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Potential barrier mimicking frequent location measurements in quantum Zeno dynamics
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We show that quantum Zeno dynamics can be mimicked by the isolated evolution of an unobserved system in
an effective potential. Monitoring frequently whether a particle remains in a region of space leads to the same
wave-packet dynamics as placing the region on top of a potential barrier and letting the particle evolve on its
own, without external couplings. We focus on very frequent but not continuous observation so that the particle
abandons the initial region with some finite probability. The height of the barrier relative to the surroundings for
a high frequency ν of the observations being mimicked is found numerically to be hν/2, where h is Planck’s
constant.
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I. INTRODUCTION

In the beginning, the Zeno effect was presented as a
consequence of the state reduction associated with quantum
measurement [1]. Later, it was discovered that the controversial
state reduction plays no role, so it does not even matter
whether the planned measurement is finally carried out or
not; it is enough that it could be made [2]. The Zeno effect
is a purely dynamical consequence of the alteration of the
observed system caused by the changes that must be introduced
in the system in order to make possible the observation of the
intermediate stages of the evolution [3]. Moreover, the fact that
disputable quantum features play no role is clearly illustrated
by the numerous demonstrations of Zeno-like dynamics in
classical physics [4,5]. The interest in the research in quantum
Zeno dynamics is evidenced by several proposals (e.g., [6])
as well as recent experiments [7–9], with application to
the control of quantum states and to quantum information
processing.

We investigate here the Zeno dynamics of a quantum
particle that is frequently observed to see whether it remains in
the region of space where it is initially found. For sufficiently
high, but not infinite, frequency of the measurements, we
demonstrate that the dynamics of the wave packet within
the observation region is the same as that obtained by
placing the region on top of a potential barrier and letting the
particle evolve on its own. That is, quantum Zeno dynamics
can be mimicked by the isolated evolution of an unobserved
system. The dynamics of the particle with energy over the
barrier and mimicking the Zeno dynamics is seen to result from
the well-known quantum reflections at the discontinuities of
the barrier.

By means of numerical simulations we find that the
height V0 of the barrier that reproduces the quantum Zeno
dynamics with observation frequency ν is given by the simple
formula V0 � hν/2. This is interpreted to be a consequence
of the energy-time uncertainty principle �t�E � � for a
characteristic evolution time dictated by the observation period
1/ν being mimicked by an unobserved particle that can be
located within or outside the barrier. Another key feature is
that this result holds for other than perfect observation, i.e., in

conditions of very frequent but not continuous observation, so
that the particle abandons the initial region with some finite
probability. The limit of continuous observation previously
studied in [10] is seen to emerge naturally from our analysis
in the strict limit ν = ∞.

II. ZENO DYNAMICS OF A QUANTUM PARTICLE

We consider, for simplicity, a quantum particle of mass m

in a one-dimensional space x. The particle is prepared to be at
a certain time t = 0 in an interval � = [a1,a2], so that∫

�

|ψ(x,0)|2dx = 1 . (1)

The wave function of the particle evolves according to the
time-dependent Schrödinger equation

i�∂tψ = − �
2

2m
∂xxψ + V ψ , (2)

but with period T or frequency ν = 1/T , the evolution is
interrupted in order to observe whether the particle remains
in the interval � or not. These observations are assumed to
be instantaneous. If the particle is found in � in the first
measurement at time T , the evolved wave function is set to
zero out of �, and its norm after projection in � gives the
probability to find the particle in � at time t = T . The same
applies to successive observations at times t = 2T ,3T , . . . .
Formally, the wave function after the nth observation is given
by

ψ(x,nT ) = �e−i HT
�

(n). . . �e−i HT
� ψ(x,0) , (3)

where � = 1 if x ∈ � and 0 otherwise, H = p2/2m + V is
the Hamiltonian, and the norm of the wave function

P (nT ) =
∫

�

|ψ(x,nT )|2dx (4)

gives the probability to find the particle in � in all n

measurements. This is an example of quantum Zeno dy-
namics [10], characterized by a unitary evolution dictated
by the Hamiltonian H , alternated by projections � on a
certain subspace. The quantum Zeno dynamics generalizes
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the simpler quantum Zeno effect in which the observation
concerns whether the particle remains in the initial state [1,11].
We point out that the above description is equivalent to that
in which the wave function is not only projected but also
normalized to unity in each observation:

