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Practical quantum metrology with large precision gains in the low-photon-number regime
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Quantum metrology exploits quantum correlations to make precise measurements with limited particle
numbers. By utilizing inter- and intramode correlations in an optical interferometer, we find a state that combines
entanglement and squeezing to give a sevenfold enhancement in the quantum Fisher information (QFI)—a metric
related to the precision—over the shot-noise limit, for low photon numbers. Motivated by practicality we then
look at the squeezed cat state, which has recently been made experimentally, and shows further precision gains
over the shot-noise limit and a threefold improvement in the QFI over the optimal Gaussian state. We present
a conceptually simple measurement scheme that saturates the QFI, and we demonstrate a robustness to loss for
small photon numbers. The squeezed cat state can therefore give a significant precision enhancement in optical
quantum metrology in practical and realistic conditions.
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I. INTRODUCTION

Optical quantum metrology utilizes quantum mechanical
correlations to make high precision phase measurements with
a significantly lower particle flux than would be required by
classical systems. This is a crucial requirement for many
applications such as biological sensing, where disturbing
the system can damage the sample [1,2], or gravitational
wave detection, which suffers from the effects of radiation
pressure and mirror distortion if the photon flux is too high
[3,4]. Squeezed states of light have shown much promise for
quantum-enhanced metrology beyond the classical shot-noise
limit (SNL), and since the seminal proposal of Caves [5]
significant progress has been made in exploiting the potential
of such states [6–9]. As a result the effectiveness of squeezing
in quantum metrology has been demonstrated experimentally
[10], and a squeezed vacuum is now routinely injected into
the dark port of gravitational wave detectors to improve their
measurements [11–13].

Remarkably, in the large-photon-number limit in which
gravitational wave detectors operate, it has been shown that
when photon losses are present the original scheme of Caves
is optimal [17]. However, in many applications it is not
this regime that is of interest and it is instead necessary to
consider metrology with low photon numbers. Measurements
on fragile systems are of much interest, with examples
including measurements of spin ensembles [1], biological
systems [2,18], atoms [19,20], and single molecules [21],
and in all these applications it is of utmost importance to
minimize the probe’s interaction with the sample to avoid
damage. Examples of such damage are the scattering induced
depolarization of spin ensembles [1], or direct degradation of
living cells [22]. It is this small-photon-number regime that
is considered herein, and whilst in this case theoretical lower
bounds on precision do exist [23], it is an open question as to
which practical states can give significant improvements over
the SNL. In this paper we make significant progress towards
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this question by introducing an experimentally realizable
scheme that can measure to a precision with a

√
7 factor

improvement over the SNL, and a
√

3 improvement over the
commonly used quantum states, including Caves’s scheme [5].

The general setting of optical quantum metrology can be
understood in terms of a two-mode (two-path) interferometer.
The enhancement gained from employing quantum states for
phase estimation can be then framed in terms of different
types of correlations: those between photons on each mode
of the interferometer (intramode), as well as the correlations
between the paths (intermode). Both types of correlations
can contribute to improvements in precision, and hence it is
natural to consider states in which both are present. Observing
that the squeezed vacuum exhibits high intramode correlations
due to nonclassical photon statistics [23], and that intermode
correlations may be provided by mode entanglement, this
naturally leads us to introduce the “squeezed-entangled state”
|�SES〉 ∝ |z,0〉 + |0,z〉, where |z〉 represents the squeezed
vacuum which will be defined below. It will be shown that
the fundamental bound on the phase precision possible with
this state is a substantial improvement over the states normally
considered in the literature, including the state proposed by
Caves [5], the NOON state [24], and the optimal Gaussian
state (created from only Gaussian transformations) [23,25].

