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Adiabatic excitation of a confined particle in one dimension with a variable infinitely sharp wall

Sho Kasumie,1,* Manabu Miyamoto,2 and Atushi Tanaka1,†
1Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan

2Department of Physics, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
(Received 27 October 2015; published 5 April 2016)

It is shown that adiabatic cycles excite a quantum particle, which is confined in a one-dimensional region and
is initially in an eigenstate. During the cycle, an infinitely sharp wall is applied and its strength and position are
varied. After the completion of the cycle, the state of the particle arrives at another eigenstate. It is also shown
that we may vary the final adiabatic state by choosing the parameters of the cycle. With a combination of these
adiabatic cycles, we can connect an arbitrary pair of eigenstates. Hence, these cycles may be regarded as the
basis of the adiabatic excitations. A detailed argument is provided for the case that the particle is confined by an
infinite square well. This is an example of exotic quantum holonomy in Hamiltonian systems.
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I. INTRODUCTION

An adiabatic process, also referred to as an adiabatic
passage, offers a simple and robust way to control a quantum
system [1]. An adiabatic passage connects a stationary state of
the initial system with another stationary state of the final
system through a slow variation of an external field, for
example. This has been investigated both experimentally and
theoretically in a variety of microscopic systems, e.g., atoms
and molecules [2–4].

We focus here on the adiabatic passage along a closed
cycle in the adiabatic parameter space. This corresponds to
the case, for example, where the external field is applied only
during a cycle, and is off before and after the cycle. One
may expect that the adiabatic cycle induces no change, since
there is no external field to keep the final state away from the
initial one. This argument, however, has counterexamples. A
famous one is the appearance of the geometric phase factor [5],
which is also referred to as the quantum holonomy [6].
Furthermore, an adiabatic cycle may deliver a stationary
state into another stationary state. This can be regarded as
a permutation of eigenspaces. Since this is analogous with the
quantum holonomy, we call such an excitation due to adiabatic
cycles an exotic quantum holonomy (EQH). Examples of EQH
are reported through theoretical studies [7,8].

In atomic and molecular systems, there are many studies
of population transfers with the oscillating classical elec-
tromagnetic field both in theory and experiments. Among
them, stimulated Raman adiabatic passage (STIRAP) [2–4]
employs an adiabatic cycle made of quasienergies, which
is the counterpart of eigenenergy in periodically driven
systems [9]. Its adiabatic cycle passes through a crossing
point of quasienergies to realize the adiabatic excitation (or
its inverse) [10,11]. Hence, STIRAP can be considered as an
example of EQH. On the other hand, it has been shown that,
even in the absence of level crossings, periodically driven
systems may exhibit EQH [12,13].

*Present address: Okinawa Institute of Science and Technology,
Okinawa 904-0495, Japan.
†http://researchmap.jp/tanaka-atushi/

In this paper, we offer another example of EQH. This
example consists of a particle confined in a one-dimensional
region, where a slowly varying wall is applied to make cycles.
We assume that the time-dependent wall is described by a
potential, which is proportional to the δ function. We call it
the δ wall.

Since our model is described by a slowly time-dependent
Hamiltonian, EQH is governed by the parametric dependence
of eigenenergies, instead of quasienergies. This is in contrast
with the examples with oscillating external fields mentioned
above. Also, our model is far simpler than the known examples
of EQH in Hamiltonian systems, for example, a particle under
the generalized pointlike potential [7] and a quantum graph
with a 4-vertex [14]. Experimental realizations of our model
may be feasible within the current state of the art, as is
suggested by the realization of an optical box trap made of
two thin walls [15].

We show that the adiabatic cycles of the present model may
have qualitatively distinct results. Namely, by adjusting the
parameters of the adiabatic cycle (i.e., the initial and final
positions of the δ wall), we may vary the final stationary
state. Also, by combining these cycles, we can connect
arbitrary adiabatic states. In this sense, these cycles form the
basis of adiabatic excitations. In particular, we examine two
kinds of adiabatic cycles, which induce different permutations
of eigenspaces. One is denoted as CX, which involves an
insertion, a move, and a removal of the δ wall. Although
this resembles a simple thermodynamic process [16], its
consequence would have no similarity in thermodynamics.
Namely, we show that the final state of the adiabatic cycle CX

is different from the initial one, depending on the positions of
the wall. In other words, CX may induce an excitation of the
system. Another example CY involves an insertion, a flip, and
a removal of the wall. The eigenspace permutation induced by
CY resembles the one found in the Lieb-Liniger model [17],
where all eigenspaces are excited at once [18].

