SDP (code available [38])

max −
(

k∑
i=1

cioi + m

)
, (26a)

s.t.
k∑

i=1

ciOi + m1 � 1, (26b)

E
(

k∑
i=1

ciOi + m1

)
� 0. (26c)

The SDP (26) provides the best possible asymmetry witness
based on the available data: a witness that, in a sense, we can
at least measure “on paper” (or, rather, on computer) given the
actual measurements performed in the laboratory.

One can make even better use of available experimental data
by exactly estimating the minimal ROA compatible with the
data. This goes beyond trying to construct the best asymmetry
witness from the data but, remarkably, can also be cast as an
SDP, more precisely, as

min Tr[σ̃ ] − 1, (27a)

s.t. σ̃ � ρ, (27b)

E(σ̃ ) = σ̃ , (27c)

ρ � 0, Tr[ρ] = 1, Tr[Oiρ] = oi ∀i. (27d)

The SDP (27) is essentially the same as the primal SDP (14)
for the ROA, but it does not assume the knowledge of the
underlying state ρ of which we want to know the asymmetry.
Instead, the SDP constraints (27d) impose the minimal
condition that a physical state ρ exists that is compatible
with the observed data, in the spirit of [43]. In general, one
cannot think of the estimate of ROA given by (27) as resulting
from calculating the expectation value of just one asymmetry
witness that is accessible with the available data. One can
easily argue that there is a single witness that would give the
same numerical result, but in general we cannot assume that
we have measured it or the ability of directly reconstructing
its expectation value from the available data. The SDP (27)
instead exploits the full knowledge about the individual
measurements.

Albeit the estimate of the ROA given by (27) is, in principle,
always better than the estimate given by (26), there are reasons
to consider (26) of interest and, potentially, prefer it to (27).

One is that, as mentioned, the output of the SDP (26) comprises
the best single asymmetry witness that we can have knowledge
of based on the data; the knowledge of such a witness can then
be used in devising ways to exploit the asymmetry of the state,
as in the case where we use it for metrology (see Sec. III E for
an example of this). Another reason deals instead with what
could be considered a kind of “fragility” of (27): indeed, the
latter SDP also acts as a feasibility test for the compatibility
of the measurement results with a physical scenario—the
existence of a physical (normalized and positive semidefinite)
state that gives rise to the statistics. The issue is that the
data collected could be incompatible with a physical state,
in the sense of not satisfying (27d), because of experimental
errors, imprecisions, or statistics, and hence do not lead to any
reasonable lower bound to the ROA. Another way of looking
at it is that (27), while perfectly well defined from an abstract
point of view, can only be used in practice when there is
some assurance that the data are (or have been processed to
be) compatible with some physical state. How best to do this
while obtaining a certifiable lower bound to the ROA is beyond
the scope of the present work.

E. Robustness of asymmetry as an advantage in covariant
channel discrimination games

In this section we provide a general operational interpre-
tation for the ROA in the context of discriminating quantum
channels. Given, as usual, a unitary representation {Ug} of
a group G, let us consider the unitary channels Ug whose
action is defined in Eq. (1). Suppose we want to discriminate
among the set of such channels, which can be applied to an
input probe state ρ with an a priori probability distribution
{pg}g∈G on the group. We can think of this process as a
game, in which a message is encoded on the probe system
initialized in ρ by the action of one such channel Ug , and
the aim of the game is to guess correctly which Ug was
implemented, hence decoding the message. To do so, one
needs to measure the output state Ug(ρ) after the channel, by
means of a positive operator-valued measure (POVM) {Mg},
with elements satisfying Mg � 0,

∑
g Mg = 1.

For any given measurement strategy, we can define the
probability of success psucc, that is, the probability of guessing
correctly in the discrimination (or, equivalently, of decoding
the message), as

psucc
{pg},{Mg}(ρ) =

∑
g

pgTr[Ug(ρ)Mg]. (28)

As indicated, the probability of success depends on the
prior probability distribution {pg}, on the choice of POVM,
and, most importantly, on the probe state ρ on which the
information is encoded. We can further define

psucc
{pg}(ρ) = max

{Mg}
psucc

{pg},{Mg}(ρ) (29)

as the optimal probability of success for a given ρ and
prior {pg}, maximized over all possible POVMs used in the
discrimination or decoding.

