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Phase transitions of energy and wave functions and bound states in the continuum
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This paper studies a particle subjected to an infinite potential well in the circumstance of a fractional dimensional
Lévy path. To obtain analytic expression for the wave functions and energy levels, we introduce the fractional
corresponding operator and a generalized de Moivre’s theorem. Phase transitions of the energy and wave functions
are found when the Lévy path dimension changes from integer to noninteger in nature. More importantly, we
demonstrate the existence of stable bound states in the continuum in a simple potential. The results predict a
phenomenon in which all bound states energy levels of the particle are continuous and the particle remains in
bound states. This phenomenon can be demonstrated that this is a characteristic phenomenon of a fractional
system. This phenomenon provides both an a priori criterion for theoretically describing an unknown quantum
system with fractional derivatives and a sufficient condition for verifying the preparation of a fractional quantum
system in experiment. Finally, we compare our results for fractional quantum systems with the existing results
and explain the cause of the reported phenomenon.
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I. INTRODUCTION

Quantum mechanics has become one of the most suc-
cessful theories in the history of science. Over the past
few decades, fractional calculus has also become a very
popular mathematical tool [1]. Fractional derivatives can
describe non-Markovian evolution with a memory effect
and nonlocal quantum phenomena [2] and enable the study
of path integrals for Lévy flights and paths of noninteger
fractal dimensions [3,4]. The use of fractional calculus for
this purpose in quantum mechanics was firstly introduced by
Laskin. In Refs. [3,4], he proposed a fractional quantization
method and constructed a fractional Schrödinger equation
with the Rizes fractional derivative operator by introducing
a Lévy path integral. Subsequently, many other forms of frac-
tional Schrödinger equations have been presented [2,5–10],
and they have been applied to a large numbers of cases,
such as one-dimensional (1D) Lévy crystals [11,12], the
Thomas-Fermi model and Hohenberg-Kohn theorems [13],
various fractional Schrödinger equations with time-fractional
derivatives [2,6–10], profile decompositions with angu-
larly regular data [14], optimal controls [15], transmission
through locally periodic potentials [16], and various potential
fields [17–22].

However, to date, there is still no criterion for determining
in advance whether a phenomenon should be described using a
fractional model. A typical strategy is to addressed a fractional
problem either by directly replacing classical derivatives with
fractional derivatives or by subjectively applying a suitable
fractional model to the system. However, these approaches all
follow an a posteriori strategy. The first approach is simple but
may sometimes yield undesired results, for example, energy
nonconservation [8,9]. The latter approach is able to guarantee
correct results, but it can be quite difficult to construct a suitable
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model of this type for a given fractional system. Moreover,
there are many cases in which no such models have been found,
such as scenarios with fractional time. Therefore, an a priori
strategy that is both simple and guaranteed to yield correct
results would be a far preferable option when considering a
fractional quantum system.

In this paper, we consider a nonrelativistic particle subjected
to a 1D infinite potential well, which is a good description
for 1D bound state problems [23,24] and can be created in
the laboratory [24–28]. We introduce our fractional quantum
quantization method based on a fractional corresponding
operator with a power-law memory kernel and also derive
a general de Moivre’s theorem to modify the method for
solving a specific kind of fractional differential equation to
study the problem of interest. Using this method, we can
choose the most convenient fractional derivative to describe
a particular problem depending on the specific characteristics
of the problem, rather than only the Rizes fractional derivative
operator [3,4,13,16,17,19–22,29]. Although in recent years
many authors have studied the problem of a 1D infinite
potential well with a fractional Lévy path [17–19,21,22],
their results are similar to the results obtained in classical
quantum mechanics: the energy spectrum of a moving particle
in a 1D infinite potential well is discrete and nondegenerate
[30–32]. However, their results for a fractional system are
incomplete because they have not considered the effects of a
fractional fractal dimension on a fractional system; i.e., they
have considered only a subset of the solutions of the system.
In our approach, the results are remarkably different in that
the particle has continuous energy levels and the degeneracy
is strongly related to the fractal dimension. We deduce this
phenomenon and obtain the relations between the fractal
dimension and the continuity and degeneracy of the energy
levels in three steps:

(1) Starting from the fractional corresponding operator
Tα [5] and its general classical-to-quantum rules as given in
Eq. (1), we define a operator. After discussing its applicability,
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we establish the general fractional Schrödinger equation
[Eq. (4)] based on the general classical-to-quantum rules
[Eq. (1)].

(2) Analytical expressions for the bound states and energy
levels are obtained for a particle in a 1D infinite potential
well in the circumstance of a Lévy path with a fractional
fractal dimension 2α. Then we show how a fractional fractal
dimension affects the energy levels and wave functions.

(3) We compare our results with the results of previ-
ous investigations regarding fractional quantum mechanics
[17–19,21,22]. In our approach, if we let certain parameters
take specific values, we can obtain these results reported in the
cited articles. If we let the fractal dimension of the Lévy path be
2α → 2, which corresponds to the case of classical quantum
mechanics, our results will degenerate to the classical results.

Our results demonstrate the existence of bound states in
the continuum (BICs). The possibility has previously been
considered by many authors [33–41]. These BICs are in two
cases: One kind of BICs are fragile and have been realized only
in tailored potentials without interactions between particles
[32,42,43]. The other kind of BICs are realized by the
interactions between particles [44–46]. However, our results
indicate a phenomenon in which all the bound states energy
levels of the particle are continuous and the particle remains
in bound states which can be realized in simple potential.
Moreover, our approach provides an a priori strategy. This
physical phenomenon can only be exactly described by
fractional derivative models. Thus, when we are considering an
unknown physical model, this predicted phenomenon provides
a criterion for determining in advance whether fractional
derivatives should be used to describe it. This may offer a
new way of studying fractional quantum systems. Moreover,
because no experimental realization or observation of a
fractional quantum mechanics system has been reported [11],
as a corollary, we propose this phenomenon as a sufficient
condition to verify whether a fractional quantum mechanics
system has been successfully prepared in an experiment.

Finally, we explain the cause of the above phenomenon
based on a spectral analysis of the fractional Schrödinger
operator.