The plan of this paper is the following. We introduce our
model in Sec. II and provide an exact analysis of the application
of the δ wall in Sec. III. The adiabatic cycles CX and CY are
examined in Secs. IV and V, respectively. Also in Sec. IV,
we show that a combination of CX’s adiabatically connects
an arbitrary pair of eigenstates. Section VI is dedicated to
summary and discussion.
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II. A CONFINED ONE-DIMENSIONAL PARTICLE WITH A
δ WALL

In this section, we introduce a confined one-dimensional
particle with a δ wall. Suppose that a particle is confined
within a one-dimensional region, whose position is denoted
by x. The particle is described by the Hamiltonian H0 = T +
V0(x), where T ≡ p2/2 and V0(x) are the kinetic term and the
confinement potential, respectively, and the particle mass is
chosen to be unity.

Although the following argument is applicable to a wide
class of confinement potentials V0(x) as long as H0 has several
bound states and has no spectral degeneracy, it is convenient
to employ an infinite square well to explain the concept. We
assume V0(x) = 0 for 0 � x � L, and V0(x) = ∞ otherwise.
As for the infinite square well, the eigenenergies of H0

are E(0)
n = (�πn/L)2/2 (n = 1,2, . . . ). Let |n〉 denote the

corresponding normalized stationary state.
We introduce an additional δ wall, where the whole system

is described by the Hamiltonian

H (g,X) ≡ H0 + gδ(x − X). (1)

We assume that we may vary the strength g and the position
X of the wall. Let En(g,X) be an eigenenergy of H (g,X) for
−∞ < g < ∞, i.e.,

H (g,X)|n(g,X)〉 = En(g,X)|n(g,X)〉, (2)

where we impose En(0,X) = E(0)
n and |n(0,X)〉 = |n〉. Please

note that an infinite square well with a δ wall is examined in
Refs. [19,20].

III. ADIABATIC APPLICATION OF δ WALL

We examine the adiabatic insertion or removal of the δ

wall, where the strength g is varied while the position X is
fixed. The following analysis tells us how the eigenstates and
the eigenenergies of the unperturbed system (i.e, g = 0) are
connected to the ones in the limit g → ∞.

First, we examine the “exceptional” case. Suppose that the
node of the eigenfunction 〈x|n0(g0,X)〉 coincides with the
position of the δ wall, i.e.,

〈X|n0(g0,X)〉 = 0, (3)

which implies |n0(g,X)〉 = |n0〉 and En0 (g,X) = E(0)
n for an

arbitrary g, as is shown in the following. Since H (g,X) satisfies

H (g,X) = H (g0,X) + (g − g0)δ(x − X) (4)

from Eq. (1), we obtain H (g,X)|n0(g0,X)〉 = En0 (g0,X)
|n0(g0,X)〉 + (g − g0)δ(x − X)|n0(g0,X)〉. For an arbitrary
normalized state |φ〉, we find

〈φ|H (g,X)|n0(g0,X)〉 = En0 (g0,X)〈φ|n0(g0,X)〉, (5)

because of Eq. (3). Hence we conclude H (g,X)|n0(g0,X)〉 =
En0 (g0,X)|n0(g0,X)〉, which implies |n0(g,X)〉 = |n0〉 and
En0 (g,X) = E(0)

n . We note that the condition Eq. (3) is
equivalent to 〈X|n0〉 = 0.

Since the analysis of exceptional levels has been completed,
we exclude them in the following. Namely, we focus on the
levels whose unperturbed eigenstates satisfy 〈X|n〉 �= 0, which
ensures that 〈X|n(g,X)〉 �= 0 holds for an arbitrary g.