The squeezed-entangled state (SES) has clear potential for
precision phase estimation but has the significant disadvantage
that it is not clear if a simple high-fidelity preparation
procedure can be found. Hence we introduce a practical
alternative, the “squeezed cat state” (SCS), which has been
demonstrated experimentally [14–16]. The quantum Fisher
information (QFI) is a useful and commonly used measure
which quantifies the phase precision obtainable using a given
probe state, and using this metric the potential for phase
estimation of both states proposed herein is shown in Fig. 1
(the requisite QFI formalism will be provided in the next
section). Intriguingly, as well as being more practical, the
SCS also outperforms the SES, showing that this state is of
great interest from both a practical and theoretical perspective.
Furthermore, it will be seen that the SCS is robust enough
to exhibit a precision advantage with up to 27% photon loss.
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FIG. 1. The QFI (plotted against average photon number n̄) for
both the squeezed-entangled state (SES) and the squeezed cat state
(SCS) shows dramatic improvements over the commonly used states
for optical quantum metrology, including Caves’s state (SVCS), the
optimal Gaussian state (SSV), and the NOON state. Furthermore, the
squeezed cat state has been made experimentally [14–16], and in this
paper we present a measurement scheme that can be employed to
read out the phase.

Finally, it is shown that high-precision phase measurements
can be obtained both in the ideal and lossy cases using a
photon-number counting measurement.

II. CORRELATIONS IN OPTICAL METROLOGY

We begin by reviewing the relevant background material.
In this work we consider the standard optical phase estimation
problem of measuring a phase difference φ between two
optical modes containing unknown linear phase shifts, as
shown in Fig. 2. This is applicable to a wide range of physical
scenarios and is the canonical approach to a very broad range
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FIG. 2. Quantum state |�〉 is prepared as an input into the arms
of an interferometer which contains an unknown relative phase shift
φ ≡ φa − φb, generated by the linear phase shift unitary operator Û =
exp[i(φan̂a + φbn̂b)]. For the states introduced herein the optimal
measurement scheme is mixing the modes on a balanced (50:50) beam
splitter (BS), followed by photon number counting. When photon
losses are considered these can be modeled by “fictitious” variable
transmissivity beam splitters after the phase shift.

of metrology schemes. The fundamental limit to the precision
with which a state ρ can measure the phase φ is given by the
quantum Cramér-Rao bound (CRB) [26,27]:

�φ � 1√
μFQ(ρ)

, (1)

where μ is the number of independent repeats of the experi-
ment and FQ(ρ) is the QFI of ρ. For pure and path-symmetric
states (only path-symmetric states will be considered herein) it
is shown in Appendix A that the relevant QFI is simply given
by

FQ(�) = 2(Var� − Cov�), (2)

where Var� = 〈n̂2
a〉 − 〈n̂a〉2 is the variance of the photon num-

ber in mode a (or mode b) and Cov� = 〈n̂a ⊗ n̂b〉 − 〈n̂a〉〈n̂b〉
is the covariance of the two modes (the expectation values are
taken with respect to the state |�〉). This explicitly highlights
the roles played by inter- and intramode correlations.

We now introduce the relevant states in the quantum
metrology literature. In the following we denote a coherent
state and a squeezed vacuum by |α〉 ≡ D̂(α)|0〉 and |z〉 ≡
Ŝ(z)|0〉, respectively (α,z ∈ C), where the displacement op-
erator is D̂(α) = exp (αâ† − α∗â) and the squeezing operator
is Ŝ(z) = exp [ 1

2 (z∗â
2 − zâ†2

)]. Caves [5] proposed the use of
squeezing to enhance the phase precision via a probe state
obtained from mixing a squeezed vacuum and a coherent
state (SVCS) on a balanced (50:50) beam splitter, which is
given by |�SVCS〉 = ÛBS (|α〉a ⊗ |z〉b), where ÛBS denotes the
beam splitter unitary operator. This state has been studied
extensively and has an asymptotic phase precision of 1/n̄ [6]
(where n̄ = 〈n̂a + n̂b〉 is the average number of photons in the
interferometer). This precision is known as the Heisenberg
limit and is a factor of 1/

√
n̄ improvement over the best

attainable classical precision given by the shot-noise limit
(SNL).

