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Violations of a Bell inequality for entangled SU(1,1) coherent states based on dichotomic observables
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We study the violation of the Bell-Clauser-Horne-Shimony-Holt (Bell-CHSH) inequality for entangled SU(1,1)
coherent states of the form proposed by Perelomov. Specifically, we examine Bell-CHSH violations by such
states in the case in which distant observers Alice and Bob perform local, noncompact, SU(1,1) transformations
characterized by hyperbolic angles on each of the subsystems and subsequently measure dichotomic observables,
namely SU(1,1) parity operators. We find significant violations over a broad range of hyperbolic angles.
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I. INTRODUCTION

Coherent states, as a class of pure quantum states, are
special kinds of states in the sense that they contain complex
continuous parameters that can be assigned a wide range
of values such that the amplitudes of the states can place
them in either the microscopic or the macroscopic realms
and anywhere in between. In the case of the canonical,
or Glauber [1], coherent states, which describe a quantized
single-mode field pure state as close to classical as is possible,
the amplitudes of the states can be very large or very small
and the states still retain their classical-like properties. The
canonical coherent states carry the noise level of the quantum
vacuum. On the other hand, by superposing coherent states
of identical macroscopic amplitude but of maximal phase
difference one obtains highly nonclassical states of the type
known as Schrödinger cat states [2]. In the case of a two-mode
field state, one can consider, beyond the product of coherent
states and cat states of each mode, an entanglement of coherent
states over the two modes [3]. If the amplitudes of the
coherent states are low, the states are in the microscopic
realm, but the amplitudes could be large enough to place
the coherent state components into a realm that presents the
prospect of violating Bell-type inequalities in a mesoscopic
or even macroscopic quantum mechanical system. Violations
of Bell inequalities rule out realistic local hidden-variable
theories in favor of quantum mechanics [3]. It is one thing
to contemplate the violation of Bell inequalities by states
involving a small number of particles, as has been done in
all known experiments [4], but quite another if a mesoscopic
or macroscopic number of particles are involved [5]. Naively,
one might expect that the violation of such inequalities might
diminish and even vanish in the limit of macroscopically
occupied component states, but this is generally not the case.

There are other kinds of systems and coherent states with
different levels of entanglement that can be considered. The
second most common type of coherent states discussed in the
literature after the canonical coherent states are the spin [6], or
atomic [7], coherent states, also known as the SU(2) coherent
states [8]. In the context of a collection of two-level atoms,
the SU(2) (atomic) coherent states contain no entanglement
between the atoms. But if the SU(2) coherent states are realized
as two-mode bosonic states (such as for two modes of light [9]

or for a two-component Bose-Einstein condensate [10]) for
a total fixed number of particles, then entanglement will
exist between the two modes. In analogy to the entangled
ordinary coherent states, one can consider violations of a Bell
inequality by entangled SU(2) coherent states, as was done
by Gerry et al. [11] by employing dichotomic observables,
namely the SU(2) parity operators of each component of
the entangled state. The SU(2) parity operator, for a given
irreducible representation D(j ), wherein Jz|j,m〉 = m|j,m〉,
has the form

�(j ) = eiπ(j−Jz) =
j∑

m=−j

|j,m〉(−1)j−m〈j,m|. (1)

The entangled SU(2) coherent states could represent two,
possibly separated, ensembles of two-level atoms similar
to the kind of entangled states between atomic ensembles
created experimentally by Polzik and collaborators [12]. If
we instead assume the SU(2) coherent states are associated
with two sets of two bosonic systems, such as a two-mode
quantized field or a two-component Bose-Einstein condensate,
the entangled SU(2) coherent states ultimately involve the
entanglement of four bosonic modes. Regardless of the
realization, the entangled SU(2) coherent state has been
shown to violate a Bell-type inequality [11], specifically the
Bell-Clauser-Horne-Shimony-Holt (Bell-CHSH) form of the
inequality [13]. In fact, it was shown that under certain
circumstances, the entangled SU(2) coherent states can violate
the Bell-CHSH inequality maximally. That is, the violations
can reach Csirel’son bound [13], and can do so for arbitrary
spins of the component SU(2) coherent states. It was already
known that, counterintuitively, violations of Bell inequalities
do not vanish for spin-singlet states of high spin (j ) in spite
of the general belief that large spin is a classical limit [14]. In
fact, using dichotomic variables that amount to SU(2) parity
operators, Peres [15] showed that the spin-singlet states violate
the inequality by a constant amount in the limit j → ∞,
though this violation is not at the Csirel’son bound.