We show that there is no level crossing among these levels.
Let us examine a pair of the levels, n and n′, where E(0)

n < E
(0)
n′

is assumed. We find the following from Eqs. (2) and (4):

{En(g,X) − En′(g′,X)}〈n(g,X)|n′(g′,X)〉
= (g − g′)〈n(g,X)|X〉〈X|n′(g′,X)〉. (6)

When g �= g′ holds, we obtain

{En(g,X) − En′ (g′,X)}〈n(g,X)|n′(g′,X)〉 �= 0, (7)

because of 〈n(g,X)|X〉〈X|n′(g′,X)〉 �= 0. Namely, we find

En(g,X) �= En′(g′,X), for g �= g′. (8)

Since En(g,X) monotonically increases with g strictly, we
conclude that

En(g,X) < En(∞,X) � En′(−∞,X) < En′(g,X) (9)

holds for an arbitrary −∞ < g < ∞. Thus there is no level
crossing between the nth and the n′th levels.

A simple condition that ensures the absence of level
crossing among the levels n < n∗, where n∗ defines a cutoff, is
〈X|n〉 �= 0 holds for all n < n∗. For the infinite square well, all
unperturbed eigenstates satisfy this condition as long as X/L

is an irrational number.

IV. CYCLE WITH EXPANSION AND COMPRESSION

We examine an adiabatic cycle CX(x0,x1), which consists
of an insertion, a move, and a removal of the δ wall. In
particular, we impose that, during the second process, the δ

wall is impermeable, i.e., g = ∞, to completely divide the
confinement well into two regions.

The key to realizing the adiabatic excitation through CX

is to utilize the level crossing during the second process. The
same concept has been utilized in Refs. [10,11,21] to realize the
adiabatic excitations along cycles. Although the level crossings
are generally fragile against perturbations according to Wigner
and von Neumann’s theorem [22], this theorem is inapplicable
to our case since the system is completely divided into two
parts. In reality, if we take into account the imperfection of the
impermeable wall, e.g., the effect of tunneling, the spectral
degeneracy may be lifted. There we need to resort to the
diabatic evolution to go across the avoided crossing in order
to approximately realize the adiabatic excitation [21].

We assume that the system is initially in a stationary state
|n〉, i.e., the nth excited state of the initial system H0. We
show that the final state is the (n + 1)th excited state, if we
appropriately choose x0 and x1, i.e., CX(x0,x1) delivers the
initial stationary state to its higher neighboring state. For
simplicity, we assume in this section that the confinement
potential is the infinite square well and that xj/L (j = 0,1) is
irrational.

A precise definition of CX(x0,x1) is shown. First, the wall
is adiabatically inserted at x0. Namely, the strength g is
adiabatically increased from 0 to ∞, while the position is
kept fixed at X = x0. After the completion of this process, the
δ wall is impermeable; i.e., the confinement is divided into two
regions. Second, the impermeable wall is moved adiabatically
from x0 to x1. If x0 < x1 (x0 > x1) holds, we say that the left
(right) well is expanded while the other well is compressed.
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Third, the wall is adiabatically removed, where the strength g

is adiabatically decreased from ∞ to 0 while the position is
kept fixed at X = x1. After the completion of this process, the
system is described by the unperturbed Hamiltonian H0 again.

During the first process, the state vector of the system is
|n(g,x0)〉, up to a phase factor. There is no level crossing
0 � g < ∞, since we choose that x0/L is irrational (see
Sec. III). Hence the system is always in the nth excited state.
This implies that the system is also in the nth state right before
the second process. Similarly, the system is in the (n + 1)th
excited state right after the second process.

We explain how the nth and the (n + 1)th states are
connected by the second process, i.e., the moving of the
impermeable wall from x0 to x1, through a level crossing. We
examine this process by introducing other quantum numbers,
mL and mR, of the separated systems.

Since we assume that V0(x) is the infinite square well, the
system is divided into two infinite square wells during the sec-
ond process. The left and the right wells are placed at 0 � x �
X and X � x � L, respectively. We introduce two quantum
numbers, mL and mR, which describe the particle confined in
the left and the right wells, respectively, under the presence
of the impermeable wall. The eigenenergies are EL,mL (X) =
(�πmL/X)2/2 and ER,mR (X) = [�πmR/(L − X)]2/2.