We can now distinguish the cases where the input probe
state is symmetric (a free state) or asymmetric (a resource
state). In the first case, let the probe state be denoted σ ∈
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S . Since by definition Ug(σ ) = σ , no information is actually
encoded in the state during the process. We then have

psucc
{pg},{Mg}(σ ) =

∑
g

pgTr[Ug(σ )Mg]

=
∑

g

pgTr[σMg]

� pmax
G Tr

[
σ

∑
g

Mg

]

= pmax
G , (30)

where we have defined the maximal a priori probability
pmax

G = maxg∈G pg . The upper bound in Eq. (30) can be
achieved by a strategy consisting in always guessing the group
element gmax with the highest associated prior probability
pgmax ≡ pmax

G , that is, by implementing a POVM with Mgmax =
1 and Mg = 0 ∀ g �= gmax. Since this is independent of the
specific symmetric state σ , we then have that the optimal
probability of success for any symmetric state σ ∈ S , as
defined in Eq. (29), is given by

psucc
{pg}(S ) := psucc

{pg}(σ ) = pmax
G = max

g∈G
pg. (31)

It is clear that, by using an asymmetric state ρ as a probe, one
can expect to achieve in general a higher probability of success
than psucc

{pg}(S ) in the above channel discrimination game: in
other words, asymmetry is expected to be a useful resource
for the considered task. One can then wonder precisely how
much higher an optimal success probability can be reached
by exploiting asymmetric probes, compared to symmetric
probes. We now address this question by showing that it
is precisely the ROA of ρ which determines the advantage
enabled by choosing ρ as a probe in the above channel dis-
crimination game, as opposed to any symmetric probe σ . This
provides an intuitive and general operational interpretation for
the ROA.

Theorem 3. For any state ρ and any prior probability
distribution {pg}g∈G it holds that

max

{
1

|G| (1 + AR(ρ)), psucc
{pg}(S )

}
� psucc

{pg}(ρ)

� (1 + AR(ρ))psucc
{pg}(S ). (32)

Proof. The second inequality is just a consequence of the
definition of AR(ρ), which implies that there is a symmetric
σ such that ρ � (1 + AR(ρ))σ , so that∑

g

pgTr[Ug(ρ)Mg] � (1 + AR(ρ))
∑

g

pgTr[σMg]

� (1 + AR(ρ))psucc
{pg}(S ).

On the other hand, to prove the first inequality, consider
the optimal X for the SDP (19) which is such that Tr[Xρ] =
1 + AR(ρ). We observe that, since X � 0, also Ug(X) � 0.
Furthermore, due to Eq. (3), and since E(X) = 1, we have that

{Mg}, with

Mg = 1

|G|Ug(X), (33)

is a valid POVM, as
∑

g Mg = E(X) = 1. We then have

∑
g

pgTr[MgUg(ρ)] =
∑

g

pg

|G|Tr[UgXU †
gUgρU †

g ]

=
∑

g

pg

|G|Tr[Xρ]

= 1

|G|Tr[Xρ]

= 1

|G| (1 + AR(ρ)).

This proves that

psucc
{pg}(ρ) � 1

|G| (1 + AR(ρ)) .

The other possibility in the lower bound of (32), i.e., psucc
{pg}(ρ) �

psucc
{pg}(S ), follows from the fact that simply guessing gmax is

always a potentially valid strategy.
We remark that the proof of Theorem 3 also provides a

proof of the general relation

AR(ρ) � |G| − 1,

since the probability of success is bounded above by 1.
As a consequence of Theorem 3, one can furthermore write

the following explicit result.
Corollary 1. For any state ρ and prior probability distribu-

tion {pg}g∈G, it holds that

max
{pg}

psucc
{pg}(ρ)

psucc
{pg}(S )

= 1 + AR(ρ). (34)

Proof. Let us divide (32) by psucc
{pg}(S ). We then find

max

{
1

|G| psucc
{pg}(S )

(1 + AR(ρ)),1

}

�
psucc

{pg}(ρ)

psucc
{pg}(S )

� (1 + AR(ρ)). (35)

The lower bound matches the upper bound in the case
psucc

{pg}(S ) = pmax
G = 1

|G| , that is, for a flat prior probability
distribution over G.