In this paper we study the violations of the Bell-Clauser-
Horne-Shimony-Holt (Bell-CHSH) inequality by entangled
SU(1,1) coherent states as defined by Perelomov [8] using
as dichotomic variables the SU(1,1) parity operators acting
upon each of the components. The entangled states considered
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are the noncompact analog of the entangled SU(2) coherent
states studied in Ref. [11]. Here the component states are
Perelomov SU(1,1) coherent states defined by the action of
the SU(1,1) displacementlike operator acting on the ground
state of the relevant unitary irreducible representation (UIR).
The Perelomov SU(1,1) coherent states play an important role
in quantum optics as realizations of them include the single-
mode squeezed vacuum and squeezed one-photon states, the
two-mode squeezed vacuum states [16], and squeezed number
states [17,18]. By coupling together SU(1,1) states using
the SU(1,1) Clebsch-Gordan coefficients [19,20] one can
create new forms of Perelomov SU(1,1) coherent states with
multimode entanglement, that is, states involving two, three,
or four modes or even more. Aside from the quantum-optical
states just mentioned, Perelomov SU(1,1) coherent states
have recently been discussed in the context of matter waves
where the states may be generated by Feshbach resonances
in the dissociation of molecular BECs into bosons [21]. We
consider the study of a Bell’s inequality violations for the
entangled SU(1,1) coherent state to be a natural extension
of the previous work on such violations involving entangled
canonical coherent states and entangled SU(2) coherent states.

Very recently, Schnabel [22] has speculated on the prospect
of a macroscopic test of quantum mechanics with objects of
high masses placed in nonclassical states of motion. The ideal
candidate for such a demonstration would be two massive
(of the order of 0.1 kg) pendulum-suspended mirrors in a
Michelson interferometer setup prepared in entangled states
of mechanical motion of their centers of mass. This could be
done by an entanglement swapping protocol [23] that transfers
the quantum state of light onto quantum states of mechanical
motion of the centers of mass of the mirrors. An obvious choice
for the state of nonclassical motion would be the squeezed
vacuum state of the SU(1,1) type, or more accurately, two
masses could conceivably be prepared in an entanglement of
single-mode SU(1,1) coherent states.

Wang et al. [24] have studied entangled SU(2) and SU(1,1)
coherent states, but our work here on SU(1,1) states and the
earlier work on the SU(2) states is significantly different on
several accounts. First, our states are more general and do not
require that the components have identical Bargmann indices
in the former case or spins in the latter. Second, as mentioned,
we have used as the dichotomic observables the corresponding
SU(1,1) or SU(2) parity operators, respectively. In the SU(2)
case [11], the observers each perform local, compact transfor-
mations (rotations) of the states whereas in the SU(1,1) case
below we consider noncompact transformations (hyperbolic
“rotations”). In Ref. [24] only compact transformations were
considered in both cases. Lastly, unlike in Ref. [24], we
perform numerical calculations with a search algorithm to
determine the maximal Bell inequality violations for a given set
of state parameters as results of this nature are not analytically
available for any of the SU(1,1) cases in our scheme.

The paper is organized as follows. In Sec. II we review
the formalism for SU(1,1) and the corresponding Perelomov
coherent states, indicating their realizations and represen-
tations relevant to quantum optics. In Sec. III we present
the entangled Perelomov entangled coherent states, and in
Sec. IV we develop the relevant Bell inequality and present
our results. In Sec. V we briefly discuss a possible scheme for

the generation of the entangled SU(1,1) coherent states, and in
Sec. VI we conclude the paper with a summary of results and
some indications of further work.

II. PERELOMOV SU(1,1) COHERENT STATES

We begin by reviewing the relevant unitary irreducible rep-
resentations (UIRs) of SU(1,1) and the associated Perelomov
coherent states. We shall be concerned mainly with the su(1,1)
Lie algebra which consists of the elements (operators) K3 and
K± satisfying the commutation relations

[K3,K±] = ±K±, [K+,K−] = −2K3. (2)

The operator K3 generates compact SU(1,1) transforma-
tions of the elliptic class [16] whereas the combinations
K1 = (K+ + K−)/2 and K2 = (K+ − K−)/2i are generators
of noncompact SU(1,1) transformations of the hyperbolic
class [16]. The su(1,1) Lie algebra in terms of K1,K2, and
K3 is

[K1,K2] = −iK3, [K2,K3] = iK1, [K3,K1] = iK2. (3)

The Casimir operator is

C = K2
3 − K2

1 − K3
2 = K2

3 − 1
2 (K+K− + K−K+). (4)

The relevant unitary irreducible representations are the
positive discrete series Dk : {|k,m〉,k > 0,m = 0,1,2 · · ·} sat-
isfying the relations

C|k,m〉 = k(k − 1)|k,m〉, (5)

K3|k,m〉 = (m + k)|k,m〉, (6)

K+|k,m〉 = [(m + 1)(m + 2k)]1/2|k,m + 1〉, (7)