II. FRACTIONAL CORRESPONDING OPERATOR

As mentioned above, in order to study BICs and the
relationship between the fractal dimension and the degeneracy
of a particle in the circumstance of a Lévy path with a
fractional 2α dimension, we should introduce the fractional
corresponding operator Tα , which has the corresponding rules

pα → (−i�)αTα, (1)

where 2α ∈ (1,2] is the fractal dimension of the Lévy path and
p is the momentum of the quantum system [5]. When α = 2,
Eq. (1) takes the form of the classical corresponding relation
p2 → −�

2∂2/∂x2. To obtain the analytical expressions for the
bound states and energy levels of a particle subjected to a 1D
infinite potential well in the circumstance of a Lévy path with a
fractional 2α dimension, we should first modify the fractional
corresponding operator accordingly. Obviously, we will prove
that this modification does not change the operator’s physics
properties.

The underlying concept of the fractional corresponding
operator as follows: A linear operator Tα of order α ∈ (0, + ∞)
with respect to x is called a fractional corresponding operator
if it satisfies the following conditions:

(1)

Tαδ

(
x + y

c

)
= iα

2πcα

∫ +∞

−∞
kα exp

[
ik

(
x + y

c

)]
dk, (2)

for any x,y ∈ R, where c �= 0 is a constant.
(2)

Tα[g(x)l(y)] = l(y)Tαg(x), (3)

for any g(x) and l(y) are continuous functions.
(3)

Tα

∫ +∞

−∞
f (x,t) dt =

∫ +∞

−∞
Tαf (x,t) dt,

for any f (x,t) ∈ L2(R2).
(4) When α approaches n, where n is a positive integer, Tn

is a classical derivative operator.
If we replace condition (1) with the stronger condition

Tαekx = kαekx for any k �= 0, we obtain another operator,
which we call the strong fractional corresponding operator.
The two results presented below (see Appendix A for
the proofs) indicate that compared with the fractional
corresponding operator, the physical properties of the strong
fractional corresponding operator remain unchanged. Note
the following:

(1) The strong fractional corresponding operator is a
special case of the fractional corresponding operator.

(2) The popular fractional derivative operators coincide
with the strong fractional corresponding operator, such as
the R-L fractional derivative operator, the G-L fractional
derivative operator, the Caputo fractional derivative operator,
and the fractional derivative operator based on generalized
functions.

For α on the interval (0.5,1], we can use the methods pre-
sented in Refs. [4,5] to build the general fractional Schrödinger
equation in one dimension as follows:

i�
∂ϕ(x,t)

∂t
= D2α(−i�)2αT2αϕ(x,t) + V (x,t)ϕ(x,t). (4)

A concrete instance of this equation is as follows:

i�
∂ϕ(x,t)

∂t
= D2α(−i�)2αG

−∞D2α
x ϕ(x,t) + V (x,t)ϕ(x,t),

which is a special case, where G
−∞D2α

x is the G-L fractional
derivative operator.

III. “A PRIORI PREDICTED” PHENOMENON

In this section, we demonstrate how a fractional fractal
dimension leads to the continuity and degeneracy of the energy
levels and present the formula for the relation between the
energy degeneracy and the fractal dimension. In addition, a
phenomenon is predicted in which all bound states energy
levels of the particle are continuous and the particle remains in
bound states, thereby providing an a priori prediction-based
strategy. At the end of this section, we will compare our results
with those reported in Refs. [17–19,21,30–32]. For clarity, let
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us consider a nonrelativistic particle moving in a 1D infinite
potential well denoted by V (x):

V (x) =
{

0 −a < x < a

+∞ x � −a,x � a
, (5)

where a > 0 is a constant.

A. Phase transition of energy

In the region −a < x < a, by substituting Eq. (5) into
Eq. (4), we can obtain the general fractional Schrödinger
equation,

i�
∂ϕ(x,t)

∂t
= D2α(−�

2)αT2αϕ(x,t), (6)

where T2α of order α ∈ (0.5,1] with respect to x is the strong
fractional corresponding operator.

The boundary conditions are

ϕ(−a,t) = 0

ϕ(a,t) = 0. (7)

By the separation of variables ϕ(x,t) = f (t)ψ(x) and
Eqs. (3) and (6) become

f (t) = exp
iEt

�
, (8)

D2α(−�
2)αT2αψ(x) = Eψ(x). (9)

If we let

c = E

D2α(−�2)α
,

then by applying the modified method of solving fractional
differential equations (see Appendix B for a description of this
method and related mathematical deductions), we can obtain
the solutions to Eq. (9):

ψ(x) =
∑
k∈K

Bk exp(βkx) cos(γkx) + Ck exp(βkx) sin(γkx),

(10)

where βk = cos[(θ + 2kπ )/(2α)]|c|1/2α , γk = sin[(θ + 2kπ )/
(2α)]|c|1/2α , θ = arg c, and k ∈ K where K is an index set.

Note the following facts: (1) If α is irrational, then according
to the conclusions of spectral analysis of the fractional
Schrödinger operator (see Appendix F for more details), there
are countably infinitely many undetermined parameters in
Eq. (10). Therefore, we need at least countably infinitely many
conditions to determine all of the parameters. However, Eq. (7)
combined with the normalizing conditions is not sufficient
enough to determine all the parameters {Bk,Ck}k∈K ; thus,
the energy E is arbitrary. Therefore, the energy levels are
continuous because of the freedom of the parameters. (2) If
α �= 1 is a rational number, then we can assume that α = n/m.
Because α ∈ (0.5,1), the numerator n must satisfy n � 2.
We know that there are 2n(� 4) undetermined parameters
in Eq. (10). Therefore, we need at least 2n conditions to
determine all of the parameters. However, including Eq. (7)
and the normalizing conditions, there are only 3(< 4 � 2n)
conditions; thus, the energy E is arbitrary. Again, the energy

levels are continuous. (3) If α = 1, we recover the classical
case. We know that there are two undetermined parameters
in Eq. (10), and we have a sufficient number of conditions
to determine all of the unknown parameters; therefore, the
energy E is not arbitrary, which implies that the energy levels
are discrete.

As a result, a change in the Lévy path dimension from
integer to noninteger in nature can cause the energy levels
change from discrete to continuous.

B. Phase transition of wave functions

For convenience, we assume that W = {exp(βkx) cos(γkx),
exp(βkx) sin(γkx)}k∈K and that wi(x) is an element of W , and
we use the position-space representation. In the following, we
will divide our analysis into three parts to demonstrate how to
solve for the wave functions of the 1D infinite potential well
and show how the introduce of a fractional dimension causes
a phase transition.