We note that, although we have focused on the discrimi-
nation of the channels {Ug}, the result of Corollary 1 can be
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generalized to any set of channels of which {Ug} is a subset.
That is, we have the following.

Corollary 2. Let {
i} be a set of channels such that {Ug} ⊆
{
i}. Consider a probability distribution {pi} on {
i}. Then

max
{pi }

psucc
{pi } (ρ)

psucc
{pi } (S )

= 1 + AR(ρ). (36)

Here psucc
{pi } (S ) is the maximal probability of success in the

discrimination of the channels {
i} when these are applied
with a priori probability distribution {pi}, maximized over
the choice of any input arbitrary symmetric state; psucc

{pi } (ρ) is
instead the maximal probability of success by using the given
ρ.

Proof. As in the proof of Theorem 3, it is easy to see that

psucc
{pi } (ρ) = max

{Mi }

∑
i

piTr[
i(ρ)Mi]

� (1 + AR(ρ))psucc
{pi } (S )

is a direct consequence of ρ � (1 + AR(ρ))σ . Thus, in
general,

psucc
{pi } (ρ)

psucc
{pi } (S )

� 1 + AR(ρ).

From the fact that {Ug} ⊆ {
i} and from Corollary 1 we know
that this upper bound can be saturated.

We remark that, in general, for a set of channels {
i} such
that {Ug} ⊆ {
i}, the best probability of success by using
a symmetric state, psucc

{pi } (S ), is not just equal to maxi pi ,
as the channels {
i} act, in general, nontrivially even on
symmetric states. Yet, Eq. (36) holds. The point is that the
case {
i} = {Ug}, with pg = 1/|G|, is the one where there is
the largest possible advantage of using the asymmetric state;
any class of channel discrimination problems that include the
latter problem will satisfy Eq. (36).

F. Finite versus continuous groups: The U(1) case

While we have referred to finite groups so far in the paper,
the theory we have developed can be applied also to compact
groups, e.g., the d-dimensional representation of U(1) or the
defining representation of U(d), as well as its tensor product
representation on n d-dimensional systems.

Consider the representation {U (g)} of a continuous compact
group G with Haar measure dU (g), e.g., a compact Lie group.
Suppose one can define a finite set X = {Ux} ⊆ {U (g)} such
that, for any state ξ ,

E(ξ ) =
∫

G
U (g)ξU †(g)dU (g) = 1

|X|
∑

x

UxξU †
x .

This applies, e.g., to the defining representation of U(d), in
which case X is said to form a 1-design [50]. Then when we
discuss the discrimination of covariant channels as in Sec. III E,
we can simply imagine discriminating among the action of the
discrete set of channels Ux in X. On the other hand, for the sake
of the definition of the ROA and its computation by means of
an SDP, it is clear that the only thing that matters is the actual
action of the group average E , independently of any detail of
how E is implemented.

In the case of U(1), its d-dimensional representation is given
by {U (θ )} with

U (θ ) =
d−1∑
j=0

eiθj |j 〉〈j |, θ ∈ [0,2π ]. (37)

The group average is equivalent to the total dephasing in the
basis {|j 〉}:

E(ξ ) = 1

2π

∫ 2π

0
dθU (θ )ξU (θ )† =

d−1∑
j=0

|j 〉〈j |ξ |j 〉〈j | =: �(ξ ).