An alternative state for quantum-enhanced metrology is the
NOON state |�NOON〉 = 1√

2
(|N,0〉 + |0,N〉) [24], which has a

QFI of FQ(�NOON ) = N2 implying a phase precision of 1/N

[28]. The NOON state clearly highlights the advantages gained
by both intermode correlations which are provided by the mode
entanglement, and intramode correlations which are provided
by a large uncertainty in the photon number in each arm. The
NOON state is the optimal fixed number state, but if we don’t
restrict ourselves to fixed number states then improvements
over this are possible. We can see this is Fig. 1 where the QFI of
the NOON state is plotted against the variable photon-number
SVCS. Another variable photon-number state that improves
over the NOON state is the separable squeezed vacuum (SSV)
given by |�SSV〉 = |z〉 ⊗ |z〉, which has a QFI of n̄2 + 2n̄. The
SSV is the optimal Gaussian state (a state made with Gaussian
operations only), as is described in [23,25]. Note that the SSV
does not improve over the NOON state in scaling and they
have the same precision in the large number limit. We see
below that the states introduced in this manuscript obtain factor
improvements over the NOON and SSV even in this limit.
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III. SQUEEZED AND ENTANGLED STATE

As discussed in the introduction, exploiting intra- and
intermode correlations motivates the “squeezed-entangled
state” (SES):

|�SES〉 = N (|z,0〉 + |0,z〉), (3)

where N = (2 + 2/ cosh |z|)−1/2. Using Eq. (2) it can be
shown that

FQ(�SES ) = 3n̄2

2N 2
+ 2n̄, (4)

where n̄ = 2N 2 sinh2 |z|. In the large squeezing regime |z| 

1 we find N 2 ≈ 1/2, and hence FQ ≈ 3n̄2 + 2n̄. This is a
factor of 3 better than the NOON state, the SSV, and the
SVCS in the asymptotic limit, but note that if photon losses are
included this asymptotic advantage is lost. In the low photon
limit—the regime of interest for this paper—the improvement
over the NOON state is even more significant, with FQ(�SES ) ≈
7FQ(�NOON ) for n̄ = 1. In Fig. 1 we compare the QFI of the
SES, the NOON state, the SVCS, and the optimal Gaussian
state (SSV). Figure 1 clearly shows the great potential of the
SES for quantum enhanced metrology.

The SES is a coherent superposition of NOON states of
different photon numbers. As NOON states (up to a relative
phase factor of i) can be generated by inputting |N〉 ⊗ |0〉
into a nonlinear beam splitter [29], the SES (again up to a
relative phase factor of i) may similarly be generated in this
way via the input of |z〉 ⊗ |0〉. Alternatively, a method has been
proposed that can apply superpositions of squeezing operators
in multiple modes [30], which could be used to generate the
SES. However, the nonlinearities needed for these schemes are
not easy to implement physically, and for this reason we look
elsewhere for a state that can exploit similar quantum effects
to the SES, whilst also being experimentally realizable with
current technology.

IV. SQUEEZED CAT STATE

Considering the focus on mode entanglement in the literature
(e.g., NOON states, Holland and Burnett states [31], and
entangled coherent states [32]), it is surprising that intermode
correlations are not essential for quantum-enhanced metrology
[33–35]. An alternative resource that can be utilized is super-
Poissonian photon statistics in the probe state [7], which can
be seen by writing the QFI of Eq. (2) in the form

FQ = n̄(1 + Q)(1 − J ), (5)

where Q = (Var� − 〈n̂a〉)/〈n̂a〉 is the Mandel Q parameter of
mode a, andJ = Cov�/Var� [7]. Interestingly, as pointed out
by Sahota and Quesada [7] 1 > J > −1, and hence intermode
correlations (i.e., mode entanglement) can contribute at most
a factor of 2 improvement in the QFI (J = 0 for a separable
state); Q on the other hand has no upper bound.

