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Modulational instability and zigzagging of dissipative solitons induced by delayed feedback
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We report a destabilization mechanism of localized solutions in spatially extended systems which is induced
by delayed feedback. Considering a model of a wide-aperture laser with a saturable absorber and delayed optical
feedback, we demonstrate the appearance of multiple coexistent laser cavity solitons. We show that at large
delays apart from the drift and phase instabilities the soliton can exhibit a delay-induced modulational instability
associated with the translational neutral mode. The combination of drift and modulational instabilities produces
a zigzagging motion of the solitons, which are either periodic, with the period close to the delay time, or chaotic,
with low-frequency fluctuations in the direction of the soliton motion. The same type of modulational instability
is demonstrated for localized solutions of the cubic-quintic complex Ginzburg-Landau equation.
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The formation and complex dynamics of localized patterns
in dissipative systems have been reported in different areas of
research. They manifest themselves as localized light spots in
nonlinear optics [1–5], solitary waves in fluid dynamics [6,7],
concentration pulses or spots in chemical and biological
systems [5,8,9], current filaments in semiconductor devices
and gas-discharge systems [10–12]. In this Rapid Communi-
cation, we focus on the effects of the delayed feedback on
the dynamical properties of localized structures. One of the
established examples of localized structures are cavity solitons
(CSs), which are localized spots of light in the transverse
section of passive and active optical devices, broad area
lasers and wide-aperture semiconductor cavities with external
coherent pumping [1,13]. Recently, much attention was paid
to the investigation of the influence of the delayed optical
feedback on the stability properties of these structures [14–16].
In particular, it was demonstrated that in a driven passive
cavity with delayed feedback a drift instability of a cavity
soliton leading to a motion in the transverse direction and
some other instabilities can develop [14,15]. The influence
of the feedback phase and carrier relaxation rate on the drift
instability threshold was investigated in [16]. In this Rapid
Communication, we show how the delayed optical feedback
produces multistability of laser cavity solitons. Moreover,
we describe a type of delay-induced modulational instability,
which leads to zigzagging and drifting CSs, as well as a
low-frequency switching of the soliton motions. We also show
that the same modulational instability occurs for localized
solutions of the cubic-quintic complex Ginzburg-Landau
equation (CGLE) [17]. Since the CGLE plays a role of the
normal form for a large class of complex spatially extended
systems of different physical origin [18], our results are also
relevant beyond the scope of nonlinear optics.

The dynamics of a wide-aperture laser with a saturable
absorber subject to a coherent optical delayed feedback can be
described by the one-dimensional quasioptical equation [19]
with an additional delayed feedback term:

∂tA = (d + i)∂xxA + f (|A|2)A + ηeiϕA(x,t − τ ), (1)

where A(t,x) is the slowly varying amplitude of the electric
field; τ,η, and ϕ are delay time, feedback strength, and phase,
respectively. Here, time t and transverse coordinate x are
dimensionless, whereas d∂xxA denotes a small diffusion term
with a positive diffusion coefficient d. The delayed feedback
term in Eq. (1) is introduced with the assumption that the
external cavity is self-imaging, so that the diffraction in this
cavity can be neglected [16]. Here, we focus on the case
of instantaneous gain and absorption relaxation. Then the
nonlinear function in Eq. (1) describing the saturable gain
and absorption as well as linear cavity losses can be written in
the form [20]

f (|A|2) = −1 + g0

1 + |A|2/s − a0

1 + |A|2 , (2)

where g0 and a0 are linear gain and the absorption coefficients,
and s is the ratio of the saturation intensities in the amplifying
and absorbing media.