(38)
Equivalently, the group average is the same as the average over
the representation of the cyclic group G′ = Zd , with |G′| = d,
on Cd , given by {Zk}d−1

k=0 , where Z is the phase flip operator

Z|j 〉 = ei 2π
d

j |j 〉. (39)

In this case, asymmetry with respect to such a d-dimensional
representation of U(1) can be regarded as coherence, that
is, quantum superposition with respect to the reference basis
{|j 〉}d−1

j=0 in the Hilbert space H = Cd [7,9,12,13,16].
The rest of the paper is devoted to analyzing the specifics

of this case.

IV. ROBUSTNESS OF COHERENCE

A resource theory for quantum coherence can be con-
structed as a special case of the resource theory of asymmetry,
when we consider (a)symmetry with respect to U(1) or,
alternatively, as discussed at the end of the previous section,
with respect to (the d-dimensional representation of) the cyclic
group Zd .

Specializing from Eq. (4) and using the notation of Eq. (38),
we indicate by

I := {δ ∈ D(H ) : �(δ) = δ} (40)

the set of incoherent states, which can be regarded as the free
states for the resource theory of coherence. Equivalently, every
incoherent state is diagonal in the reference basis,

δ =
∑

j

δj |j 〉〈j |. (41)

The specialization of Eq. (6) using the representation in
Eq. (37) defines instead the set of translationally invariant
operations, which can be considered one possible choice
of free operations for the resource theory of coherence,
within the context of asymmetry [9]. However, there have
been different proposals to define free operations for co-
herence not derived from the asymmetry framework (see,
e.g., [13,16,25,51]). We discuss such approaches in more
detail in the companion paper [12], to which we refer for
additional insights and motivations regarding the study of
quantum coherence as a resource. Here we only remark that all
the results discussed in general for asymmetry in the present
paper apply directly to coherence, including the fact that the
corresponding robustness measure is computable via an SDP,
that it is directly observable—specifically by considering the
analogous notion of coherence witnesses—and that it can be
endowed with an operational interpretation in terms of channel
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discrimination [12]. In the rest of this section, we focus on the
derivation of useful technical results and additional analysis
which concerns specifically the notion of robustness adapted
to the special case of coherence. Most of the results obtained
in the following are also announced and suitably discussed
in [12].

For completeness, we report the explicit definition of
the robustness of coherence (ROC) CR of a d-dimensional
quantum state ρ ∈ D(Cd ), adapted from Eq. (7) [12],

CR(ρ) = min
τ∈D(Cd )

{
s � 0

∣∣∣∣ρ + s τ

1 + s
=: δ ∈ I

}
. (42)

Alternatively, adapting Eq. (9), we can write

CR(ρ) = min
σ∈I

{s � 0|ρ � (1 + s) σ }. (43)

A. Bounds on the robustness of coherence

We first recall that an alternative measure of quantum coher-
ence has been introduced in Ref. [16], namely, the �1 norm
of coherence, defined for a quantum state ρ expanded in the
reference basis {|j 〉} as

C�1 (ρ) =
∑
ij

|ρij | − 1 = 2
∑
i<j

|ρij |. (44)

We then have the following result.
Theorem 4. For any state ρ ∈ D(Cd ) it holds that

C�1 (ρ)

d − 1
� CR(ρ) � C�1 (ρ). (45)

In order to prove Theorem 4, we make use of the states

|i,j,θ,±〉 := 1√
2

(|i〉 ± e−iθ |j 〉)

and of the following lemma.
Lemma 1. For any phases {θij |i,j = 0, . . . ,d − 1; i < j},

the d × d matrix

M({θij }) = 1 + 1

d − 1

∑
i<j

(eiθij |i〉〈j | + e−iθij |j 〉〈i|)

=

⎛
⎜⎜⎜⎜⎝

1 eiθ01

d−1 · · · e
iθ0(d−1)

d−1
e−iθ01

d−1 1 · · · e
iθ1(d−1)

d−1
...

...
. . .