We examine the level crossing that consists of the mLth and
the mRth states. By solving EL,mL (X) = ER,mR (X), we find the
degeneracy point

XmL,mR ≡ mL

mL + mR
L. (10)

Since EL,mL (X) and ER,mR (X) monotonically depend on X,
ER,mR (X) ≷ EL,mL (X) holds if X ≷ XmL,mR .

In the following, we assume that there is no other level
crossing that involves the eigenstates mL and mR in the second
process x0 � X � x1. This condition is

max
(
XmL−1,mR ,XmL,mR+1

)

< x0 < XmL,mR < x1 < min
(
XmL+1,mR ,XmL,mR−1

)
, (11)

and x0 < XmL,mR < x1.
Now we determine the quantum number n for the mLth and

the mRth states at the initial point of the first process, where
X = x0 holds. Let nL and nR denote the values of n for the
mLth and the mRth states, respectively. From the condition for
x0 examined above, we find nL = nR + 1. In the left (right)
well, there are mL − 1 (mR − 1) stationary states below the
mL(mR)th stationary state. Hence, we obtain nR = (mL − 1) +
(mR − 1) + 1 = mL + mR − 1 and nL = mL + mR.

On the other hand, at the final point of the process (3),
i.e., at X = x1, the order of the mLth and the mRth states is
reversed, i.e., nL + 1 = nR, which implies nL = mL + mR − 1
and nR = mL + mR.

The conditions for x0 and x1 can be simplified if we specify
the crossing point XmL,mR by its initial lower quantum number
n as mR = 
(n + 1)/2� and mL = n + 1 − mR, for example,
where 
x� is the maximum integer less than x. When n is odd,
we find

n + 1

2(n + 2)
L < x0 <

1

2
L < x1 <

n + 3

2(n + 2)
L. (12)

On the other hand, when n is even, we find

1

2
L < x0 <

n + 2

2(n + 1)
L < x1 <

n + 4

2(n + 2)
L. (13)

We summarize the argument above to describe the adiabatic
evolution along the cycle CX(x0,x1). The system is prepared
to be |n〉 initially. We utilize the crossing point XmL,mR at the
second process, where 1 � mR � n and mL = n + 1 − mR are
assumed. During the first process, the system is in |n(g,x0)〉
up to the phase factor. Hence the system is in the nth excited
state. At the end of the first process, the state |n(g,x0)〉 is the
mRth state in the right well. Also, during the second process,
the state remains in the mRth state in the right well. At the same
time, the system is in the (n + 1)th state of the whole system.
During the third process, the system is in |n + 1(g,x1)〉 up to
the phase factor. Hence, the final state of the cycle is |n + 1〉.
In this sense, the adiabatic excitation from |n〉 to |n + 1〉 is
completed. We depict the examples that adiabatically connect
the ground and the first-excited states in Figs. 1 and 2.

We note that, from the construction, by the repetition of
the cycle CX(x0,x1) two times, |n〉 is delivered to the initial
state |n〉, so is |n + 1〉. Hence the inverse of CX(x0,x1) delivers
|n + 1〉 to |n〉.

We also note that an arbitrary pair of the eigenstates of H0

can be adiabatically connected, if we appropriately combine
the adiabatic cycle CX(x0,x1) with various values of x0 and
x1. For example, the cycle shown in Fig. 1 connects two pairs
(n = 1,n = 2) and (n = 3,n = 4), whereas the cycle in Fig. 3
connects the pair (n = 2,n = 3). Hence, the ground state |1〉
can be connected to the stationary state |4〉 by a combination

FIG. 1. Parametric evolution of the eigenenergies of a particle
confined in an infinite square well, along the closed cycle CX(x0,x1).
The lowest four eigenenergies are shown. We choose x0 = 0.41L and
x1 = 0.59L, where L is the size of the well. E∗ ≡ 1

2 (�π/L)2 is the
ground energy of the unperturbed system. The insets illustrate the
position of the δ wall in each process schematically. (Left) A δ wall
is initially placed at X = x0 (dotted line) with its strength g = 0.
While increasing g to ∞, there is no level crossing. (Middle) The
impermeable δ wall (i.e., g = ∞) is moved from x0 (full line) to x1