The CS solutions can be found in the form A(x,t) =
A0(x)e−iωt , where A0(x) is the complex amplitude with the
field intensity |A0|2 localized around some point in space and
ω is the soliton frequency shift. The properties of localized
solutions of Eq. (1) without delayed feedback (η = 0) were
studied previously in detail, see, e.g., [20–22]. To find the
localized solutions in the system with delayed feedback, we
substitute the ansatz A0(x)e−iωt into Eq. (1) and obtain the fol-
lowing ordinary differential equation for unknowns A0 and ω:

(d + i)∂xxA0 + iωA0 + f (|A0|2)A0 + ηeiθA0 = 0. (3)

Here θ = (ωτ + ϕ) mod 2π denotes the effective feedback
phase. Equation (3) defines a set of soliton solutions
parametrized by the phase θ . This set can be calculated in a
similar way as in the system without delay, since Eq. (3) is an
ordinary differential equation. In this way, one can find ωθ and
A0,θ (x). Then the solitons within this set corresponding to any
given value of time delay τ are determined from the condition

ωθτ + ϕ = θ mod 2π. (4)
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As soon as the dependency ωθ is calculated numerically,
the solutions θk of Eq. (4) define the cavity soliton solutions
with the frequencies ωθk

at a given value of time delay τ .
Therefore, as a first step it is necessary to describe the whole
set of solitons in Eq. (3) for all possible values of parameter θ .

It is known for the case with η = 0 [20] that the branch
of CSs has a form of a spiral in the (g0,ω) plane (green line
in Fig. 1). Therefore, in a system perturbed by the delayed
feedback η > 0, an offset spiraling branch of solitons appears
in the (g0,ω) plane for each fixed value of the effective
feedback phase θ . The set of such branches for all possible
θ forms a one-parametric family in the form of a spiraling
tube with a diameter proportional to η (see Fig. 1).

For any given value of delay τ , the CSs can be found from
relation (4), which defines a line on the tube. Figure 1 (black
solid line) shows the resulting soliton branch for the feedback
time τ = 250. One can observe that the soliton branch makes
a number of turns around the tube giving rise to multistability
of CSs. Indeed, at the fixed value of the pump parameter g0

and sufficiently large delay time τ , one obtains a set of external
cavity solitons, similar to the case of external CW cavity modes
in a single-mode laser with delayed feedback [23–29], cf. an
inset in Fig. 1 where a cross-section of the tube is presented.
There, black dots depict CS solutions for τ = 1000 in the
(P,ω) plane, where P = ∫

dx|A0|2.
A similar multistability effect was experimentally observed

in a broad-area VCSEL (vertical cavity surface emitting laser)
with frequency-selective feedback [30,31]. The existence of
such a multistability follows from the form of Eq. (4), which
can be rewritten as ωθ = (θ − ϕ)/τ + 2πk/τ . Properties of
its solutions can be easily studied, e.g., geometrically. In
particular, one can show that the number of solutions θk

of this equation grows linearly with τ , and for large delay,

FIG. 1. Tube of solitons defined by Eq. (3) for all possible values
of phase θ and other parameters fixed as η = 0.025,ϕ = 0,a0 =
2.0,Ig = 10.0, and d = 0.1. The tube corresponds to all possible
values of the delay time τ . Black line: soliton branch for τ = 250.
Green (light gray) line: branch of solitons for the case without
feedback, η = 0 (solid for stable and dashed for unstable). S indicates
a saddle-node bifurcation, and H an Andronov-Hopf bifurcation. The
branch has the form of a spiral with the accumulation point C.

FIG. 2. Cavity soliton bifurcation diagram in (θ,η) plane. In the
large delay limit, the horizontally hatched region corresponds to
drift destabilization and the vertically hatched region to modulational
instability related to the translational neutral mode. Solid red, dotted
blue, and dashed green lines show the destabilization threshold for
drift, modulational, and phase instabilities, respectively, calculated
for τ = 1000. Control parameter g0 = 2.07.

the solutions cover the whole range of the phases θ with
the spacing between them of the order 1/τ , cf. [27,29]. In
particular, in the limit of large delay, the CS solutions densely
fill the whole surface of the tube.