...
e
−iθ0(d−1)

d−1
e
−iθ1(d−1)

d−1 · · · 1

⎞
⎟⎟⎟⎟⎠ (46)

is positive semidefinite, M({θij }) � 0.
Proof. One checks by inspection that the matrix M({θij })

can be written as

M({θij }) = 2

d − 1

∑
i<j

|i,j,θij ,+〉〈i,j,θij , + |,

that is, as the sum of positive semidefinite matrices, hence it is
manifestly positive semidefinite.

Proof (of Theorem 4). To prove the lower bound, consider
an optimal incoherent state δ� such that

ρ � (1 + CR(ρ))δ�. (47)

Let φij indicate the phase of the matrix element ρij , for
i < j , that is, ρij = |ρij |eiφij . Consider M = M({−φij }), with
M({−φij }) as in Lemma 1, with the choice {θij } = {−φij }. The
lemma assures that M � 0. By Schur’s theorem, the Hadamard
product—that is, entrywise product—of two positive semidef-
inite matrices is positive semidefinite, hence we have

ρ ◦ M � (1 + CR(ρ)) δ� ◦ M.

From the definition of M , ρ ′ = ρ ◦ M is a matrix whose off-
diagonal entries are the rescaled absolute values of the entries
of ρ; more precisely, ρ ′

ij = |ρij |/(d − 1), for i �= j . On the
other hand, the diagonal entries in ρ are the same as those in
ρ ′,ρ ′

ii = ρii . Furthermore, since δ� is diagonal, δ� ◦ M = δ�,
i.e., still an incoherent state. Therefore,

ρ ′ � (1 + CR(ρ))δ�.

We now take the expectation value on both sides with the
maximally coherent state

|ψ+〉 = 1√
d

d−1∑
j=0

|j 〉, (48)

obtaining

〈ψ+|ρ ′|ψ+〉 � (1 + CR(ρ))〈ψ+|δ�|ψ+〉.
The left-hand side is equal to

1

d

⎛
⎝1 + 2

d − 1

∑
i<j

|ρij |
⎞
⎠ = 1

d

(
1 + 1

d − 1
C�1 (ρ)

)
.

On the other hand, since δ� = ∑
j δ�

j |j 〉〈j |, one has

〈ψ+|δ�|ψ+〉 =
∑

j

δ�
j |〈ψ+|j 〉|2 =

∑
j

δ�
j

1

d
= 1

d
.

We then find 1
d−1C�1 (ρ) � CR(ρ).

To prove the upper bound, we exhibit a state τ such that

ρ + C�1 (ρ) τ

1 + C�1 (ρ)

is incoherent. Considering a modification of what was done
in [33,34], and [52] to calculate the robustness of entanglement
of pure states, we define τ to be

τ = 2

C�1 (ρ)

∑
i<j

|ρij | |i,j,φij ,−〉〈i,j,φij , − |,

so that

ρ + C�1 (ρ) τ

=
∑
ij

ρij |i〉〈j | + 2
∑
i<j

|ρij ||i,j,φij ,−〉〈i,j,φij , − |

=
∑

j

|ρjj ||j 〉〈j | +
∑
i<j

|ρij |(eiφij |i〉〈j | + e−iφij |j 〉〈i|)

+ 2
∑
i<j

|ρij ||i,j,φij ,−〉〈i,j,φij , − |
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=
∑

j

|ρjj ||j 〉〈j |

+
∑
i<j

|ρij |(|i,j,φij ,+〉〈i,j,φij , + |

− |i,j,φij ,−〉〈i,j,φij , − |)
+ 2

∑
i<j

|ρij ||i,j,φij ,−〉〈i,j,φij , − |

=
∑

j

|ρjj ||j 〉〈j |

+
∑
i<j

|ρij |(|i,j,φij ,+〉〈i,j,φij , + |

+ |i,j,φij ,−〉〈i,j,φij , − |)
=

∑
j

|ρjj ||j 〉〈j | +
∑
i<j

|ρij |(|i〉〈i| + |j 〉〈j |),

which is incoherent. This concludes the proof.
We argue that the bounds in (45) are both tight, at least

as linear inequalities. The upper bound can be achieved with
equality, for instance, on pure d-dimensional states, as proven
in the next section (see Theorem 6). In order to see that the
lower bound of (45) is also tight, it is sufficient to prove that
there is a family of states such that the bound is saturated. One
such a family is provided by