K−|k,m〉 = [m(m + 2k − 1)]1/2|k,m − 1〉. (8)

The states |k,m〉 are generated from the “ground” state |k,0〉
according to

|k,m〉 =
[

�(2k)

m!�(2k + m)

]1/2

(K+)m|k,0〉. (9)

The SU(1,1) Perelomov coherent state is defined in analogy
with the displaced vacuum definition of the ordinary harmonic
oscillator coherent state by applying to the ground state the
SU(1,1) “displacement” operator

S(z) = exp(zK+ − z∗K−), z = − r

2
e−iφ, (10)

where r and φ are group parameters having ranges 0 < r < ∞
and 0 � φ � 2π . The Perelomov coherent states are thus given
by

|ξ,k〉 = S(z)|k,0〉,

= (1 − |ξ |2)k
∞∑

m=0

[
�(2k + m)

m!�(2k)

]1/2

ξm|k,m〉, (11)

where ξ = −e−iφ tanh(r/2). Note that the parameter |ξ | is
within the unit circle on the complex plane: 0 � |ξ | < 1.

Important physical realizations of the SU(1,1) coherent
states are as follows. One is that of the single-mode squeezed

042104-2



VIOLATIONS OF A BELL INEQUALITY FOR ENTANGLED . . . PHYSICAL REVIEW A 93, 042104 (2016)

vacuum and squeezed one-photon states. The elements of the
Lie algebra are realized in terms of a single set of bosonic
annihilation and creation operators according to

K+ = 1
2a†2, K− = 1

2a2, K3 = 1
2

(
a†a + 1

2

)
, (12)

for which the Casimir operator becomes C = − 3
16 indicating

possible Bargmann indices k = 1
4 and 3

4 . The usual boson
number states {|n〉; n = 0,1,2 . . .} map onto the UIRs of
SU(1,1) with the above given Casimir operator according to

|n〉 ⇔ |k,m〉 for n = 2(m + k) − 1
/

2. (13)

Thus for k = 1
4 we have n = 2m so that only the even-

photon-number states are mapped onto this UIR of SU(1,1),
and for k = 3

4 we have the odd-number states with n = 2m + 1
mapping onto a different UIR. Note that the “ground” states for
the respective UIRs correspond to the number states | 1

4 ,0〉 =
|0〉 and | 3

4 ,0〉 = |1〉. The corresponding Perelomov coherent
states given in terms of photon number states are∣∣∣∣ξ,

1

4

〉
= (1 − |ξ |2)1/4

∞∑
m=0

[
�(m + 1/2)

m!�(1/2)

]1/2

ξm|2m〉, (14)

which is the squeezed vacuum state [16], while∣∣∣∣ξ,
3

4

〉
= (1 − |ξ |2)3/4

∞∑
m=0

[
�(m + 3/2)

m!�(3/2)

]1/2

ξm|2m + 1〉

(15)

is the squeezed one-photon state [16]. Note that in the former
only the even-photon-number states are populated while in the
later only the odd are populated.

Another important physical realization is the two-mode
realization of the su(1,1) Lie algebra given by [8]

K+ = a†b†, K− = ab, K3 = 1
2 (a†a + b†b + 1), (16)

for which the Casimir operator is

C = 1
4 [(a†a − b†b)

2 − 1]. (17)

Here (a,a†) and (b,b†) are sets of boson operators. Denoting
the eigenvalue of a†a − b†b as q and where without loss of
generality we can take q as a non-negative integer, one can
show that k = (1 + q)/2. The SU(1,1) basis maps onto the
product of photon number states according to |(1 + q)/2,m〉 =
|m + q〉a ⊗ |m〉b. The corresponding Perelomov coherent
state is [17]

|ξ,(1 + q)/2〉 = (1 − |ξ |2)(1+q)/2
∞∑

m=0

[
(m + q)!

m!q!

]1/2

× ξm|m + q〉a ⊗ |m〉b. (18)

In the case q = 0 we have

|ξ,1/2〉 = (1 − |ξ |2)1/2
∞∑

m=0

ξm|m〉a ⊗ |m〉b, (19)

which is the two-mode squeezed vacuum state [16,17]. Note
the pairwise correlations between the number states of the
two modes, these being the responsible for the entanglement
inherent in the state. Gilles and Knight [18] also studied the

states of Eq. (18) and went on to introduce and study the
nonclassical properties of the two-mode squeezed twin-Fock
state |q〉a ⊗ |q〉b. Strictly speaking, though, the resulting
squeezed twin-Fock states are not Perelomov SU(1,1) coherent
states as they cannot be expressed in the form of Eq. (11).