ψ(x,nT )√
P (n) · · ·P (1)

= �√
P (n)

e−i HT
�

(n). . .
�√
P (1)

e−i HT
� ψ(x,0) , (5)

where P (i) gives the probability of finding the particle in �

in the ith measurement after having found the particle in �

in the (i − 1)th measurement. The probability of finding the
particle in � in all n measurements is the product P (n) · · ·P (1)

of the individual probabilities. Since the norm of the left-hand
side of Eq. (5) is unity, it follows that this product is given by
P (nT ) in Eq. (4).

Let us first focus on the case of a free particle (V = 0).
Figure 1 refers to the quantum Zeno dynamics of particles
prepared in � = [−a,a] at rest [Fig. 1(a)] and moving at some
speed [Fig. 1(b)], evolving freely but frequently observed to
see whether they remain in �. In the numerical simulations in
this Rapid Communication and their results, such as those in
Fig. 1, we use the dimensionless coordinate x ′ = x/a and the
dimensionless time t ′ = t/tc, where tc = ma2/� characterizes
the spreading time associated with a wave packet whose size
is of the order of a. The wave function of an unobserved,
free particle would evolve significantly at times t ′ of the
order of unity, and a “frequent” observation is regarded to be
that with period T ′ = T/tc much smaller than unity. In these
dimensionless variables the Schrödinger equation in Eq. (2)
reads i∂t ′ψ = −(1/2)∂x ′x ′ψ + V ′ψ , where the dimensionless
potential is V ′ = (tc/�)V and dimensionless momenta and
energies are p′ = pa/� and E′ = (tc/�)E, respectively. All
numerical simulations in this Rapid Communication have been
performed using a standard, symmetrized split-step Fourier
method (see, for example, [12]), in which the error due to
discretization in time diminishes as dt ′3 for a time step dt ′.
Dealing with truncated functions or discontinuous potentials,
errors may nevertheless be large due to subsampling in x ′ and
t ′ in the fast spatial and temporal variations. In all simulations
we have minimized these errors by choosing a sufficiently

FIG. 1. Permanence probability P (nT ′) in [−1,1] in successive
measurements at times nT ′ for a particle in the initial state
ψ(x ′,0) ∝ rect(x ′) exp(−x ′2) exp(ip′x ′) [rect(x ′) = 1 if x ′ ∈ [−1,1]
and 0 otherwise] for different frequencies 1/T ′ of the measurements.
In (a) the particle is initially at rest (p′ = 0), and in (b) it is moving
(p′ = 2). Upper curves seem like solid curves because the dots are
very close.

large number of points (e.g., changes cannot be detected at the
scale of the figures when doubling the number of points).

The capacity of the frequent observation to confine the
free particle, i.e., to inhibit wave-packet spreading and dis-
placement, is clear from Figs. 1(a) and 1(b). The probability
P (nT ) of finding the particle in its original location is seen to
approach zero as time increases, but at any particular time this
probability increases and approaches unity as the frequency
ν of the measurements increases, as described previously
in [5,13].

III. POTENTIAL BARRIER MIMICKING
ZENO DYNAMICS

In the limit of continuous measurements (ν = ∞), the Zeno
dynamics within the observation region � was shown to be
described by the Hamiltonian H = p2/2m + V�, where V� =
0 for x ∈ � and V� = ∞ otherwise; the particle thus remains
with unit probability in � and behaves as an unobserved
particle within an infinite potential well in � [10]. We may
wonder if this fact can be extended below the limit of
continuous measurements ν < ∞, i.e., if the Zeno dynamics
within the observation region �, such as that in the examples
in Fig. 1, can take place in an unobserved system subjected
to a particular confining potential. If so, one expects, as in the
limit ν = ∞, this potential to be defined by the observation
region � and to be independent of the particular initial state
of the particle. At first glance, one is tempted to consider
the finite potential well V� = 0 for x ∈ � and V� = V0 > 0
otherwise, with increasing height V0 with the frequency of the
measurements so as to recover the “hard-wall” potential in the
limit of continuous observation. However, for an initial state
with kinetic energy lower than V0, the lingering probability in
� of such a bounded state is constant in time (for an eigenstate)
or oscillates about a constant value, while in the Zeno dynamics
the lingering probability in � always approaches zero in time.