ρp = (1 + p)
1

d
− p|ψ+〉〈ψ+|, 0 � p � 1

d − 1
. (49)

For these states, one easily calculates C�1 (ρp) = p(d − 1). On
the other hand, CR(ρp) � p, because

ρp + p|ψ+〉〈ψ+|
1 + p

= 1

d

is incoherent. We thus have that, for ρp,

CR(ρp)

C�1 (ρp)
� 1

d − 1
,

which is the opposite of the lower bound of (45), thus proving
that the latter holds with equality.

While the lower bound in (45) is indeed tight for low values
of C�1 , one can see that it clearly loosens for larger values of
it: indeed, C�1 and CR coincide when assuming their maximal
value d − 1. In order to put this observation on firmer ground,
we prove another bound for CR in terms of C�1 . We use that,
in the case of coherence, the bounds (23) become

CR(ρ) � ‖ρ − �(ρ)‖2
2

maxj 〈j |ρ|j 〉 � ‖ρ − �(ρ)‖2
2√∑

j 〈j |ρ|j 〉2
� ‖ρ − �(ρ)‖2

2.

(50)
Theorem 5. For any state ρ it holds that

CR(ρ) � f (C�1 (ρ),d), (51)

where

f (C,d) = dC2

(d−1)(−C(d−2)+2
√

D(C,d) + d(d−2)+2)
,

(52)

with D(C,d) = (C + 1)(d − 1)(−C + d − 1).

In order to prove Theorem 5 we need the following lemma,
which may be of independent interest.

Lemma 2. Let p be a diagonal entry in ρ ∈ D(Cd ). Then

C�1 (ρ) � (
√

p +
√

1 − p
√

d − 1)2 − 1.

Inverting the relation, we have that every diagonal entry p in
ρ is bounded in terms of C�1 by

p �
−C�1 (ρ)(d − 2) + 2

√
D(C�1 (ρ),d) + d2 − 2d + 2

d2
.

Proof. It is enough to upper bound the �1 norm ‖ρ‖�1 of
ρ. Without loss of generality, for simplicity we can assume
that p is the ρ00 entry. Consider first the principal submatrix
corresponding to the rows and columns from 1 to d − 1. This
submatrix is (d − 1) × (d − 1) and its trace is, by hypothesis,
1 − p. Hence, its �1 norm is upper-bounded by (1 − p)(d − 1),
which is is achieved by the submatrix whose entries are all
equal to (1 − p)/(d − 1). On the other hand, to evaluate the
contribution to ‖ρ‖�1 of the first row and column, we can focus
on the last d − 1 entries in row 0, since such a contribution
is equal to p + 2

∑d−1
j=1 |ρ0j | due to the hermiticity of ρ. The

positivity of ρ forces |ρ0j | � √
ρ00ρjj = √

p
√

ρjj . Therefore

d−1∑
j=1

|ρ0j | �
d−1∑
j=1

√
p
√

ρjj �
√

d − 1
√

p

√√√√d−1∑
j=1

ρjj

= √
d − 1

√
p(1 − p),

by the Cauchy-Schwartz inequality (equivalently, by the
concavity of the square root) and the fact that

∑d−1
j=1 pjj =

1 − ρ00 = 1 − p. The bound is saturated by the choice

ρ0j =
√

p(1−p)
d−1 , consistent—in terms of positivity of the

overall matrix—with the choice ρjj = 1−p

d−1 for 1 � j � d − 1.
Overall we found

‖ρ‖�1 � p + 2
√

d − 1
√

p(1 − p) + (1 − p)(d − 1)

� (
√

p +
√

1 − p
√

d − 1)2,

which, as evident through our construction, is saturated by the
density matrix corresponding to the pure state |ψ〉 = √

p|0〉 +√
1−p

d−1

∑d−1
j=1 |j 〉.