To analyze the stability of the localized solutions in the
presence of delayed feedback, we apply the ansatz A(x,t) =
[A0(x) + Ap(x,t)]e−iωt in the evolution equation (1). Here, Ap

stands for a small perturbation of the soliton solution. After
linearization in Ap, we obtain

∂tAp = −iωAp + (d + i)∂xxAp

+ f (|A0|2)Ap + |A0|2f ′(|A0|2)Ap

+A0
2f ′(|A0|2)Ap + ηeiθAp(t − τ ). (5)

By substituting Ap(x,t) = [AR(x) + iAI (x)]eλt into Eq. (5),
where λ is the complex eigenvalue, we arrive at the transcen-
dental eigenvalue problem

L
 := [L̃ − Iλ + ηBe−λτ ]
 = 0, (6)

where 
 = (AR,AI )T is an eigenfunction, L̃ is the lineariza-
tion of the instantaneous part, and B is a 2 × 2 matrix of
rotation by angle θ . To find the eigenvalues numerically,
we rewrite the eigenvalue problem (6) in matrix form by
discretizing the space. The characteristic roots of the resulting
system are found using the spectral method described in [32],
see Fig. 3. With the increase of delay time τ , the computational
complexity of the eigenvalue problem increases. However, as
shown below, in such a case, the stability analysis can be
significantly simplified by using a large delay approximation.

Drift bifurcation. Due to translational and phase-shift
symmetries of Eq. (1), the operator L has two zero eigenvalues
corresponding to a pair of eigenfunctions (also known as Gold-
stone modes) [22]: the even phase-shift neutral mode 
ph =
[−ImA0(x), ReA0(x)]T and the odd translational neutral mode

 tr = ∂x[ReA0(x), ImA0(x)]T . The real eigenvalue which
corresponds to Galilean symmetry [1-7] is generally nonzero
due to diffusion and delayed feedback. Drift bifurcation occurs
when the eigenvalue corresponding to the translational mode
becomes doubly degenerate with geometrical multiplicity
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FIG. 3. Pseudocontinuous spectrum curves for η = 0.005. Stable
soliton (a) for θ = 4 and modulationally unstable soliton (b) for θ =
1.5. Blue dots and red crosses show stable and unstable eigenvalues
for τ = 1000.

one [33]. That is, the critical real eigenvalue passes through
zero at the bifurcation point, so that the corresponding critical
eigenfunction at this point is proportional to 
 tr. This critical
eigenvalue can be either a delay-induced branch of zero
translational eigenvalue or correspond to a Galilean mode.
To determine the drift instability threshold let us look for
real solutions of the eigenvalue problem (6) in the vicinity
of zero, λ = ε � 1. The corresponding eigenfunction 


can be represented as 
 = 
 tr + ε
1 + O(ε2) with some
unknown function 
1. Substituting this expansion into Eq. (6),
expanding the resulting equation into power series in ε, and
collecting zero-order terms we get the relation L0


tr = 0 with
L0 = L̃ + ηB, which is satisfied by the definition of the neutral
mode 
 tr. Then, collecting the first-order terms in ε we obtain
L0
1 = (I + ητB)
 tr. This equation possesses a nontrivial
solution if and only if the solvability condition is fulfilled
which requires the orthogonality of the right-hand side to the
translational eigenfunction 
 tr† of the adjoint operator L

†
0. The

solvability condition leads to the expression

ηd = −p/[τ (p cos θ − q sin θ )] (7)

for the threshold feedback rate associated with the drift
instability of the cavity soliton. Here p = 〈
 tr

R,

tr†
R 〉 +

〈
 tr
I ,
 tr†

I 〉 and q = 〈
 tr
I ,


tr†
R 〉 − 〈
 tr

R ,
 tr†
I 〉, where 
 =

(
 tr
R,
 tr

I )T [
 tr† = (
 tr†
R ,


tr†
I )T ] is the translational neu-

tral mode of L0 (adjoint operator L
†
0) and 〈
j,�

†
k〉 =∫ ∞

−∞ 
j�
†
kdx [34].

When increasing the feedback rate above the threshold
given by Eq. (7), a pitchfork bifurcation takes place: the
stationary soliton loses stability, giving rise to a pair of
branches of stable cavity solitons moving uniformly along
the x axis in opposite directions. Note that the drift instability
exists only in the interval of feedback phases θ , where the
right-hand side in Eq. (7) is positive. The drift instability
threshold calculated for τ = 1000 is shown by the solid red
line in Fig. 2. The domain where drift instability is possible
for an arbitrary delay time is indicated by horizontal hatching.