A lesser-known candidate also producing confinement is a
finite potential barrier V� = 0 in � and V� = −V0 outside,
with V0 > 0, shown in Fig. 2. A wave packet located initially
within the barrier will certainly abandon it, but as the depth
V0 increases, the reflection coefficients of any plane-wave
component k = p/� at the boundaries are known to increase,
so the wave packet will spend more and more time in �. For

FIG. 2. The potential V�(ν) approaching in � the Zeno dynamics
of a free particle subjected to frequent observation of permanence
in �.
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FIG. 3. Dashed curves: Permanence probability P (t ′) in a barrier
in [−1,1] as a function of time for a particle of initial state ψ(x ′,0) ∝
rect(x ′) exp(−x ′2) exp(ip′x ′) for different values V ′

0 = π/T ′ of the
barrier depth. In (a) p′ = 0; in (b) p′ = 2. Figure 1 is reproduced in
gray for comparison.

example, Figs. 3(a) and 3(b) show the probability of finding
the particle in [−a,a] for the same initial states as in Figs. 1(a)
and 1(b) but for the unobserved evolution under the action
of potential barriers in [−a,a] of increasing depths V0 (the
particular values are discussed below). As seen, increasing
depths V0 lead to increasing probabilities of finding the particle
in the barrier at any given time. As in the Zeno dynamics, the
probability tends, nevertheless, to zero at large time because a
fraction of the wave function continuously escapes from the
barrier, acquiring large kinetic energy and momentum towards
x = ±∞.

We have found by numerical means that when the frequency
of the measurements is finite but sufficiently high, the
probabilities of finding the particle in � at any time in the Zeno
dynamics and in the unobserved evolution under the action of
a potential barrier of depth V0 = hν/2 (or dimensionless depth
V ′

0 = π/T ′) tend to match. More precisely, the Zeno dynamics
within � and the unobserved evolution within the potential
barrier,

V�(ν) =
{

0 in �,

−hν/2 out of � ,
(6)

approach one another asymptotically as ν → ∞. The potential
in Eq. (6) is solely determined by the region and frequency of
the observations being mimicked, irrespective of the particular
initial state of the particle, as discussed below. In Figs. 3(a)
and 3(b), for example, the probabilities in [−a,a] in the Zeno
dynamics with period T and in the potential barrier of Eq. (6)
with ν = 1/T are seen to approach one another as the period
T is increasingly shorter than the characteristic evolution time
tc of the particle for both the initially still and moving particles.
For the initially moving particle, Fig. 4 shows that it is not only
the lingering probability but also the dynamics of the wave
functions within [−a,a] that becomes increasingly similar as
T/tc approaches zero, as seen in Fig. 4(a) for T < tc and in
Fig. 4(b) for T 	 tc.

The validity of Eq. (6) asymptotically as ν → ∞ for
different initial states is further supported by Fig. 5. For a
particle in initial Gaussian-shaped states of different widths
and velocities, the numerically evaluated depth V0 of the
potential barrier that yields the same lingering probability in
[−a,a] at a certain time (t = tc) as in the Zeno dynamics
with frequency ν is depicted as this frequency increases. The

FIG. 4. Gray curves: Snapshots of the probability density in
the Zeno dynamics with observation in [−1,1] with (a) T ′ = 0.1
and (b) T ′ = 0.001 for a particle in the initial state ψ(x ′,0) ∝
rect(x ′) exp(−x ′2) exp(ip′x ′),p′ = 2. Dashed curves: the same as the
gray curves, but in the unobserved evolution with potential barriers
in [−1,1] of depth V ′

0 = π/T ′.

numerical values of V0 are seen to approach asymptotically
the straight line hν/2 irrespective of the initial state.