III. ENTANGLED PERELOMOV SU(1,1) COHERENT
STATES AND VIOLATIONS OF A BELL INEQUALITY

We assume now that we have two generic sets of
SU(1,1) systems shared between Alice and Bob where
Alice can perform SU(1,1) transformations with generators
{KA

1 ,KA
2 ,KA

3 } and Bob can perform transformations with
generator {KB

1 ,KB
2 ,KB

3 }. Following earlier work on entangled
SU(2) coherent states [11], we consider entangled SU(1,1)
Perelomov coherent states as given by

|�〉 = N (|ξA,kA〉A ⊗ |−ξB,kB〉B
+ ei�|−ξA,kA〉A ⊗ |ξB,kB〉B), (20)

where the subscripts A and B stand for the components of the
system possessed by Alice and Bob, respectively, and where
the normalization factor N is given by

N ≡ 1√
2

[
1 + cos �

(
1 − |ξA|2
1 + |ξA|2

)2kA(
1 − |ξB |2
1 + |ξB |2

)2kB
]−1/2

.

(21)

In terms of the SU(1,1) bases the above state can be written
as

|�〉 =
∞∑
mA

∞∑
mB

BkAkB

mAmB
|kA,mA〉A ⊗ |kB,mB〉B, (22)

where

BkAkB

mAmB
≡ N (1 − |ξA|2)kA(1 − |ξB |2)kB

×
{

�(mA + 2kA)�(mB + 2kB)

mA!mB!�(2kA)�(2kA)

}1/2

ξ
mA

A ξ
mB

B

× [(−1)mB + ei�(−1)mA ]. (23)

We now assume that Alice and Bob each perform SU(1,1)
transformations on the components of the state of Eq. (22)
in his or her possession. In the case of SU(2) states, all the
transformations would be rotations which are compact trans-
formations. In the SU(1,1) case, only those transformations
generated by K3 are compact. But, our state of Eq. (22) is
decomposed into eigenkets of the two K3 operators so that
only trivial phase factors for the coherent state amplitudes
are produced. On the other hand, the operators K1 and K2

generate noncompact SU(1,1) transformations and in that
sense are analogous to the transformations produced by the
usual displacement operator, D(α) = exp(αa† − α∗a) where
α is an unrestricted complex number. For the purposes of
this paper we choose transformations generated by the K1

operators. The transformed state is then

|� ′〉 = exp
(−iθAKA

1

)
exp

(−iθBKB
1

)|�〉, (24)

where θA and θB are hyperbolic angles, −∞ < θA,B < ∞.
Our observable will be the dichotomic SU(1,1) parity operator

042104-3



HACH III, ALSING, AND GERRY PHYSICAL REVIEW A 93, 042104 (2016)

for the positive discrete UIRs of Bargmann index k as given
by

�(k) = exp[iπ (k − K3)] =
∞∑

m=0

|k,m〉(−1)m〈k,m|, (25)

such that �(k)|k,m〉 = (−1)m|k,m〉. Notice, by the way, that
�(k)|ξ,k〉 = |−ξ,k〉 which means that the components of the
state of Eq. (20) are entangled with respect to parity. Further
notice that we define the correlation function [25]

C(θA,θB) = 〈� ′|�(kA)
A ⊗ �

(kB )
B |� ′〉

= e−iπ(kA+kB )〈�|eiπ(KA
3 cosh θA+KA

2 sinh θA)

× eiπ(KB
3 cosh θB+KB

2 sinh θB )|�〉, (26)

where we have used the Baker-Hausdorff relation

eiθK1K3e
−iθK1 = K3 cosh θ + K2 sinh θ. (27)

The operator

V (g) = exp[iπ (K3 cosh θ + K2 sinh θ )] (28)

corresponds to an SU(1,1) group element g which can be
determined from the fundamental (nonunitary) 2 × 2 represen-
tation of the Lie algebra given by K1 = iσ2/2,K2 = −iσ1/2,
and K3 = σ3/2 where the {σi,i = 1,2,3} are the usual Pauli
matrices. In the fundamental 2 × 2 representation the above
group element is given by [26]

V (g)2×2 = exp[iπ (K3 cosh θ + K2 sinh θ )]|2×2

=
(

α β

β∗ α∗

)
, (29)

where α = i cosh θ and β = sinh θ. The matrix on the right-
hand side of the previous equation has the general form of an
SU(1,1) element if the relation |α|2 − |β|2 = 1 holds, which is
clearly satisfied by the specific case here. Using the expansion
in Eq. (22) we find that

C(θA,θB) = e−iπ(kA+kB )
∞∑

m′
A=0

∞∑
m′

B=0

∞∑
mA=0

∞∑
mB=0

(
B

kAkB

m′
Am′

B

)∗

×BkAkB

mAmB
V

(kA)
m′

A,mA
(αA,βB)V (kB )

m′
B,mB

(αB,βB), (30)

where the V functions are the so-called Bargmann func-
tions [16] corresponding to the above SU(1,1) group element
and are defined by