Saddle-node phase bifurcation. Similar to the translational
zero eigenvalue, the zero eigenvalue of the phase-shift neutral
mode can become doubly degenerate in the presence of
delayed feedback. The threshold of this instability ηp is given
by Eq. (7) with the neutral modes 
 tr and 
 tr† replaced by the
phase-shift neutral modes 
ph and 
ph† in the expressions

for the coefficients p and q. In Fig. 2 it is shown by a
dashed green line. In fact, this bifurcation corresponds to
a saddle-node bifurcation, where a pair of soliton solutions
merge and disappear (cf. Fig. 1), and it is defined by the
condition dω/dθ = 1/τ , which follows directly from Eq. (4).
By differentiating Eq. (3) by θ , one can easily show that this
condition is equivalent to the condition η = ηp obtained from
Eq. (7) with the translational neutral mode replaced by the
phase one. That is, the aforementioned multistability of the
CSs is induced by the saddle-node phase bifurcation.

Modulational instability. It was shown in Refs. [35–37]
that the spectrum of the delay systems is split into discrete
and pseudocontinuous parts in the case when the delay time
is sufficiently large to induce multiple delay-induced linear
modes. While the aforementioned drift instability is associated
with the discrete part of the spectrum, an instability of the
pseudocontinuous part can produce another type of bifurcation
scenario. Figure 3 shows a set of eigenvalues belonging to a
branch of a pseudocontinuous spectrum with the translational
zero eigenvalue at the origin. Figures 3(a) and 3(b) correspond
to weakly stable and unstable cases, respectively, indicating
the presence of delay-induced modulational instability [38].
The modulational instability is characterized by a branch of
eigenvalues whose second derivative becomes positive in the
origin as in Fig. 3(b).

To obtain the conditions for the onset of a modulational
instability, let us consider the pair of complex-conjugate
eigenvalues λ± with the smallest nonzero imaginary parts
on the pseudocontinuous branch. The long-wavelength mod-
ulational instability takes place when this pair crosses the
imaginary axis. In the limit of large delay times, the
distance between the imaginary parts of the neighboring
eigenvalues on the pseudocontinuous branch shown in Fig. 3
becomes close to ε = 2π/τ [35,37], the eigenvalues λ± can
be expanded in power series in the small parameter ε as
λ± = ±iε[1 + νε/(2π )] + γ±2ε

3/(2π ) + · · · , where ν is real,
since the second-order derivative along the branch vanishes
at the bifurcation point. Here we used the fact that λ−
and λ+ are complex conjugated. Substituting this expansion
into the eigenvalue problem (6), representing the unknown
eigenfunctions in the form 
 = 
 tr + ε
1 + ε2
±2 + · · · ,
and collecting first-order terms in ε we get a linear equation
for the first-order correction 
1:

L0
1 = (I + νηB)
 tr. (8)

Next, collecting the terms of the order ε2 and applying the
solvability condition to the resulting equation we obtain the
third-order corrections to the real parts of λ±, which lead to the
following condition for the modulational instability threshold:

ηm = p2/[2 sin θ (qP − pQ)]. (9)

Here the coefficients P and Q are calculated using the same
formulas as those for p and q, but with 
 tr replaced by
the first-order correction 
1 obtained by solving Eq. (8).
In contrast to p and q, the coefficients P and Q depend
on the phase θ . The modulational instability shown with
the dashed blue line in Fig. 2 gives rise to a sequence of
Andronov-Hopf bifurcations taking place above the threshold
defined by Eq. (9). One can see that Eq. (9) obtained in the
limit of large delay provides a reasonable approximation for the
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FIG. 4. Zigzagging solitons appearing above the drift and mod-
ulational instability thresholds. (a) Regime with periodic in time
velocity, ϕ = −1.0; (b) aperiodic regime, ϕ = 0.0. On the right:
phase portraits of zigzagging solitons in coordinates V (soliton
center velocity) and θ (feedback phase). Other parameters: τ = 5000,
η = 0.002.