Other aspects are discussed in relation to Fig. 6, where the
observation region is the unbounded interval � = (−∞,a].
For a particle launched towards positive x, the Zeno dynamics
is seen to consist of the reflection of the particle towards
negative x with a probability that increases with the frequency
of the measurements (e.g., � 0.8 with T = 0.001tc). In
Fig. 6(a) the probability that the particle remains in (−∞,a]
with potential barriers in (−∞,a] with depths higher than,
equal to, and smaller than V0 = hν/2 and the same initial state
(cyan, black, and blue curves) is compared to the probability in
the Zeno dynamics (gray curve). We note in Fig. 6(b) that the
behavior of the wave functions in (−∞,a] is quite similar
in the Zeno dynamics with frequent measurements and in

FIG. 5. For initial wave functions ψ(x ′,0) ∝
rect(x ′) exp(−x ′2/s2) exp(ip′x ′) with s = 1,p′ = 0 (open squares),
s = 2,p′ = 0 (open circles), s = 1,p′ = 1 (triangles), and
s = 1,p′ = 2 (closed circles), numerically evaluated depth V ′

0

of the potential barrier in [−1,1] that gives the same lingering
in probability in [−1,1] at t ′ = 1 as in the Zeno dynamics with
measurements in [−1,1] for increasing values 1/T ′ of the frequency
of the measurements. The dashed line is the dimensionless depth
V ′

0 = π/T ′ of the barrier in Eq. (6).
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FIG. 6. (a) For a particle in the initial state ψ(x ′,0) ∝
exp(−x ′2) exp(ip′x ′) in (−∞,1] and ψ(x ′,0) = 0 otherwise, with
p′ = 4, lingering probability P (nT ′) in (−∞,1] at the nth mea-
surement at nT ′ with period T ′ = 0.001 (gray curve) and lingering
probability P (t ′) in (−∞,1] in barriers in (−∞,1] of different depths
V ′

0 = π/2T ′ (blue curve), V ′
0 = π/T ′ (black curve), and V ′

0 = 2π/T ′

(cyan curve). (b) Snapshots of the probability density for the same
particle in the Zeno dynamics with T ′ = 0.001 (gray curves) and for
the unobserved evolution with potential barriers in (−∞,1] of depths
V ′

0 = π/2T ′ (blue curve), V0 = π/T ′ (black curve), and V0 = 2π/T ′

(cyan curve).

the unobserved evolution for all three deep potential barriers
(the gray and colored curves are barely distinguishable) since
all of them approximate, to a higher or lower degree, the
Zeno dynamics in the limit of continuous measurements. The
relevant point here is that it is with a barrier of depth V0 = hν/2
that the norm of the wave function in (−∞,a] for the Zeno
dynamics tends also to fit, with this fitting being more accurate
as the frequency of the measurements increases.

Although it may seem contradictory at first, it is not hard to
understand why the infinite potential well describes continuous
observation as the limit of increasingly deep potential barriers
for increasing frequency of the observation. For a wave packet
located within the barrier V�(ν), the reflection coefficient
of any plane-wave component k at the boundaries can be
evaluated to be [14] R = |k − k�|2/|k + k�|2, where k� =√

2mE/�, k = √
2m(E + V0)/� and E is the kinetic energy

in � (see Fig. 2). The reflection coefficient R then approaches
unity as V0 = hν/2 → ∞. In this limit, the particle located
initially in � then finds hard walls at its boundaries, as in the
infinitely high potential well that describes the Zeno dynamics
under continuous observation [10].

The above results for a free particle admit a generalization,
also corroborated by numerical simulations, to the Zeno
dynamics of a particle subjected to a potential V of any
particular shape, provided that it is continuous. The equivalent

FIG. 7. A potential and the potential V�(ν) approaching in � the
Zeno dynamics of a particle subjected to the potential V and frequent
observations of permanence in �.

potential that mimics the Zeno dynamics is found to be

V�(ν) =
{
V in � ,

V (∂�) − hν/2 out of � ,
(7)

where V (∂�) represents the two values of the potential at
each of the boundaries of � = [a1,a2]. The potential V�(ν) in
Eq. (7) is depicted in Fig. 7 for clarity. The “jumps” on both
boundaries are equal to hν/2.