V
(k)
m′,m(α,β) ≡ 〈k,m′| exp[iπ (K3 cosh θ + K2 sinh θ )]|k,m〉,

(31)

and are given explicitly by

V
(k)
m′,m(α,β) = 1

�(1 + m′ − m)

[
�(m′ + 1)�(m′ + 2k)

�(m + 1)�(m + 2k)

]1/2

× (α∗)−m′−m−2kβm′−m
2F1

× (−m,1 − m − 2k,1 + m′ − m; −|β|2), (32)

for m′ � m and for m′ � m by V
(k)
m′,m(α,β) = V

(k)
m,m′ (α, − β∗).

IV. VIOLATION OF THE BELL-CHSH INEQUALITY

The Clauser-Horne-Shimony-Holt (CHSH) [13] form of
Bell’s theorem is as follows: If Alice performs measurements
with her detector set at hyperbolic angles θ1 and θ2 and Bob
sets his detector angles at θ3 and θ4, then for

S(θ1,θ2,θ3,θ4) = C(θ1,θ3) + C(θ1,θ4) + C(θ2,θ3) − C(θ2,θ4)

(33)

we have |S| � 2 for realistic local hidden-variable theories
whereas quantum mechanics may violate the inequality in
the range 2 < |S| � 2

√
2, where S = 2

√
2 is Csirel’son’s

bound [13,14]. Violations of the Bell-CHSH inequality are
possible to find only through numerical methods. We per-
formed searches over the variables θ1,θ2,θ3, and θ4 to maxi-
mize |S| for various values of the parameters ξA,ξB,kA, and
kB characterizing the states. These searches were performed
using the MATHEMATICA algorithm called FindMaximum [27].

Roughly speaking, we find violations occurring for param-
eters θi in the range 0 < |θi | � 0.200, where θi can be any
of the previously mentioned transformation parameters. In
Table I we list the maximal values attained for the function
|S(θ1,θ2,θ3,θ4)| for a selection of state parameters along with
corresponding maximizing values of the θ parameters. Part
(a) of Table I contains results for the standard physically
relevant values of the Bargmann indices, k = 1

4 , 3
4 , 1

2 and in
various combinations. In part (b) we show a sampling of
the larger violations that are possible with other choices of
the Bargmann indices. It is clear that robust violations of the
SU(1,1) parity based Bell-CHSH inequality occur for a wide
range of state parameters characterizing entangled SU(1,1)
Perelomov coherent states of the form given in Eq. (20).
We note that because the exchanges kA ↔ kB and rA ↔ rB

preserve the value of |S|max for (θ1,θ2) ↔ (θ3,θ4), there is no
need to include the “symmetric” results.

As just mentioned, it is clear that substantial violations
occur for entanglements between SU(1,1) coherent states hav-
ing different Bargmann indices. A similar situation occurred
for entangled SU(2) coherent states of different j values [11]
where maximal violations of the inequality were found for
arbitrary spin values of the two-component systems for specific
values of the coherent state parameters.

To further illustrate the nature of the Bell-CHSH violation
region, we plot in Fig. 1 the surface |S(−θ,ϕ,θ,−ϕ)| for the
the SU(1,1) entangled coherent state having kA = kB = 2,
rA = rB = 0.6, and � = 0, where ri ≡ |ξi | for i = A,B.
The constraints −θ1 = θ3 ≡ θ and θ2 = −θ4 ≡ ϕ ensure that
the apex of this surface passes through the point at which
|S(−θ,ϕ,θ,−ϕ)| → |S|max ≈ 2.418 (see the emboldened en-
try in Table II). In Fig. 2 we plot |S| along the line ϕ =
(4.0410)θ for the same state parameters as in Fig. 1. This line
in the θ,ϕ plane is the one passing through the origin and the
point at which |S(−θ,ϕ,θ,−ϕ)| → |S|max ≈ 2.418. The plots
shown in Figs. 1 and 2 are representative of analogous plots for
all of the cases in which we have found Bell-CHSH violations.

In Table II we examine the dependence of Bell-CHSH
violations on the relative phase angle, �, for a state having
remaining parameters equal to those for the state considered
in Figs. 1 and 2. We note the small but nontrivial variation of
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TABLE I. Representative violations of the Bell-CHSH Inequality by entangled SU(1,1) Perelomov coherent states. For convenience the
table is organized into two pieces. Part (a) shows representative Bell-CHSH violations by states for which well-known physical realizations of
the implicated representations of SU(1,1) occur, as described in the narrative. Part (b) shows representative larger Bell-CHSH violations for
other combinations of the Bargmann indices involved in the entangled state.