We are now ready to prove Theorem 5.
Proof (of Theorem 5). We have

‖ρ − �(ρ)‖2
2 = 2

∑
i<j

|ρij |2 � 4

d(d − 1)

⎛
⎝∑

i<j

|ρij |
⎞
⎠

2

= C 2
�1

(ρ)

d(d − 1)
.

From (50) we then have

CR(ρ) �
C 2

�1
(ρ)

d(d − 1) maxi〈i|ρ|i〉 .

We can now invoke Lemma 4, which, applied in the case
p = maxi〈i|ρ|i〉, lets us conclude that

CR(ρ) � f (C�1 (ρ),d),

with f (C,d) defined in Eq. (52).
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FIG. 1. Comparison between the �1 norm of coherence C�1 (horizontal axis) and the robustness of coherence CR (vertical axis) for 3 × 104

randomly generated d-dimensional states, with (a) d = 3 and (b) d = 4. In both panels we additionally plot some bounds to CR as a function
of C�1 : the thick solid black line CR = C�1 denotes the upper bound of Eq. (45), which is saturated by pure states; the dashed blue line
CR = C�1/(d − 1) denotes the lower bound of Eq. (45), which is saturated by the states in (49) up to C�1 = 1; the dotted green line denotes the
alternative (nontight) lower bound of Eq. (51). All the quantities plotted are dimensionless.

We remark that f (C,d) as in Theorem 5 is continuous
and satisfies f (d − 1,d) = d − 1, which proves that CR(ρ)
converges to C�1 (ρ) for all d-dimensional states ρ with C�1 (ρ)
close to its maximum value d − 1.

In Fig. 1 we compare the measures CR and C�1 for randomly
generated states in dimension d = 3 and d = 4. Note that for
all states of a qubit (d = 2) the two measures coincide instead,
as remarked in the next section.

B. Exact robustness of coherence for pure states
and generalized X states

Here we show that for a relevant class of mixed states of
d-dimensional systems one can evaluate the ROC exactly [12].

Theorem 6. Let ρ ∈ D(Cd ) be a state such that there exists
a unitary U = ∑

j eiφj |j 〉〈j |, diagonal in the reference basis
{|j 〉}, which maps ρ into ρ ′ = UρU † with entries ρ ′

ij = |ρij |.
Then

CR(ρ) = C�1 (ρ). (53)

In particular, for the ROC of a pure state |ψ〉 ∈ Cd ,

|ψ〉 =
∑

j

ψj |j 〉, (54)

this gives the result

CR(|ψ〉〈ψ |) = C�1 (|ψ〉〈ψ |) =
⎛
⎝∑

j

|ψj |
⎞
⎠

2

− 1. (55)

Proof. We can invoke the bound (45), CR(ρ) � C�1 (ρ).
To prove that this is an equality under the conditions of the
theorem, we tighten the general lower bound of Theorem 4.

Indeed, one can adapt the proof of the lower bound of Theorem
4 by considering ρ ′ = UρU †, instead of ρ ′ = ρ ◦ M , so that
〈ψ+|ρ ′|ψ+〉 = 1

d

∑
ij |ρij |. The last steps in the proof of the

lower bound are then the same.
That a pure state |ψ〉 admits such a unitary is clear: take

U =
∑

j

e−iφj |j 〉〈j |,

where φj is the phase of the coefficients ψj , i.e., ψj = |ψj |eiφj .
It is clear that the bounds (45) give the exact value of CR

for an arbitrary state of one qubit (d = 2), for which CR is
then equal to 2|ρ01| [12]. Also, a qubit state is one such that
there exists a unitary U as in Theorem 6.