Part I (Certain the special energies)
Choosing an arbitrary element wi(x) in W , without loss of

generality, we suppose that wi(x) = exp(βkx) sin(γkx). When
wi(x) satisfies Eq. (7), we have

exp(βka) sin(γka) = 0

exp[βk(−a)] sin[γk(−a)] = 0. (11)

Because exp[βk(±a)] �= 0, sin(γka) = 0. We can obtain a
sequence of energies that satisfies the above conditions:

E = |D2α(−�
2)α|

{
gπ

2a sin[(θ + 2kπ )/(2α)]

}2α

.

When the particle is at one of these energies, the corre-
sponding wi(x) is its wave function

wi(x) = 1√
l

exp

(
cos

θ + 2kπ

2α

)
sin

(
gπx

2a
+ gπ

2

)
,

where l = ∫ a

−a
( exp{cos[(θ + 2kπ )/(2α)]} sin[gπx/2a +

gπ/2])2 dx, θ = arg 1/[(−�
2)α], and k ∈ K where the index

set K is defined as in the generalized de Moivre’s theorem
(see Appendix B for more details). We refer to such an energy
E as a Simple Energy and to the corresponding wi(x) as a
Simple Element. Because a Simple Element is itself a wave
function, we will refer to such a wave function as a Simple
Wave function.

Let α → 1; for a Simple Energy Eg , we have

Eg = |D2α(−�
2)α|

{
gπ

2a sin[(θ + 2kπ )/(2α)]

}2α

→ g2π2
�

2

8ma2
,

(12)
where D2 = 1/(2m).

The corresponding Simple Wave function is

wi(x) = 1√
l

exp

(
cos

θ + 2kπ

2α

)
sin

(
gπx

2a
+ gπ

2

)
→ 1√

a
sin

(
gπx

2a
+ gπ

2

)
, (13)

where D2 = 1/(2m) and K = {0}.
We note that the limits of Eqs. (12) and (13) represent the

energy levels and wave functions, respectively, of a particle
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FIG. 1. Simple Energies vs α, where a = 10−10m, D2α = c2−2α/

(2αm2α−1), and m = 9.1094×10−31 kg.

moving in a 1D infinite potential well in the classical case.
In other words, for arbitrary energy levels or wave functions
in the classical scenario, we can find a sequence of Simple
Energies or Simple Wave functions, respectively, in different
dimensions that approaches them. A plot of Simple Energies
of different fractal dimensions (2α) versus α is illustrated in
Fig. 1.

If α ∈ (0.5,1), then for each wi(x), the number of Simple
Energies is either countable (if α is irrational) or finite
(if α is rational). Moreover, W is countable; therefore, the
total number of Simple Energies is still countable. However,
because of the continuity of the energy levels, there are
uncountably many Nonsimple Energies. From the discussion
above, we know that in the fractional case, both Nonsimple
Energies and Nonsimple Elements must exist, whereas in the
classical scenario, only Simple Energy levels and Simple Wave
functions exist.

From Part I, we know that the Nonsimple Elements are not
wave functions because they do not satisfy Eq. (7). However,
in Part II, we will show how the Nonsimple Elements form
wave functions, which we call Nonsimple Wave functions.

Part II (Nonsimple Wave functions)
Nonsimple Wave functions are a new type of wave function

that has not been reported in Refs. [17–19,21,30–32]. Such
a particle wave function is produced by a fractal power.
The following two results (see Appendix C for the rigorous
derivations) reveal the form of Nonsimple Wave functions.

(1) A linear combination of any two Nonsimple Elements
in W cannot form a wave function that satisfies the boundary
conditions.

(2) A specific linear combination of any three Nonsimple
Elements in W can form a Nonsimple Wave function.

In general, the Nonsimple Elements have previously been
neglected when considering the problem of a 1D infinite
potential well. In the classical case, it is correct that the
dimension of the Lévy path is integer in nature. However, in the
fractional case, the fractal will strongly influence the particle,
and thus, the Nonsimple Elements must be considered; in
addition, the energies corresponding to the Nonsimple Wave
functions will fill the gap between any two Simple Energies,
thereby making the energy continuous.

A more precise description for item (2) is given as follows.
Choose three arbitrary Nonsimple Elements, wb(x), wc(x),

and wd (x), in W . Then the Nonsimple Wave function that they

form is

ψ(x) = Bwb(x) + Cwc(x) + Dwd (x), (14)

where

B = [wd (a)wc(−a) − wd (−a)wc(a)]t

C = [wd (−a)wb(a) − wd (a)wb(−a)]t

D = [wc(a)wb(−a) − wc(−a)wb(a)]t (15)

and the parameter t is determined by

t = ±(B̃2Fb,b + C̃2Fc,c + D̃2Fd,d + B̃C̃Fb,c + C̃B̃Fc,b

+ C̃D̃Fc,d + D̃C̃Fd,c + B̃D̃Fb,d + D̃B̃Fd,b)−0.5,

where Fi,j = ∫ a

−a
wi(x)w∗

j (x) dx and

B̃ = wd (a)wc(−a) − wd (−a)wc(a)

C̃ = wd (−a)wb(a) − wd (a)wb(−a)

D̃ = wc(a)wb(−a) − wc(−a)wb(a). (16)

Figure 2 shows how three Nonsimple Elements form a
wave function for a fractal dimension of 2α = 1.5. The three
Nonsimple Elements (f), (g), and (h), with coefficients f,g,
and h determined by Eq. (15), form the Nonsimple Wave
function (b). The three Nonsimple Elements (g), (h), and (i),
with coefficients g,h and i determined by Eq. (15), form the
Nonsimple Wave function (c). The three Nonsimple Elements
(h), (i), and (j), with coefficients h,i, and j determined by
Eq. (15), form the Nonsimple Wave function (d).

(e)

(f)

(g)

(h)

(i)

(j)

(a)

(b)

(c)

(d)

 

 

f,g,h

g,h,i

h,i,j

Simple Wave function
Nonsimple Wave function
Nonsimple Element

FIG. 2. An illustration of a fractional fractal dimension
causes degeneracy, where we have chosen α = 0.75, a = 10−10m,
D2α = c2−2α/(2αm2α−1), m = 9.1094×10−31 kg, and E = 7.2931×
10−17 J.
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Part III (Degree of degeneracy)
Let Ws be the set consisting of all Simple Wave functions

in W with index set J .
Suppose that W/Ws = {φ1(x),φ2(x), . . . ,φn(x), . . . }.

choose any three adjacent elements in W/Ws , denoted
by φi(x), φi+1(x), and φi+2(x), and let ψi(x) be a linear
combination of them:

ψi(x) = Biφi(x) + Ciφi+1(x) + Diφi+2(x). (17)

The normalized ψi(x) is a particle wave function with
coefficients Bi , Ci , and Di determined as derived in Part II.