(a) Representative Bell-CHSH for entangled states realizable by one- and two-mode Bosonic systems.

kA kB rA = |ξA| rB = |ξB| θ1 θ2 θ3 θ4 |S|max

1
4

1
4 0.8 0.8 0.0199 −0.1896 −0.0199 0.1896 2.055

1
4

1
2 0.6 0.6 0.0559 −0.3662 −0.0244 0.2876 2.059

1
4

1
2 0.6 0.8 0.0658 −0.3642 −0.0114 0.1399 2.077

1
4

1
2 0.8 0.8 0.0320 −0.1851 −0.0134 0.1391 2.094

1
4

3
4 0.6 0.6 0.0732 −0.3599 −0.0186 0.2374 2.081

1
4

3
4 0.6 0.8 0.0847 −0.3560 −0.0083 0.1122 2.102

1
4

3
4 0.8 0.8 0.0407 −0.1807 −0.0098 0.1114 2.122

1
2

1
2 0.6 0.6 −0.0406 0.2835 0.0406 −0.2835 2.102

1
2

1
2 0.6 0.8 0.0472 −0.2814 −0.0188 0.1374 2.128

1
2

1
2 0.8 0.8 0.0217 −0.1360 −0.0217 0.1360 2.152

1
2

3
4 0.6 0.6 0.0531 −0.2783 −0.0310 0.2337 2.136

1
2

3
4 0.6 0.8 0.0607 −0.2755 −0.0138 0.1101 2.166

1
2

3
4 0.8 0.8 0.0278 −0.1328 −0.0159 0.1091 2.191

3
4

3
4 0.6 0.6 0.0406 −0.2295 −0.0406 0.2295 2.177

3
4

3
4 0.6 0.8 0.0462 −0.2271 −0.0181 0.1079 2.209

3
4

3
4 0.8 0.8 −0.0205 0.1067 0.0205 −0.1067 2.235

(b) Representative larger Bell-CHSH for entangled states involving general choices of Bargmann indices. For computational convenience,
we set rA = |ξA| = rB = |ξB | = 0.6 in this part of the table. The entry in bold corresponds to the zenith point in each of the plots shown in
Figs. 1 and 2.

kA kB rA = |ξA| rB = |ξB| θ1 θ2 θ3 θ4 |S|max

1
2

3
2 0.6 0.6 0.0794 −0.2640 −0.0164 0.1569 2.203

1
2 2 0.6 0.6 0.0915 −0.2565 −0.0118 0.1298 2.229

1 1 0.6 0.6 −0.0385 0.1929 0.0385 −0.1929 2.244

1 3
2 0.6 0.6 0.0488 −0.1865 −0.0262 0.1515 2.294

1 2 0.6 0.6 0.0569 −0.1812 −0.0191 0.1256 2.326
3
2

3
2 0.6 0.6 −0.0336 0.1466 0.0336 −0.1466 2.347

3
2 2 0.6 0.6 0.0395 −0.1425 −0.0247 0.1218 2.382

2 2 0.6 0.6 –0.0293 0.1184 0.0293 –0.1184 2.418

the maximum value reached for the absolute value Bell-CHSH
function, |S|, as we vary the relative phase angle over the range
0 � � � π . Once again, the results presented in Table II are
indicative of those for analogous variations of � for all of the
cases that we have examined. Wang et al. [24] treated only
cases for which � = π

2 .
As for physical representations of the entangled SU(1,1)

coherent states, several possibilities are apparent. If we restrict
the Bargmann indices to k = 1

4 , 3
4 then we have entanglements

of squeezed vacuum or squeezed one-photon states, or entan-
glements of a single-mode squeezed vacuum and squeezed
one-photon states. For example, the state

|�〉 = N
(∣∣ξA, 1

4

〉 ⊗ ∣∣−ξB, 3
4

〉 + ∣∣−ξA, 1
4

〉 ⊗ ∣∣ξB, 3
4

〉)
(34)

is a two-mode entangled state wherein the A mode has only
even photon numbers and the B mode has only odd numbers.

On the other hand, for the cases where the two Bargmann
indices are of the form k = (1 + q)/2, q = 0,1,2, . . ., we
have the situation where two two-mode Perelomov SU(1,1)
coherent states are entangled, meaning that four modes in total
are entangled. In the case where both Bargmann indices take
the value k = 1/2, we have the state

|�〉 = N
(∣∣ξA, 1

2

〉 ⊗ ∣∣−ξB, 1
2

〉 + ∣∣−ξA, 1
2

〉 ⊗ ∣∣ξB, 1
2

〉)
, (35)

which, to be clear, constitutes a four-mode entangled state
composed of two-mode squeezed vacuum states. Finally, we
can, of course, consider the case of entanglement between
single-mode and two-mode SU(1,1) coherent states. For ex-
ample, we can consider the entanglement between single- and
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FIG. 1. Surface plot of the violation region for an entangled
SU(1,1) Perelomov coherent state having kA = kB = 2, ξA = ξB =
0.6, and � = 0. This plot agrees with numerical results presented
in Table I(b), and it is qualitatively representative of all of the
Bell-CHSH violations we have found for this system.