In order to find an experimentally viable state with a large
Mandel-Q parameter, a particularly promising avenue of in-
vestigation is squeezing a non-Gaussian state. A superposition
of coherent states (a cat state) is such a non-Gaussian state,
and hence this motivates the introduction of the squeezed cat

state (SCS)

|ψSCS〉 = NS(z)(|α〉 + | − α〉), (6)

where N = (2 + 2e−2α2
)−1/2. SCSs may then be used for

phase estimation by considering the two-mode state

|�SCS〉 = |ψSCS〉a ⊗ |ψSCS〉b. (7)

Clearly this state is mode separable, although it can be argued
it still exhibits entanglement between the photons themselves
[23]. The QFI for the SCS as a function of average total photon
number (optimized over the parameters α and z) is given in
Fig. 1. The analytical formula is presented in Appendix A.
The SCS shows a substantial improvement over the SVCS, the
NOON state, and the SSV. It even (slightly) improves on the
phase precision of the SES introduced above.

The crucial advantage of the SCS over the SES is that
the former has been generated experimentally [14–16]. The
method of Ourjoumtsev et al. [14] involves splitting a two
photon state at a beam splitter, before a projective homodyne
measurement is performed on one output mode. An alternative
procedure in Ref. [16] requires the initial preparation of
two squeezed vacuum states. One of the two modes then
undergoes a π/2 phase shift, before the modes are mixed at
a beam splitter with variable transmissivity. Finally, a photon
number measurement is performed on one mode, heralding the
approximate SCS in the remaining mode. With this method
Huang et al. have generated an SCS with a fidelity 67% and
size |α| = √

3, making it the largest amplitude coherent state
superposition to date [16]. Another method for generating
an SCS could be to directly squeeze a cat state; there are
many examples of cat state generation techniques in the
literature [36–41]. The subsequent squeezing can be performed
in a cavity [42–44], or by ponderomotive squeezing in an
optomechanical system [45–47].

Given the particularly high precision phase estimation
possible with the SCS it is interesting to present an intuitive
reasoning for these results. A geometric understanding may
be obtained by considering the Wigner function of a squeezed
cat state, with plots given in Fig. 3. The link between the
Wigner function and the QFI can be made rigorous as follows.
The QFI of a pure state can be written in terms of the
fidelity, F , between the state |�〉 and the infinitesimally
phase-shifted state |�(δφ)〉: FQ(�) ∝ 1 − √

F� , whereF� ≡
|〈�(δφ)|�〉|2 [48–50]. The fidelity can then in turn be written
in terms of the overlap of the Wigner functions [51]:

F�(φ) = π

∫
d2α W�W�(δφ). (8)

Therefore, states for which the overlap of the Wigner functions
with and without a phase shift is small exhibit a large QFI.
Given that the resource of interest in quantum metrology is the
average photon number, the desired property for low-photon
high-precision phase estimation is a large change in the Wigner
function when rotated about the origin in conjunction with a
low average photon number in the state. Figure 3 indicates
that rotating the Wigner function of the SCS results in a
small overlap, and therefore a large QFI, whilst retaining small
photon numbers.
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FIG. 3. We plot the Wigner functions of a squeezed vacuum (top
left), a cat state (top right), and the squeezed cat state (SCS) with
different squeezing parameters (bottom row). All axes are as labeled
in the bottom left figure. As described in the main text, the QFI is
related to the overlap between the Wigner function of a state with and
without an infinitesimal phase shift, which is equivalent to a small
rotation of the Wigner function about the origin. We see that when the
cat state is squeezed, the resultant quasiprobability distribution will
exhibit a greater change from a phase rotation, but has a small average
photon number. It is clear from the bottom right plot, with z = 1.3 and
α = 2, that the interference fringes due to the non-Gaussian nature
of the state play a crucial role in minimizing the overlap when the
Wigner function is rotated.