Let Ww = {ψi(x),i ∈ I }, where I is an index set.
We obtain the following two results (see Appendix D for

the rigorous derivations):
(1) All elements in Ww ∪ Ws are linearly independent.
(2) All states in the position-space representation at energy

E can be represented by linearly combinations of elements in
Ww ∪ Ws .

Therefore, all wave functions can be represented by linearly
combinations of elements in Ww ∪ Ws . Thus, we can formulate
the relation between the energy degeneracy and the fractal
dimension 2α as follows: (1) If α is an irrational number, then
the energy is degenerate to an infinite degree. (2) If α = n/m

is a rational number, then the degree of energy degeneracy is
2n − 2. (3) In the particular case of α = 1, i.e., n = m = 1,
the degree of energy degeneracy is 2n − 2|n=1 = 0, which
is identical to the result in the classical scenario. Figure 2
illustrates how the elements of W form wave functions and
give rise to energy degeneracy for α = 0.75. From curves (a),
(b), (c), and (d) in Fig. 2, we can see that the energy level
E = 7.2931×10−17 J is fourfold degenerate.

As a result, a change in the Lévy path dimension from
integer to noninteger in nature can cause the wave functions to
change from nondegenerate to degenerate.

C. Comparisons

1. Fractional case

In our approach, if we assign special values to certain
parameters, we can recover the same results for a 1D infinite
potential well that are reported in Refs. [17–19,21,22]. We let
α be a rational number such that α = n/m ∈ Q+ for odd n,
m, and the parameters in Eq. (10) satisfy

Bk,Ck �= 0, k = m − 1

2
,

3m − 1

2
;

Bk,Ck = 0, others. (18)

Under these conditions, if we let m
√−1 = −1, we have

θ = π .
Then, the energies (see Appendix E for the calculation) are

Eg = −
(

gπ

2a

)2α

(−�
2)αD2α =

(
gπ

2a

)2α

(�2)αD2α, (19)

and the wave functions (see Appendix E for the calculation)
are

ψ(x)g =
⎧⎨⎩

√
1
a

sin
(

gπx

2a
+ gπ

2

) −a < x < a

0 x � −a,x � a
. (20)

We can see that the results are identical to those given
in Refs. [17–19,21,22]. It is obvious that the energy levels
given in Eq. (E5) and the wave functions given in Eq. (E6)
are Simple Energies and Simple Wave functions. They are an
incomplete set of energy levels and wave functions because
the effect of a fractional fractal dimension is neglected. In
fact, Nonsimple Energies and Nonsimple Wave functions also
exist in this case. Because a comparison of Nonsimple Wave
functions is presented in Fig. 2, here we compare only the
Simple Wave functions form our results with those presented
in Refs. [17–19,21,22], as shown in Fig. 3(a) for α = 0.75.
We obtain three Simple Wave functions using the method
described in this article corresponding to k = 0,1,2, for each
g; in particular, the red curves in Fig. 3(a) correspond to the
incomplete solutions [Eq. (E6)].

2. Classical case

If α → 1, which corresponds to classical case, we can
directly obtain the energy levels and wave functions from
Eqs. (12) and (13):

Eg =
(

gπ

2a

)2α

(�2)αD2α|α=1 = g2π2
�

2

8ma2
(21)

and

ψ(x)g =
⎧⎨⎩

√
1
a

sin
(

gπx

2a
+ gπ

2

) −a < x < a

0 x � −a,x � a
. (22)

This result is identical to that obtained in classical quantum
mechanics [30,31]. All of the energy levels given in Eq. (21)
and the wave functions given in Eq. (22) are Simple Energies
and Simple Wave functions. Because the dimension of the
Lévy path is 2, there is no fractional dimensional influence on
the energies and wave functions. Thus, our results are actually
a generalization of the classical case. For convenience, here we
compare only the Simple Wave functions from our results with
those found in classical scenario, as shown in Fig. 3. We obtain

<φ(x)>

aa−
g=1

g=2

g=3

g=4

k=0
k=1
k=2

(a) α = 0.75

<φ(x)>

aa−
g=1

g=2

g=3

g=4

(b) α = 1

FIG. 3. The wave functions in different dimensions, where
we have chosen a = 10−10m, D2α = c2−2α/(2αm2α−1), m =
9.1094×10−31 kg, and E = 7.2931×10−17 J.
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three Simple Wave functions using the method described in
this article, corresponding to k = 0,1,2, for each g; the black
curves in Fig. 3(b) are the solutions obtained in the classical
scenario, which are the same as the red curves in Fig. 3(a).

D. Discussion

In the above sections, we proved that all of the energy
levels of a moving particle subjected to a 1D infinite potential
well are continues in the circumstance of a fractional fractal
dimension. At these energies, the states are always bound;
thus even when perturbations to the system inevitably occur,
the particle can always remain in a bound state. In other words,
we have theoretically proven the existence of this phenomenon
in fractional quantum mechanics. Now, we will explain why
it can exist only in fractional quantum mechanics and not in
classical quantum mechanics.

In classical quantum mechanics, Landau noted that a bound
state solution with positive continuous energies exists in
certain specific potentials [32]. However, the particle does not
always remain bound, because these positive energy bound
states are nearly isolated and there are few energy gaps between
them; even a slight perturbation will cause wave function to
shift to a nearby nonbound states [42].

As a result, our phenomenon has the three features
simultaneously: all bound states energy levels of the particle
are continuous; the particle can always remain in bound state;
it can realized in simple potential, rather than specially tailored
potentials or the interactions between particles. Therefore, our
phenomenon is a feature of fractional quantum mechanics,
and we can regard it as a criterion for determining whether
fractional calculus should be used to describe a particle
quantum system. Moreover, it also provides an experimental
means of verifying the successful preparation of a fractional
quantum system.

We can use the results of a spectral analysis to explain the
cause of the phase transition of the energy levels between the
classical and fractional cases; for convenience, we assume that
the fractal dimension of the Lévy path is irrational.