Andronov-Hopf bifurcation threshold calculated at τ = 1000.
The latter threshold is indicated with a dotted blue line in
Fig. 2.

Figure 4 shows the zigzagging motion of the soliton
after the onset of both drift and modulational delay-induced
instabilities. The period of oscillations is close to the delay
time τ . Figure 4(a) presents a soliton with the periodically
varying velocity V1(t) having a positive average value V̄1 > 0.
It is worth noticing that a qualitatively similar zigzagging
motion was observed numerically in a model of a VCSEL
with frequency-selective feedback [39]. Due to the symmetry
properties of the problem this periodic regime coexists with
another stable periodic regime having exactly opposite velocity
V2(t) = −V1(t). With the increase of the parameter ϕ both
periodic regimes are transformed into aperiodic solutions
which finally merge into a single chaotic attractor. A period-
doubling transition to chaos leads to the attractor, which
corresponds to a zigzagging soliton changing the direction of
motion aperiodically after large time intervals, see Fig. 4(b).
Surprisingly, the time intervals between these changes of the
direction of the soliton motion are much larger than the delay
time or any other system time scale.

Finally, we demonstrate that the delay-induced modula-
tional instability similar to that described above can destabilize
localized solutions of the cubic-quintic complex Ginzburg-
Landau equation (CGLE). CGLE plays an important role
in modeling of various natural phenomena including nonlin-
ear optical waves, second-order phase transitions, Rayleigh-
Bénard convection, and superconductivity [42,43]. Its univer-
sality is ensured by the fact that CGLE is an amplitude equation
describing the onset of instability near an Andronov-Hopf bi-
furcation in spatially extended dynamical systems [18]. In non-
linear optics, equations of the CGLE type are widely used to
describe such phenomena as mode-locking in lasers [44–46],
short pulse propagation in optical transmission lines [47],
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FIG. 5. Pseudocontinuous spectrum curves for η = 0.09, θ =
5.8, and τ = 1000. The localized solution exhibits delay-induced
modulational instability of the same type as in the model of a laser
with a saturable absorber. Blue dots and red crosses show stable and
unstable eigenvalues for τ = 1000.

dynamics of multimode lasers, and transverse pattern forma-
tion in nonlinear optical media [22,48].

Here we consider one-dimensional cubic-quintic CGLE
with delayed feedback. In this case the equation for the
complex amplitude A(x,t) reads

∂tA =
(

d + i

2

)
∂xxA + δA + (ε + i)|A|2A

+ (μ + iν)|A|4A + ηeiϕA(x,t − τ ). (10)

Here the parameter d > 0 is the diffusion coefficient, diffrac-
tion (second-order dispersion) coefficient is scaled to 1/2, and
δ describes the linear loss or gain. Parameters ε,μ, and ν

determine the shape of the nonlinearity.
Stable localized solutions are found in the range of param-

eters described in, e.g., [44]. We consider a stable localized
solution for the following parameter values: d = 0.5, δ =
−0.1, ε = 0.5, μ = −0.1, and ν = −0.1. With the addition
of the delayed feedback, modulational instability can develop
as illustrated by Fig. 5, where pseudocontinuous spectrum
curves for η = 0.09, θ = 5.8, and τ = 1000, corresponding to
modulationally unstable localized solutions, are shown.

Based on our results one can expect that the observed
phenomena of delay-induced multistability as well as delay-
induced modulational instability and zigzagging of localized
structures appear in other spatially extended systems subject
to delayed feedback.
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I. Kanter, E. Schöll, and W. Kinzel, Phys. Rev. Lett. 107, 234102
(2011).

[37] J. Sieber, M. Wolfrum, M. Lichtner, and S. Yanchuk, Discrete
Contin. Dyn. Syst. A 33, 3109 (2013).

[38] M. Wolfrum, S. Yanchuk, P. Hövel, and E. Schöll, Eur. Phys. J.
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