V. MEASUREMENT SCHEME

The measurement scheme we propose is to mix the modes
on a balanced beam splitter followed by photon number
counting, as shown in Fig. 2. This can be challenging, but
photon-number-resolving detectors are an area of intense
research [52] and devices that are highly sensitive in the
low-photon regime, the area most relevant for this work, have
been demonstrated [40,53–55]. In particular, recent results by
Humphreys et al. use a transition-edge sensor to resolve up
to 14 photons with over 60% confidence [56]. Many schemes
like ours will benefit as advances continue to be made with
this technology. To assess our measurement scheme we use
the classical Fisher information (CFI), which provides the
absolute bound on the phase precision obtainable with a
specific measurement, and is calculated from the associated
probability distribution of measurement outcomes. In our case
we obtain the probability distribution P (m,n) of detecting m

(n) photons at the first (second) output of the beam splitter.
The CFI is then given by

FC(φ) =
∞∑

m=0

∞∑
n=0

1

P (m,n)

(
∂P (m,n)

∂φ

)2

. (9)

Using this we find that our measurement scheme saturates
the bound given by the QFI for the majority of φ values.
Indeed, this is to be expected as such a measurement is optimal
for any pure and path-symmetric state [57]. As with most
quantum metrology schemes we can’t saturate the QFI for
every phase φ, and therefore if a completely unknown phase
is being measured then an adaptive strategy should be used
[58,59]. The fact that the measurement scheme saturates the
bound confirms that there is approximately a factor of

√
3

improvement in the phase estimation provided by the SCS
over the optimal Gaussian state. To highlight the importance
of this result, we note that the optimal Gaussian state can
improve over, or equal, all of the quantum metrology states in
recent experiments (known to the authors). This includes the
squeezed states, which have been used in gravitational wave
detectors [12], biological sensing [2], spin noise spectroscopy
[60], and the ultrasensitive measurement of a microcantilever
displacement [61].

It is important to now address some limitations inherent
in using the QFI and CFI as figures of merit in quantum
metrology. In general, the precisions as obtained by the QFI
and CFI are achievable with an asymptotically large number
of repeats, μ. However, from a practical point of view it is
clear that only some finite number of repeats will be possible
(this may be limited by the fragility of the physical system).
The experimenter’s prior knowledge of the phase also has
to be considered in any realistic setting. Indeed, states with
unbounded QFI for fixed n̄ can be found [62,63], but when
the required repeats or prior information are considered it has
been shown that such states cannot provide a sub-Heisenberg
scaling [64–66].

To mitigate the potential problems that can arise when using
the QFI we have therefore performed a Bayesian simulation
of the proposed experiment. This properly accounts for the
information that would be obtained in an experiment rather
than relying on the bound given by the QFI. Using the
measurement scheme in Fig. 2 we have determined the phase
shift, from a flat prior knowledge, using the Bayesian approach
described in Appendix B. The simulations confirm that we
come close to saturating the absolute bound given by the QFI
and Eq. (1) for μ = O(102). In such regimes it is then clear
that the SCS and the SES can significantly outperform the
alternative states in terms of absolute phase precision, when
assuming the same average photon number. Note that this
is not claiming a sub-Heisenberg scaling; from a practical
perspective, the scaling with n̄ is not necessarily the most
relevant quantity as only small quantum states are likely to
be available. Indeed the scaling is of no relevance when
considering fragile systems which can tolerate a specified
(approximate) maximum number of photons.

VI. EFFECTS OF LOSS

We next investigate the effects of loss on the squeezed cat state,
which can be modeled by adding “fictitious” beam splitters
after the phase shift [67,68], as shown in Fig. 2. Loss destroys
quantum effects, and hence any nonclassical enhancement will
be reduced when loss is considered. The QFI for a general
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FIG. 4. Transmission probability through the interferometer, η,
is plotted against the precision, �φ (scaled by

√
μ), for various

states. The precision is found from Eq. (1) (FQ is replaced with FC

for the “SCS Measured” curve). The QFI of the SCS demonstrates
the potential for robust phase measurements up to 27% loss. The
measurement scheme in Fig. 2 is then plotted for the SCS, showing
that with a conceptually simple scheme, without external reference
beams, the SCS can still beat the alternative states up to 10% loss.

density matrix ρ can be expressed as [26,27,69]

FQ =
∑
i,j

2

λi + λj

|〈λi |∂ρ(φ)/∂φ|λj 〉|2, (10)

where λi are the eigenvalues and |λi〉 a corresponding set of
orthonormal eigenvectors of ρ.