In classical quantum mechanics, α = 1, i.e., T2 = d2/ dx2.
According to Ref. [47], we can easily obtain the following
two conclusions regarding the discrete spectrum σd and the
essential spectrum σe of the Schrödinger operator H0 in the
Hilbert space L2[−a,a]:

(1) σd (H0) = {λ1,λ2, . . . ,λn, . . .};
(2) ∀λ ∈ σe(H0), λ is not an eigenvalue.
Because σ (H 2α

0 ) = σd (H 2α
0 ) ∪ σe(H 2α

0 ) and σp(H 2α
0 ) ⊂

σ (H 2α
0 ), where σp(H 2α

0 ) is the characteristic spectrum, we
know that the eigenvalue spectrum σp(H 2α

0 ) consists only of
isolated points. Because the eigenvalues of the Schrödinger
operator are the energy levels, the particle has only discrete
energy levels.

However, in fractional quantum mechanics, we can also
obtain the following corresponding results (see Appendix F
for more details and mathematical derivations) concerning
the fractional Schrödinger operator H0 in the Hilbert space
L2[−a,a]:

(1) σd (H 0
2α) = ∅;

(2) ∀λ ∈ σe(H 0
2α), λ is a limit point.

By comparision with the results for the classical case, we
can see that in fractional quantum mechanics, all elements in

σp(H 2α
0 ) are limit points. Because limit points are not isolated

points, the energy of the particle is continuous. This finding is
also consistent with the results derived in Sec. III A.

IV. CONCLUSION

We obtain the analytical expressions for the wave functions
and energy levels of the particle subjected to a 1D infinite
potential well in the circumstance of a fractional dimensional
Lévy path. Our results are complete, and they reflect the
fact that a fractional fractal dimension can cause phase
transitions of the energy levels and wave functions: when
the fractal dimension of the Lévy path changes from integer
to noninteger in nature, the energy changes from discrete to
continuous and the wave functions change from nondegenerate
to degenerate. We introduced the concepts of Simple Energies
and Simple Wave functions to explain these phase transitions
and the relationships between them and the classical quantum
phenomenon. In the fractional case, the energy levels include
both Simple Energies and Nonsimple Energies. Nonsimple
Energies are created by the existence of a fractional fractal
dimension, and they fill in the gaps between the Simple
Energies to make the energy continuous. Thus, there are
always further bound states in the neighborhood of any bound
state, meaning that the particle remains in a bound state even
when perturbations to the system inevitably occur. The wave
functions also include both Nonsimple Wave functions and
Simple Wave functions which converge to the classical wave
functions as the path dimension approach 2. In a classical
quantum system, however, we can obtain only Simple Energies
and Simple Wave functions.

Thus, we can predict a phenomenon in which all bound
states energy levels of the particle are continuous and the
particle remains in bound states, which can be regarded as
an “a priori predicted” phenomenon. We have proven that this
phenomenon is a characteristic phenomenon of a fractional
system. Thus, when considering an unknown quantum system,
we can determine in advance whether a fractional model
should be used to describe the corresponding quantum problem
by checking for the existence of stable bound states with a
positive, continuous energy spectrum. In the best case scenario,
this could offer a new means of verifying the successful
preparation of a fractional quantum system in an experiment
and provide a simple method of theoretically describing a
fractional system in quantum mechanics.
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APPENDIX A: PROOFS FOR TWO RESULTS ABOUT
STRONG FRACTIONAL CORRESPONDING OPERATOR

The proof for the result (1):
Assume an operator Tα with respect to x is the strong

fractional corresponding operator, it satisfies the stronger
condition Tαekx = kαekx for any k �= 0.
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By the following direct transformations:

iα

2πcα

∫ +∞

−∞
kα exp

[
ik

(
x + y

c

)]
dk

= 1

2π

∫ +∞

−∞

(
ik

c

)α

exp

[
ik(x + y)

c

]
dk

= 1

2π

∫ +∞

−∞
Tα exp

(
ik

x + y

c

)
dk

= Tαδ

(
x + y

c

)
,

we can know that Tα also satisfies the condition (a) in the
concept of the fractional corresponding operator. Thus, Tα is
the fractional corresponding operator.

The proof for the result (2) is as follows: According to
Ref. [5], G

−∞Dα
x , R

−∞Dα
x , C

−∞Dα
x , and −∞D̃α

x have already been
the fractional corresponding operators. Thus, we need only to
prove that they satisfy the stronger condition Tαekx = kαekx

for any k �= 0.
First, we state that G

−∞Dα
x satisfies the stronger condition.

By the definition of the G-L fractional derivative operator
[1,48], we have

G
−∞Dα

x ekx = 1

�(−α + m + 1)

∫ x

−∞
(x − u)m−αkm+1eku du.

(A1)

Let y = k(x − u); Eq. (A1) becomes

G
−∞Dα

x ekx = km+1ekx

k�(−α + m + 1)

∫ +∞

0

(y

k

)m−α

e−y dy

= kαekx

�(−α + m + 1)

∫ +∞

0
ym−α+1−1e−y dy.

By the definition of the Gamma function [1], we prove the
result:

G
−∞Dα

x ekx = kαekx

�(−α + m + 1)
�(−α + m + 1)

= kαekx.

We note that ekx is a continuous function for any k ∈
(0,+∞) and the sth derivatives (ekx)(s) (for s = 1,2, . . .)
is continuous in the interval (−∞,x), and if x → −∞,
(ekx)(s) → 0. Under these conditions, the R-L fractional
derivative, the G-L fractional derivative, and the Caputo
fractional derivative are equivalent [1]:

G
−∞Dα

x ekx = R
−∞Dα

x ekx = C
−∞Dα

x ekx = kαekx.

Second, we state that −∞D̃α
x satisfies the stronger condition.

By the definition of �−α(x) [1], we have

−∞D̃α
x ekx =

∫ x

−∞
eku�−α(x − u) du

=
∫ x

−∞
eku (x − u)−α−1

�(−α)
du. (A2)

Let y = k(x − u); Eq. (A2) becomes

−∞D̃α
x ekx =

∫ +∞

0
ekx−y 1

�(−α)

(y

k

)−α−1
d
(y

k

)
= ekxkα

�(−α)

∫ +∞

0
e−yy−α−1 dy

= kαekx.

Thus, the conclusion has been proved.