two-mode squeezed vacuum states such that three modes in
total are entangled such as for the state

|�〉 = N
(∣∣ξA, 1

4

〉 ⊗ ∣∣−ξB, 1
2

〉 + ∣∣−ξA, 1
4

〉 ⊗ ∣∣ξB, 1
2

〉)
. (36)

This case will display a continuous variable form of the
phenomenon known as entangled entanglement in the sense
that that term is used by Walther et al. [28]. First, note that
there are perfect correlations between the state of the field
mode possessed by Alice and of the two-mode state possessed
by Bob which imply that the entangled states of the two
modes possessed by Bob are elements of reality in the sense

TABLE II. Results demonstrating the variation in |S|max with
respect to the relative phase angle � for the SU(1,1) entangled
Perelomov coherent state with kA = kB = 2 and rA = rB = 0.6; the
emboldened entry here corresponds with the emboldened entry in
Table I(b). Here again we use the notation ri = |ξi |, and we have
taken ξi to be real, where i = A,B.

� θ1 θ2 θ3 θ4 |S|max

0 –0.0293 0.1184 0.0293 –0.1184 2.418
π /16 −0.0418 0.1087 0.0418 −0.1087 2.437
π /8 −0.0544 0.0990 0.0544 −0.0990 2.446
3π /16 −0.0671 0.0895 0.0671 −0.0895 2.445
π /4 −0.0800 0.0800 0.0800 −0.0800 2.433
5π /16 −0.0931 0.0706 0.0931 −0.0706 2.411
3π /8 −0.1064 0.0612 0.1064 −0.0612 2.379
7π /16 −0.1200 0.0519 0.1200 −0.0519 2.338
π /2 −0.1339 0.0427 0.1339 −0.0427 2.289
9π /16 0.1201 −0.0519 −0.1201 0.0519 2.331
5π /8 0.1064 −0.0612 −0.1064 0.0612 2.374
11π /16 0.0931 −0.0706 −0.0931 0.0706 2.408
3π /4 0.0800 −0.0800 −0.0800 0.0800 2.432
13π /16 0.0671 −0.0895 −0.0671 0.0895 2.445
7π /8 0.0544 −0.0991 −0.0544 0.0991 2.448
15π /16 0.0418 −0.1087 −0.0418 0.1087 2.439
π 0.0293 −0.1184 −0.0293 0.1184 2.420

FIG. 2. The altitude above the θ -ϕ plane of a cut through the
surface shown in Fig. 1 along the line ϕ = (4.0410) θ . The maximal
violation of the Bell-CHSH inequality for the state parameters
specified in Fig. 1 occurs along this line. The shape of this curve
is also indicative of the shapes of similar curves along similar cut
lines within each of the violation regions we have investigated.

of Einstein, Podolsky, and Rosen [29]. Second, notice that
neither of the modes in the two-mode squeezed vacuum state
will have well defined states individually. Thus the state of
Bob’s two field modes taken together is an element of reality
but the states of the individual modes are not.

Note that in the state of Eq. (35), both Alice and Bob each
possess two field modes where each of the states of those re-
spective pairs of modes are elements of reality, but where none
of the states of the individual field modes are. Thus the states
in both (35) and (36) are examples of continuous-variable
states possessing the property of entangled entanglement.
The implications of these continuous-variable states will be
explored elsewhere.

Finally we mention that higher values of the Bargmann
indices for SU(1,1) coherent states may be possible by the
pairing of bosonic modes through Feshbach resonances as
discussed in Ref. [21] in the case of cold atoms, or by coupling
together of SU(1,1) coherent states through the SU(1,1)
Clebsch-Gordan coefficients to obtain a new set of SU(1,1)
coherent states of compounded Bargmann indices [19,20,30].