Of course, all states such that their entries in the reference
basis are positive to begin with (that is, such that we can take
U = 1 in Theorem 6) satisfy CR = C�1 . A simple class of
states for which Theorem 6 holds less trivially are generalized
X states, of the form

ρ =
⎧⎨
⎩

∑ d
2
j=0 ρj if d is even,∑� d

2 �
j=0 ρj + ρc if d is odd,

with

ρj = ρjj |j 〉〈j | + ρj,d−1−j |j 〉〈d − 1 − j |
+ ρd−1−j,j |d − 1 − j 〉〈j |
+ ρd−1−j,d−1−j |d − 1 − j 〉〈d − 1 − j |

and

ρc = ρ�d/2�+1|�d/2� + 1〉〈�d/2� + 1|.
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Such a class comprises, in the bipartite case, all two-qubit
X states, a superclass of Bell diagonal states (see [53] and
references therein).

C. Only maximally coherent states have
maximal robustness of coherence

Here we prove that the ROC is a measure of coherence
whose maximal value can only be reached on pure maximally
coherent states of the form of (48). This is a desired property
for a valid measure of coherence [24].

Theorem 6. A state ρ ∈ D(Cd ) satisfies CR(ρ) = d − 1 if
and only if CR(ρ) is a maximally coherent pure state.

Proof. With a more careful analysis of the proof of Property
1, we observe that for every state ρ it holds that

ρ � ‖ρ‖∞1 = d‖ρ‖∞
1

d
,

where ‖ρ‖∞ � 1 is the largest eigenvalue of ρ. Since the
maximally mixed state 1

d
is incoherent, this implies

CR(ρ) � d‖ρ‖∞ − 1.

If CR(ρ) = d − 1, the just found inequality implies that
‖ρ‖∞ = 1, that is, that ρ is a pure state. We can now invoke
the result that for pure states the ROC is equal to the �1 norm
of coherence (Theorem 6), and the fact that the only pure
states with maximal �1 norm of coherence are the maximally
coherent states [16], to conclude the proof.

V. CONCLUSIONS

The importance of symmetry in physics can hardly be
overestimated. A quantum state may or may not respect a
given symmetry; in the latter case one says that the state
is asymmetric. With the advent of quantum information
processing and its operational approach to quantum features,
the asymmetry of states has been investigated more rigorously
and elevated to the status of a resource. In this paper, which is
also the companion to Ref. [12], we have introduced explicitly
the robustness of asymmetry, a quantifier of asymmetry
that has been shown to possess several desirable properties,
including: a defining operational interpretation as resilience
against noise of the asymmetry present in a given state; a
further operational characterization in the context of channel
discrimination, in particular, in terms of the advantage that
an asymmetric state can provide in the discrimination of
the channels that realize the representation of the symmetry

group under consideration; an efficient numerical evaluation
via semidefinite programming, once the state is known; and
the possibility of measurement or, at least, estimation directly
experimentally, hence yielding a convenient benchmark for
nonclassicality in disparate physical scenarios. Furthermore,
the robustness of asymmetry has been shown to be an
asymmetry monotone in a strong sense, hence it can be
employed as a quantifier of asymmetry in a variety of resource
theoretic frameworks in which, while the notion of free states
identified as symmetric states remains the same, the notion of
free operations adopted to manipulate asymmetry may differ.

Quantum coherence can be considered, from an operational
point of view, as a special case of asymmetry. Consequently,
all the tools we introduced and developed for the study of
asymmetry immediately specialize to coherence, including,
in particular, the notions of robustness of coherence and of
coherence witnesses. While the relevance of the latter concepts
is emphasized in the companion paper [12], here we have
provided full details and proofs for the claims made there.

As a service to the community, we provide numerical code
for the evaluation and estimation of both the robustness of
asymmetry and the robustness of coherence as Supplemental
Material [38]. We expect that the concepts and tools—be
they analytical or numerical—that we developed for the study
of both asymmetry and, in particular, coherence, will be
helpful for further theoretical developments and improved
understanding of such fundamental concepts and, also, for
their experimental verification and benchmarking of quantum
behavior in physical and biological domains.

The present paper, together with [12], stands as further
evidence that a modern quantum information approach to basic
concepts, like symmetry or asymmetry and coherence, can
shed further light on them and contribute to putting them
on solid qualitative and quantitative grounds, highlighting
their role and usefulness in fundamental and technological
applications.
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