APPENDIX B: GENERALIZED DE MOIVRES THEOREM
AND MODIFIED METHOD OF SOLVING FRACTIONAL

DIFFERENTIAL EQUATIONS

The classical de Moivre’s theorem has presented explicit
expressions for the nth roots of xn = c for any integer n and
complex number c. The case where n is a rational number or
irrational number has been also reported in Ref. [49]. We put
forward a more precise and suitable conclusion for quantum
mechanics, which presents uniform set expressions.

Let

λα = c, (B1)

where α ∈ R+ and c ∈ C, then the roots of c are

λk = βk + iγk, (B2)

where βk = cos[(θ + 2kπ )/α]|c|1/α , γk = sin[(θ + 2kπ )/
α]|c|1/α , θ = arg c, and k ∈ K ⊆ Z where K is an index set
such that if k1 �= k2 ∈ K , then

k1 − k2

α
/∈ Z. (B3)

It is equivalent to say that
(1) If α ∈ N+, then K = {0,1, . . . ,α − 1};
(2) If α ∈ Q+/N+, let α = n/m, then K = {0,1, . . . ,

n − 1};
(3) If α ∈ R+/Q+, then K = Z.
Next we will divide the proof into three steps:
Step I (Verify the expression of the roots)
Note that

λk = βk + iγk = exp

(
i
θ + 2kπ

α

)
|c| 1

α ,

then

(λk)α = exp(iθ + 2kπi)|c| = exp(iθ )|c| = c.

Thus, we have verified Eq. (B2).
Step II (Verify that λk1 �= λk2 if k1 �= k2)
Assume that λk1 = λk2 :

βk1 = βk2

γk1 = γk2 . (B4)

By the sum-to-product identities, we have

βk1 − βk2 = −2 sin

(
2θ + 2k1π + 2k2π

2α

)
× sin

(
2k1π − 2k2π

2α

)
|c| 1

α
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FIG. 4. The roots of Eq. (B1) for different α, where we have chosen c = 1. When α = 4, the result is the same as it in the classical de
Moivre’s theorem.

and

γk1 − γk2 = 2 cos

(
2θ + 2k1π + 2k2π

2α

)
× sin

(
2k1π − 2k2π

2α

)
|c| 1

α .

Note that

sin

(
2θ + 2k1π + 2k2π

2α

)
= 0 ⇔ θ + (k1 + k2)π

απ
∈ Z,

(B5)

cos

(
2θ+2k1π + 2k2π

2α

)
= 0 ⇔ θ + (k1 + k2)π

απ
− 1

2
∈ Z.

(B6)

Obviously, ∀k1 and k2, Eqs. (B5) and (B6) cannot
hold simultaneously. If Eq. (B4) holds, we must have
sin[(2k1π − 2k2π )/(2α)] = 0, meaning that (k1 − k2)/α /∈ Z

if k1 �= k2.
Thus, we obtain k1 = k2.
Step III (Prove the conclusion about the index set K)
If α ∈ N+, by fundamental theorem of algebra [50],

equation λα = c has α roots, so K = {0,1, . . . ,α − 1}.
If α ∈ Q+/N+, then ∀kj ∈ K and α = n/m, we have

θ + 2(kj + n)π

α
= θ + 2kjπ

α
+ 2mπ, (B7)

thus,

sin

(
θ + 2kjπ

α

)
= sin

[
θ + 2(kj + n)π

α

]

cos

(
θ + 2kjπ

α

)
= cos

[
θ + 2(kj + n)π

α

]
,

which imply that λkj
= λkj +n.

Obviously, 0 ∈ K , so we have proved (2).
If α ∈ R+/Q+, ∀z1 �= z2 ∈ Z, they satisfy Eq. (B3) be-

cause α is an irrational number. Thus, we have z1, z2 ∈ K .
With 0 ∈ K , we obtain K = Z.
Figure 4 illustrates the roots of Eq. (B1) and their positions

in the complex plane for three specific cases depending on the
generalized de Moivre’s theorem.

Then, we will use the strong fraction corresponding
operator and the generalized de Moivre’s theorem to present a

new method of solving fractional differential equations in the
form

R
−∞Dα

x f (x) = cf (x), (B8)

where R
−∞Dα

x is the R-L fractional derivative operator and c is
a constant.

We consider a general case of Eq. (B8) as

Tαf (x) = cf (x), (B9)

where Tα is the strong fractional corresponding operator. If
α → n, where n is a positive integer, Eq. (B9) becomes

dn

dxn
f (x) = cf (x). (B10)

Thus, Eq. (B9) is a generalization of integer order differential
equations.

There exists a constant c such that

(Tα − c)eλx = 0, (B11)

by the result about the spectrum of Tα , which has been reported
in Appendix F. Thus, Eq. (B11) becomes (λα − c)eλx = 0,
meaning that λα − c = 0. By the conclusion about the
spectrum of the strong fractional Schrödinger operator, the
solutions of Eq. (B9) are

f (x) =
∑
k∈K

Bk exp(βkx) cos(γkx) + Ck exp(βkx) sin(γkx),

(B12)

where βk = cos[(θ + 2kπ )/α]|c|1/α , γk = sin[(θ + 2kπ )/
α]|c|1/α , θ = arg c, and K is an index set.

In fact, Eq. (B12) has included the case of integer order as a
special case; in other words, if α is a positive integer, Eq. (B12)
presents the solutions of the integer order differential equations
Eq. (B10) [51].

APPENDIX C: DEDUCTIONS FOR NONSIMPLE
WAVE FUNCTION

For the result (1):
We will discuss it in four different cases.
Case 1
Let wi(x) = exp(βkx) cos γkx and wj (x) = exp(βkx)

sin γkx be two Nonsimple Elements, where k ∈ K .
Assume that the wave function they form is

ψ(x) = A exp(βkx) cos γkx + B exp(βkx) sin γkx. (C1)
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Plugging Eq. (C1) into the bound conditions, we have

A exp(βka) cos γka + B exp(βka) sin γka = 0

A exp(−βka) cos(−γka) + B exp(−βka) sin(−γka) = 0.

(C2)

Considering the coefficient matrix of Eq. (C2), if the
determinant of the matrix is zero,∣∣∣∣ exp(βka) cos γka exp(βka) sin γka

exp(−βka) cos(−γka) exp(−βka) sin(−γka)

∣∣∣∣
= −2 cos γka sin γka = 0, (C3)

we must have cos γka = 0 or sin γka = 0. It means that at
least one of wi(x) and wj (x) is a Simple Wave function, which
contradicts the assumption. Thus, Eq. (C3) cannot be satisfied;
that is, the system of linear equations Eq. (C2) does not have
nonzero solution.