V. GENERATION OF THE ENTANGLED SU(1,1)
COHERENT STATES

In this section we briefly discuss possible schemes by which
the entangled SU(1,1) coherent states could be generated. A
number of schemes have been proposed for the generation
of entangled states, some of which can be adapted for the
states considered in this paper. For example, Gerry and
Campos [31] studied a quantum-optical Fredkin gate [32],
which amounts to a condition beam splitter, as a means for
generating maximally entangled photonic states such as the
(un-normalized) N00N states |N〉|0〉 + |0〉|N〉 and entangled
coherent-and-vacuum states |α〉|0〉 + |0〉|α〉 for the purpose
of high-sensitivity quantum-optical interferometry [33]. An
earlier proposal by Sanders and Rice [34] features a nonlinear
interferometer with a self-Kerr interaction in one arm as
a means of generating entangled coherent states, a special
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case of which is a coherent state entangled with a vacuum
state. This method was further discussed in connection to
quantum interferometry by Gerry et al. [35]. Finally, Gerry and
Grobe [36] discussed the nonlocal entanglement of coherent
states by using a Mach-Zehnder interferometer with cross-Kerr
media in each arm where the modes to be entangled never
meet. Either of these schemes could be used to generate the
entangled SU(1,1) coherent states assuming the availability
of large enough Kerr nonlinearities, but the third method is
the easiest to visualize, and it has the further advantage that
the spatial locations of the field modes initially containing the
states to be entangled can be far apart.

In brief, the third method goes as follows, the details of
which can be found in Ref. [36]: We suppose a Mach-Zehnder
interferometer with internal beam modes labeled c and d,
with 50:50 beam splitters at the input and output, and with
cross-Kerr media in both arms coupling each of the two
interferometer modes (paths) to external modes labeled a and
b each containing an SU(1,1) coherent state. The cross-Kerr
interactions are of the forms �χa†ad†d and �χb†bc†c where
χ is proportional to a third-order nonlinear susceptibility. In
the case of entangling two two-mode SU(1,1) coherent states
there will be two additional modes needed, one for each of the
two-mode SU(1,1) coherent states, say the e and f modes,
though these modes are not coupled to the interferometer
modes or any other modes via the cross-Kerr interactions.
Because of built-in correlations, only one of the modes of
each of the two-mode SU(1,1) coherent states (a and b) need
be coupled to the cross-Kerr media. We assume the a (and e)
and b (and f ) beams contain the states |ξA,kB〉a and |ξB,kB〉b,
respectively, and we assume a single photon is injected into
the first beam splitter. Then the combined output state after the
second beam splitter is (see Eq. (5) and Fig. 1 of Ref. [36])

|out〉 = 1
2 [(eiθ |ξA,kA〉a ⊗ |ξBe−iϕb ,kB〉b − |ξAe−iϕa ,kA〉a
⊗|ξB,kB〉b)|1〉c|0〉d + i(eiθ |ξA,kA〉a
⊗|ξBe−iϕb ,kB〉b + |ξAe−iϕa ,kA〉a
⊗|ξB,kB〉b)|0〉c|1〉d ], (37)

where ϕa,b = χτa,b, the τa,b being the interaction times, and
where the phase θ comes from the phase shift operation in
the c mode, exp(iθc†c). The detection of the |1〉c|0〉d or the
|0〉c|1〉d states in the c and d modes projects the a and b modes
into the states

|�∓〉 = N∓(eiθ |ξA,kA〉a ⊗ |ξBe−iϕb ,kB〉b
∓ |ξAe−iϕa ,kA〉a ⊗ |ξB,kB〉b), (38)

respectively, where the N∓ are normalization factors. It is
evident that for the appropriate choices of the angles θ and

ϕa,b, particularly with ϕa,b = π , we can recover the states of
Eq. (20).

Finally in this section we mention that a major stumbling
block to schemes of the type discussed here, and which also
occur in the realizations of quantum information processing
devices such as the Fredkin gate, is the lack of large cross-Kerr
nonlinearities to effectuate a phase shift as large as π . For
recent progress on this front see the papers by Tiarks et al. [37]
and Boddeda et al. [38].

VI. CONCLUSIONS

In this paper, we have extended previous work on the
violation of Bell inequalities by entangled ordinary coherent
states and entangled SU(2) coherent states to the case of
entangled SU(1,1) coherent states. The SU(1,1) coherent
states are, of course, continuous-variable states that represent
many types of states of physical importance, particularly the
one- and two-mode squeezed states of quantum optics. The
importance of coherent states in general is that they can
be mesoscopically or even macroscopically occupied by the
adjustment of a single parameter. In analogy to the case
of the entangled SU(2) coherent states [11], we have used
as the observables the parity operators associated with the
relevant unitary irreducible representations of SU(1,1) for the
positive discrete series, the only representations considered
here. Unlike the SU(2) case, however, we have not been
able to find instances where the Bell inequality is maximally
violated. This might be because we have examined cases where
the Bargmann indices are relatively low, as fits for most of
the known useful representations. We note from Tables I(b)
and II that for Bargmann indices set at k = 2 we already see
increasing levels of violation of the Bell inequality.

Finally, because the SU(1,1) coherent states themselves
may represent systems with strong entanglement, our en-
tangled SU(1,1) coherent states could possess the property
of continuous-variable entangled entanglement. The conse-
quences and applications of this feature will be studied
elsewhere.
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