(dashed line). A level crossing occurs at X = L/2. (Right) While
X = x1 is kept fixed, g is decreased to 0 to finish the cycle. There is
no level crossing in this process. As a result, the cycle interchanges
the ground and first-excited energies. The second- and third-excited
eigenenergies are also interchanged. The adiabatic time evolution
follows along these lines. We note that the horizontal axis of the left
and right parts is linear in tan−1 g.
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FIG. 2. Parametric evolution of an eigenfunction along
CX(x0,x1). During the insertion process, the initial eigenfunction
〈x|1〉 (nodeless, solid line) at g = 0 becomes 〈x|1(10g∗,x0)〉 (dashed
line), where g∗ = π�

2/(2L), and is finally confined at the right
box (not shown here). During the removal process, the initial
eigenfunction localized in the right box (x1 < x < L, not shown
here) becomes 〈x|2(10g∗,x1)〉 (dotted line). The final eigenfunction
is 〈x|2〉 (with a node, solid line). The positions of the δ wall at the
insertion and the removal are indicated by dashed vertical lines. We
choose L = 1. Other parameters are the same as those in Fig. 1.

of these two cycles. In this sense, these cycles can be regarded
as the basis of the adiabatic excitations.

V. CYCLE WITH δ-WALL FLIP

We proceed to examine the cycle CY(x0) that involves an
insertion, a flip, and a removal of the δ wall placed at x0. We
show that CY(x0) delivers an arbitrary stationary state |n〉 to a
higher neighboring state |n + 1〉, if x0 is chosen appropriately.
Hence the resultant permutation of eigenspaces is different
from the one induced by CX(x0,x1).

Our definition of CY(x0) is the following. First, the strength
of the δ wall, g, is adiabatically increased from 0 to ∞; i.e.,
the first process is the same with CX(x0,x1). Second, g is
suddenly changed from ∞ to −∞ to flip the wall. Third, g is
adiabatically increased from −∞ to 0 to remove the wall.

We note that CY(x0) resembles a cycle that passes the
Tonks-Girardeau and the super-Tonks-Girardeau regimes of
the Lieb-Liniger model [23]. In this cycle, the strength of the
two-body contact interaction of Bose particles is varied from 0

FIG. 3. Parametric evolution of eigenenergies along CX(x0,x1)
with x0 = 0.31L and x1 = 0.36L. While the eigenenergies of the
first- and the second-excited states are interchanged, there is no effect
on the ground and the third-excited states.

FIG. 4. Parametric evolution of eigenenergies along CY(x0) with
x0 = 0.41L. The horizontal axis is linear in tan−1 g, and we set
g∗ = π�

2/(2L). The left half and the right half correspond to the
first process and the third process of CY(x0), respectively. After
the completion of CY(x0), all eigenenergies are delivered to higher
neighboring eigenenergies.

to ∞, then is changed from ∞ to −∞ suddenly, and is finally
increased from −∞ to 0. The adiabatic cycle excites the Bose
particles [18].

We examine the parametric evolution of En(g,X) along
CY(x0) (see Fig. 4). As is done in the previous section, we
assume that the confinement potential is the infinite square
well and that x0/L is irrational.

The parametric evolution along the first process is examined
in the previous section: En(g,X) monotonically increases with
g and has no crossing with other levels.

To examine the second process, i.e., the δ-wall flip, we
utilize the fact that the eigenenergy E satisfies a transcendental
equation, which is determined by the connection problem of
the eigenfunction at x0 [24]. We may examine the transcenden-
tal equation with a small parameter g−1 [20], which concludes
that the nth eigenenergy is connected to the n∗th eigenenergy
at g = −∞; i.e,

En(∞,x0) = En∗ (−∞,x0), (14)

where n∗ is an integer.
The following proof of n∗ = n + 1 is divided into two

parts. First, we show n < n∗. Since En(g,x0) monotoni-
cally increases with g (see Sec. III), we obtain E(0)

n <

En(∞,x0) and En∗ (−∞,x0) < E
(0)
n∗ . We find, from Eq. (14),

E(0)
n < E

(0)
n∗ , which implies n < n∗. Second, we show n∗ �

n + 1 by contradiction. Assuming n∗ > n + 1, we find
E

(0)
n+1 < En+1(∞,x0) � En∗ (−∞,x0) holds from Eq. (9). Us-

ing Eq. (14), we obtain E
(0)
n+1 < En(∞,x0), which contradicts

with Eq. (9). Namely n∗ � n + 1 holds. Thus we conclude
n∗ = n + 1.