Thus, A = B = 0.
Case 2
Let wi(x) = exp(βkx) cos γkx and wj (x) = exp(βlx)

sin γlx be two Nonsimple Elements, where k �= l ∈ K .
Similarly, assume that ψ(x) = A exp(βkx) cos γkx +

B exp(βlx) sin γlx. Then substituting it into boundary condi-
tions, we have

A exp(βka) cos γka + B exp(βla) sin γla = 0

A exp(−βka) cos(−γka) + B exp(−βla) sin(−γla) = 0.

(C4)

If there exist nontrivial solutions, then∣∣∣∣ exp(βka) cos γka exp(βla) sin γla

exp(−βka) cos(−γka) exp(−βla) sin(−γla)

∣∣∣∣
= − cos γka sin γla{exp[(βk−βl)a] + exp[(βl−βk)a]}=0.

Because exp[(βk − βl)a] + exp[(βl − βk)a] > 0, we have
cos γka = 0 or sin γla = 0. Again, it means that wi(x) or
wj (x) is a Simple Wave function, which contradicts with the
assumption.

Thus, the system of linear equations (C4) has only a zero
solution: A = B = 0.

Case 3
When wi(x) = exp(βkx) cos γkx and wj (x) = exp(βlx)

cos γlx are two Nonsimple Elements, where k �= l ∈ K .
Repeat the same proof of the Case 2, we obtain that wi(x)

and wj (x) cannot form a wave function.
Case 4
When wi(x) = exp(βkx) sin γkx and wj (x) = exp(βlx)

sin γlx are two Nonsimple Elements, where k �= l ∈ K

Repeating the same proof of Case 2 again, we can obtain
the same result as it in Case 2.

The above four cases cover all the possibilities of linear
combinations of any two Nonsimple Elements. They cannot
form wave functions.

For the result (2), choose three arbitrary elements wb(x),
wc(x), and wd (x) in W . Assume that the wave function they
form is

ψ(x) = Bwb(x) + Cwc(x) + Dwd (x). (C5)

Plugging Eq. (C5) into boundary conditions, we have

Bwb(a) + Cwc(a) + Dwd (a) = 0

Bwb(−a) + Cwc(−a) + Dwd (−a) = 0.

by ∣∣∣∣ wb(a) wc(a)
wb(−a) wc(−a)

∣∣∣∣ �= 0; (C6)

i.e., the rank of the coefficient matrix of this linear system is
2. Thus, the system has nonzero general solutions:

B = [wd (a)wc(−a) − wd (−a)wc(a)]t

C = [wd (−a)wb(a) − wd (a)wb(−a)]t (C7)

D = [wc(a)wb(−a) − wc(−a)wb(a)]t,

where t is an arbitrary constant.
In order to determine t , we assume that

B̃ = wd (a)wc(−a) − wd (−a)wc(a)

C̃ = wd (−a)wb(a) − wd (a)wb(−a) (C8)

D̃ = wc(a)wb(−a) − wc(−a)wb(a),

and

Fi,j =
∫ a

−a

wi(x)w∗
j (x) dx. (C9)

Then, plug Eq. (C8), Eq. (C9) in the normalization
condition of ψ(x) = Bwb(x) + Cwc(x) + Dwd (x), we have

1 =
∫ a

−a

ψ(x)ψ∗(x) dx

= (B̃2Fb,b + C̃2Fc,c + D̃2Fd,d + B̃C̃Fb,c + C̃B̃Fc,b

+ C̃D̃Fc,d + D̃C̃Fd,c + B̃D̃Fb,d + D̃B̃Fd,b)t2. (C10)

Solving Eq. (C10), we obtain

t = ±(B̃2Fb,b + C̃2Fc,c + D̃2Fd,d + B̃C̃Fb,c + C̃B̃Fc,b

+ C̃D̃Fc,d + D̃C̃Fd,c + B̃D̃Fb,d + D̃B̃Fd,b)−
1
2 .

We determine the coefficients B, C, and D, and find such a
linear combination that satisfies the boundary conditions. By
Eq. (B12), we know that Eq. (C5) is a wave function. Thus,
the three Nonsimple Element wb(x),wc(x), and wd (x) form a
wave function.

APPENDIX D: DEDUCTIONS FOR
DEGENERACY DEGREE

For the result (1):
Assume that there exists a sequence of constants {k1,j ,k2,i},

where j ∈ J and i ∈ I , such that∑
j

k1,jwj (x) +
∑

i

k2,iψi(x) = 0. (D1)

Plugging ψi(x) = Biφi(x) + Ciφi+1(x) + Diφi+2(x) into
Eq. (D1), we have∑

j

k1,jwj (x) + k2,1B1φ1(x) + (k2,1C1 + k2,2B2)φ2(x)

+
∑

i

(k2,i−2Di−2 + k2,i−1Ci−1 + k2,iBi)φi(x) = 0,

(D2)

where i ∈ I/{1,2} and I has infinite elements.

042106-9



ZHANG, WEI, LIU, AND LUO PHYSICAL REVIEW A 93, 042106 (2016)

If I has finite elements, we assume I = {1,2, . . . ,n + 2},
then Eq. (D2) becomes∑

j

k1,jwj (x) + k2,1B1φ1(x) + (k2,1C1 + k2,2B2)φ2(x)

+
n∑

i=3

(k2,i−2Di−2 + k2,i−1Ci−1 + k2,iBi)φi(x)

+ (k2,n−1Dn−1 + k2,nCn)φn+1(x) + k2,nDnφn+2(x) = 0.

(D3)

Thus, without loss of generality, we assume that I has infinite
elements.

Because {wj (x), φi(x)} is linearly independent, we must
have

k1,j = 0,j ∈ J ;

k2,1B1 = 0;

k2,1C1 + k2,2B2 = 0;

k2,i−2Di−2 + k2,i−1Ci−1 + k2,iBi = 0, i ∈ I/{1,2}.
Because Bi , Ci , and Di are nonzero, we obtain k2,i = 0 for

any i ∈ I . Thus, Ww ∪ Ws is linearly independent.
For the results (2), by Eq. (B12), we know

ψ(x) =
∑

k

ekwk(x).