FIG. 8. For a particle in the initial state ψ(x ′,0) ∝
rect(x ′) exp[−(x ′/0.5)2] subjected to the potential V ′ = 10x ′,
(a) probability of permanence in [−1,1], (b) expected value of
position, and (c) expected value of momentum in [−1,1], when the
particle is observed to be in [−1,1] with period T ′ = 0.001 (gray
curves) and when it is not observed but subjected to the potential V ′

� =
10x ′ in [−1,1],V ′

� = 10 − π/T ′ in (1,∞), and V ′
� = −10 − π/T ′

in (−∞,−1) (dashed curves).
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As an example of the validity of Eq. (7), we consider a
particle initially at rest in [−a,a], subjected to a constant force
−F < 0 towards negative x, i.e., to the potential V = Fx,
and frequently observed to see whether it remains in [−a,a].
The gray curves in Fig. 8 depict the probability of finding the
particle and the expected values of position x and momentum
p as functions of the measurement time nT . Although the
particle initially accelerates towards negative x, the frequent
observation makes it to bounce repeatedly at the boundary x =
−a with a probability that decreases with time. The dashed
curves in Fig. 8 correspond to the probability and expected
values of position and momentum in the region [−a,a] for
the unobserved evolution under the potential in Eq. (7), which
reads in this case V�(ν) = Fx in [−a,a],V�(ν) = Fa − hν/2
in (a,∞), and V�(ν) = −Fa − hν/2 in (−∞, − a). Since the
frequency is high, this potential describes accurately the Zeno
dynamics.

IV. DISCUSSION AND CONCLUSIONS

It is not difficult to understand the proportionality to hν of
the equivalent potential barrier as a requirement of the energy-
time uncertainty principle �t�E � �. For a particle subjected
to a potential V , �E is the uncertainty in the energy, and �t

is a characteristic evolution time, such as tc. Measurements
with period T 	 tc impose the much faster characteristic time
�t = T for the Zeno dynamics. These measurements involve
an uncontrollable exchange of energy between the particle and
the measurement apparatus [15–17] with an uncertainty �E

such that T �E � �. For the potential barrier, on the other
hand, simulating the Zeno dynamics requires �t = T , and the
uncertainty in the energy �E is substantially related to whether

the particle is inside or outside the barrier and therefore of
the order of V0. The uncertainty principle then imposes V0 �
hν/2π for the height of the barrier, which is satisfied for all
frequencies by the value V0 = hν/2.

In conclusion, we have found that the Zeno dynamics
of a quantum particle evolving according to a Hamiltonian
H = p2/2m + V and frequently observed to see whether it
remains in a region of space � is equivalent asymptotically
at large observation frequency to the dynamics within � of
the unobserved particle evolving according to the Hamiltonian
H� = H + V�(ν), with V�(ν) given by Eq. (7). This describes
how the hard-wall Dirichlet conditions at the boundary of the
observation region in the limit of continuous observation are
reached below this limit. A consequence of this investigation is
that the frequent measurements can be replaced by a potential
energy. This makes the observed particle act as if it had an
extra energy V0 = hν/2 while it remains in the observation
region and an energy uncertainty of the order of hν/2 related
to its location inside or outside the region. In the Zeno
scheme mimicked by the potential barrier, the energy exchange
between the particle and the measurement apparatus [15–17]
can then be said to be of the order of hν/2.
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W. Ertmer, J. Arlt, A. Smerzi, L. Santos, and C. Klempt, Nat.
Commun. 6, 6811 (2015).

[3] T. P. Altenmüller and A. Schenzle, Phys. Rev. A 49, 2016 (1994);
S. Pascazio and M. Namiki, ibid. 50, 4582 (1994); H. Nakazato,
M. Namiki, S. Pascazio, and H. Rauch, Phys. Lett. A 199, 27
(1995); A. Venugopalan and R. Ghosh, ibid. 204, 11 (1995); A.
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