The precision [given by the QFI and Eq. (1)] as a function
of loss is plotted in Fig. 4, optimized over the state parameters
z and α, whilst fixing the average number of photons in our
state at n̄ = 1. For low loss and low photon numbers, the
improvement is a factor of

√
7 greater than the SNL (which is

identical to the NOON state for n̄ = 1). The SCS is robust
enough to exhibit a precision advantage up to 27% loss.
Figure 4 also shows the results of our measurement scheme,
calculated from the CFI in Eq. (9) substituted into Eq. (1) (FQ

is replaced with FC). We see that the SCS improves over the
best possible measurement, as given by the QFI, of both the
optimal Gaussian state (SSV) and the SVCS, for losses up
to 10%. Losses as low as 10% have already been achieved
in table top interferometry experiments [70], and near-future
gravitational wave detectors are expected to have total losses
of 9%–17% [71]. We note that a major advantage of the phase
readout presented here is that the measurement scheme does
not have to be altered when loss is present, for example by
using extra reference beams, as in [72] or [8].

VII. CONCLUSION

In this paper we have introduced quantum states that exhibit
large factor improvements in the phase-estimation precision
over the commonly used states for quantum metrology.

Motivated by considering both inter- and intramode corre-
lations we introduced the squeezed-entangled state (SES),
which demonstrates a sevenfold enhancement in the quantum
Fisher information over the NOON state and a threefold
improvement over the optimal Gaussian state, for low photon
numbers. The question of practicality was then addressed by
introducing the squeezed cat state (SCS), which has been
experimentally generated [14–16], and exhibits even greater
enhancements in the attainable phase precision than the SES.
A conceptually simple measurement scheme that saturates
the theoretical phase-precision bound when there is no loss
was given, and the robustness of the SCS to moderate loss
for small photon numbers was demonstrated. These results
illustrate that substantial precision improvements can be made
over the quantum states traditionally proposed for practical
optical metrology, and as the SCS has already been generated
we expect that an experiment could confirm our results in the
near future.
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APPENDIX A: QUANTUM FISHER INFORMATION

The definition of the QFI for an arbitrary mixed state
ρφ which depends on a single parameter φ is FQ(ρφ) =
tr(ρφL(ρφ)2), where L(ρφ) is the symmetric logarithmic
derivative defined implicitly by ∂

∂φ
ρφ = ρφL(ρφ) + L(ρφ)ρφ

[23]. The mixed state QFI formula given in Eq. (10) and used
in the case of photon losses may be derived from this definition
[26,27,69]. For a pure state |ψφ〉, the QFI reduces to

FQ(ψφ) = 4(〈∂φψφ|∂φψφ〉 − |〈∂φψφ|ψφ〉|2), (A1)

with |∂φψφ〉 ≡ ∂
∂φ

|ψφ〉. It may be confirmed with simple alge-
bra that if the parameter is imprinted on the quantum state by a
unitary transformation of the form Û (φ) = exp(iφÔ), then the
QFI is proportional to the variance of the generating operator,
specifically FQ = 4Var�(Ô) where Var�(Ô) = 〈Ô2〉 − 〈Ô〉2.