Using the notations in Step I, the above equation becomes

ψ(x) =
∑

j

k1,jwj (x) +
∑

i

k2,iφi(x), (D4)

where wj (x) ∈ Ws and φi(x) ∈ W/Ws .
Obviously we need only to prove that the second term can

be linearly represented by the elements in Ww ∪ Ws .
Consider a sequence {Gl} as follows, for any l ∈ L:

G1 = k2,1

B1
;

G2 = k2,2 − G1C1

B2
;

Gl = k2,l − Gl−2Dl−2 − Gl−1Cl−1

Bl

, l � 3,

where Bl , Cl , and Dl are presented by Eq. (C7).
Letting {Gl} represent the coefficients of the second term

in Eq. (D4), we have∑
i

k2,iφi(x) =
∑

l

Glψl(x),

where ψl(x) ∈ Ww.
Thus, we have completed the proof.

APPENDIX E: CALCULATE FOR FRACTIONAL CASE

We let α = m/n ∈ Q+ for odd n, m and the parameters
{Bk,Ck} satisfy

Bk,Ck �= 0, k = m − 1

2
,
3m − 1

2
;

Bk,Ck = 0, others. (E1)

Under these conditions, if we let m
√−1 = −1, we have

θ = π .
Then

βk = cos
nπ + 2knπ

2m
|c| 1

2α .

When k = (m − 1)/2 or (3m − 1)/2, n is odd, we have

βm−1
2

= cos
nπ

2
|c| 1

2α = 0

β 3m−1
2

= cos
3nπ

2
|c| 1

2α = 0

γm−1
2

= sin
nπ

2
|c| 1

2α = |c| 1
2α

γ 3m−1
2

= sin
3nπ

2
|c| 1

2α = −|c| 1
2α . (E2)

By Eqs. (E1) and (E2), we obtain

ψ(x) = Bm−1
2

cos
(|c| 1

2α x
) + Cm−1

2
sin

(|c| 1
2α x

)
+B 3m−1

2
cos

(|c| 1
2α x

) − C 3m−1
2

sin
(|c| 1

2α x
)
. (E3)

Let B = Bm−1
2

+ B 3m−1
2

and C = Cm−1
2

− C 2m−1
2

, then
Eq. (E3) becomes

ψ(x) = B cos
(|c| 1

2α x
) + C sin

(|c| 1
2α x

)
.

By the boundary conditions, we obtain

B cos
(|c| 1

2α a
) + C sin

(|c| 1
2α a

) = 0

B cos
[|c| 1

2α (−a)
] + C sin

[|c| 1
2α (−a)

] = 0. (E4)

Similarly with the case in classical quantum mechanics, we
obtain the solutions of Eq. (E4):

(a) B = 0, sin(|c| 1
2α a) = 0;

(b) C = 0, cos(|c| 1
2α a) = 0.

That is,

|c| 1
2α = gπ

2a
, g is odd;

|c| 1
2α = gπ

2a
, g is even.

Because θ = π , the energy levels are

Eg = −
(

gπ

2a

)2α

(−�
2)αD2α =

(
gπ

2a

)2α

(�2)αD2α, (E5)

and the wave functions are

ψ(x)g =
{√

1
a

sin
(

gπx

2a
+ gπ

2

) −a < x < a

0 x � −a,x � a
. (E6)

APPENDIX F: CALCULATE SPECTRUM OF A
FRACTIONAL SCHRÖDINGER OPERATOR

If a physical system under consideration is a nonrelativistic
point particle of mass m > 0 in a real potential V , we can
obtain the fractional Schrödinger operator in one dimension,

HV
2α = D2α[(−i�)αTα]2 + V = D2α(−�

2)αT2α + V, (F1)

where Tα of order α ∈ (0.5,1] with respect to x is the fractional
corresponding operator.
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By Eq. (F1) and Refs. [3–5], we know that (−i�)2α =
(−�

2)α , meaning that D2αp2α + V and D2α|p|2α + V are
able to be shown as D2α(p2)α + V and D2α(|p|2)α + V in
one dimension. Then, by D2α(p2)α + V = D2α(|p|2)α + V ,
we obtain that the fractional Schrödinger operator is the
self-adjoint operator because the expectation of energy 〈E〉
is real [3].

Obviously, if the operator Tα is a strong fractional cor-
responding operator, the above conclusions are still true de-
pending on the result (1) of the strong fractional corresponding
operator.

We will concentrate our following discussion on the case
where V = 0. We calculate the discrete spectrum and the
essential spectrum of the fractional Schrödinger operator H 0

2α

in L2[−a,a].
If T is a linear operator, the set consisting of all isolated

eigenvalues with infinite multiplicity and all limit points in
the spectrum set σ (T ) is called the essential spectrum of
T , denoted as σe(T ), and σd (T ) = σ (T )/σe(T ) is called the
discrete spectrum of T [52].

Because all isolated points in the spectrum of the self-
adjoint operator are eigenvalues of itself, we know σd (H 0

2α)
is actually the set of all isolated eigenvalues with finite
multiplicity in σ (H 0

2α) [52].
Thus, we states the conclusions about the discrete spectrum

and the essential spectrum of H 0
2α in L2[−a,a] as follows:

(1) σd (H 0
2α) = ∅

(2) ∀λ ∈ σe(H 0
2α), λ is a limit point.

Next, we give the proof of the two conclusions. First, we
prove the conclusion (1).

Because σd (H 0
2α) is actually a set of all isolated eigenvalues

with finite multiplicity in σ (H 0
2α), we need only to prove that

H 0
2α does not have isolated eigenvalues with finite multiplicity.
∀λ �= 0, let cλk

be the roots of equation D2α(−�
2)αcλk

2α =
λ, where k ∈ Kλ. By the generalized de Moivre’s theorem, we
have Kλ = Z.

Now consider the function exp(cλk
x). Letting H 0

2α act on it,
we obtain

H 0
2α exp(cλk

x) = D2α(−�
2)αc2α

λk
exp(cλk

x) = λ exp(cλk
x),

(F2)

meaning that λ is an eigenvalue and {exp(cλk
x)|k ∈ Kλ} is its

eigenspace. Because the index set Kλ has infinite elements,
eigenvalue λ has infinite multiplicity. Thus, σd (Tα) = ∅.

Second, we prove the conclusion (2).
As we have reported above, the nonzero eigenvalues of H 0

2α

have infinite multiplicities.
∀ε > 0, choosing an arbitrary element λ̃ in O(λ,ε), we

repeat the proof process of the conclusion (1). This shows that
λ̃ is also an eigenvalue of infinite multiplicity. So λ is a limit
point.
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