The analysis of the third process can be carried out as in
the case for the first process. Hence, we conclude that the
eigenenergy monotonically increases from En+1(−∞,x0) to
E

(0)
n+1 during the third process.
In summary, the adiabatic time evolution along CY(x0) is

the following. During the first process, the state is |n(g,x0)〉
up to a phase factor. The flip of the δ wall does not change the
state. During the third process, the state is |n + 1(g,x0)〉 up
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to a phase factor and finally arrives at the (n + 1)th stationary
state of the unperturbed system.

We remark on the inverse of CY(x0). In general, C−1
Y (x0)

adiabatically delivers an arbitrary stationary state, except the
ground state, to the neighboring lower stationary state. On the
other hand, if the system is initially in the ground state, the
corresponding eigenenergy diverges to −∞ as a result of the
inverse cycle C−1

Y (x0). The corresponding final state is strongly
attracted to the δ wall with g = −∞.

VI. SUMMARY AND DISCUSSION

We have shown that a confined one-dimensional particle is
excited by the adiabatic cycles CX(x0,x1) and CY(x0), where
the strength and the position of the δ wall is varied. Hence
we have obtained another simple example of exotic quantum
holonomy [8].

We have shown a detailed analysis of the case where
V0(x) is the infinite square well. In particular, an appropriate
combination of CX(x0,x1) adiabatically connects an arbitrary
pair of the stationary states of the unperturbed Hamiltonian
H0. In this sense, the adiabatic cycles CX(x0,x1) and CY(x0)
can be regarded as the basis of the permutations of eigenstates.
As an extension of the present work, it may be interesting to
find a combination of cycles to realize an arbitrary permutation
of eigenspaces [25].

At the same time, we have shown the basis to extend
the present result to the cases with an arbitrary confinement
potential V0(x). In particular, an exact analysis of the adiabatic
application of the δ wall is shown, where the condition for the
absence of the level crossing during the insertion or removal
of the δ wall under an arbitrary confinement potential V0(x) is

clarified. Hence, it is straightforward to show that the adiabatic
excitation is possible for an arbitrary confinement potential, as
long as the unperturbed Hamiltonian has multiple bound states.
The changes required to the present argument depend on the
position of the nodes of the eigenfunctions of H0.

The present scheme should be experimentally realized
within the current state of the art, e.g., an optical box trap
made of a one-dimensional confinement and two Gaussian
walls [15]. If an additional Gaussian wall approximates a δ wall
well, the adiabatic excitation by cycles can be realized.

Finally, we briefly explain a possible application of the
present work to produce dark solitons with multiple nodes in
a cold-atom Bose-Einstein condensate (BEC). This is based
on the correspondence exploited in Refs. [26,27], between
higher excited states of a single particle system and dark
solitons of the BEC. More precisely, it is shown that a diabatic
process, i.e., an adiabatic process with a diabatic jump
through a very narrow level crossing, delivers the ground
state of a single-particle system to its first-excited state and
that we may produce a dark soliton with a single node using
a straightforward extension of the diabatic process to the
BEC. Because of the resemblance with the diabatic process
studied in Refs. [26,27], the adiabatic cycles in the present
paper may produce dark solitons from its many-body ground
states, when applied to the dilute Bose system. Moreover, an
appropriate combination of the adiabatic cycles will produce
the dark solitons with multiple nodes, which correspond to a
higher excited state in the single-particle system.
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[19] S. Flügge, Practical Quantum Mechanics (Springer-Verlag,

Berlin, 1971), Vol. 1.
[20] A. G. Ushveridze, J. Phys. A. 21, 955 (1988).
[21] T. Cheon, A. Tanaka, and S. W. Kim, Phys. Lett. A 374, 144

(2009).
[22] L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 2nd ed.

(Pergamon Press, Oxford, 1965), Chap. XI.
[23] E. Haller, M. Gustavsson, M. J. Mark, J. G. Danzl, R. Hart, G.
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