The phase-estimation problem under consideration herein
is summarized in Fig. 2. A two-mode quantum state |�〉
undergoes unknown linear phase shifts in each mode, i.e., it
evolves via the unitary operator U ≡ exp[i(φan̂a + φbn̂b)] =
exp[i(φ+Ô+ + φ−Ô−)] for unknown φa and φb, where Ô± =
(n̂a ± n̂b)/2 and φ± = φa ± φb. The aim is to estimate the
relative phase shift φ ≡ φ− = φa − φb. If a phase reference
(with respect to which each phase is defined) is available
then this is a two-parameter estimation problem (φ±), which
requires a two-parameter QFI [74], and if a phase reference is
not available the total phase (φ+) is of no physical relevance
and this should be averaged over, creating a mixed state.
In this case it is in general necessary to use the mixed
state QFI. However, when the input is path symmetric and
pure, it has been shown that the phase averaging has no
effect on the QFI [74] and the relevant QFI formula reduces
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to FQ(�) = Var�(n̂a − n̂b), as simply obtained by using
FQ(�) = 4Var�(Ô) with the generator for the phase shift
Ô−. As only path-symmetric states are considered herein, this
simple QFI formula may be used in the lossless case. However,
the use of this QFI in cases without path symmetry can lead to
overoptimistic bounds on the phase precision as explained in
detail in Ref. [74]. By expanding this variance it then follows
that FQ(�) = 2(Var� − Cov�), as stated in Eq. (2) and using
the notation defined there. Clearly due to path symmetry the
single-mode variance may be calculated with respect to either
mode. To obtain Eq. (5) from this formula requires only basic
algebra [7]. For all path-symmetric pure states, the optimal
measurement scheme which saturates the QFI is mixing the
modes on a balanced beam splitter, followed by photon number
counting [57].

The QFI of the two-mode squeezed cat state may be
calculated from Eq. (2). As the state is separable Cov� = 0 and
hence FQ(�SCS ) = 2Var� , which depends only on the variance
in the photon number in a single-mode squeezed cat state
|ψSCS〉. A direct calculation of this quantity yields

FQ(�SCS ) = 4
(
s4

1 + s2
1

) + 2α2(τc4 − s4)

+ 2α4(c4 − τs4 − (τc2 − s2)2), (A2)

where sk ≡ sinh(kz), ck ≡ cosh(kz), and τ =
(2 − 2e−2α2

)(2 + 2e−2α2
)−1. The average total number

of photons in the (two-mode) state is

n̄ = 2s2
1 + 2α2(τc2 − s2). (A3)

Note that as this state contains two parameters the QFI may not
in general be expressed directly in terms of n̄ only. As the aim
is to maximize the phase precision for a given average number
of photons, the optimal choice of parameters α and z for each
n̄ is found by maximizing the QFI for each fixed average
particle number. Note that the special case of α = 0 results in
FQ = n̄2 + 2n̄ and hence this provides a lower bound on the
optimized QFI. The maximization over α and z was performed

numerically and it is this resultant function that is plotted in
Fig. 1.

APPENDIX B: BAYESIAN SIMULATION

The advantage of performing a Bayesian simulation is that
it replicates how data is gathered in an experiment. It therefore
gives a reliable measure of the precision that can be achieved,
rather than relying on the QFI and CFI bounds which, as noted
in the main text, can be misleading.

To implement the Bayesian simulation for the scheme in
Fig. 2 we first calculate the probability of detecting (m,n)
photons at the two output ports: P (m,n|φ). The simulation
begins by selecting a phase φ0 that an experimenter wishes
to measure (the experimenter does not have access to the
value of φ0). We can then calculate the conditional probability
of detecting (m,n) particles at the output ports, given that
the phase is φ0: P (m,n|φ0). A random outcome is sampled
from this distribution which gives a pair of values (m1,n1):
these are the simulated outputs which correspond to what the
experimenter measures after they send the given state through
the interferometer.

The experimenter must now try to determine the phase
from their measured values (m1,n1). To do this, they use
Bayes’ theorem: P (a|b) ∝ P (b|a). The experimenter can then
calculate:

P (φ|m1,n1) ∝ P (m1,n1|φ). (B1)

As the probability distribution sums to one, they can normalize
this distribution to be left with P (φ|m1,n1): the probability
distribution for different phases φ given that (m1,n1) has been
measured. In our simulation we repeat these steps, allowing the
experimenter to gain more knowledge about the phase. With
each new measurement the experimenter can use Bayesian
inference to update their knowledge of the phase.

After a number of repeats, the experimenter is left with
a probability distribution P (φ), which is the probability
distribution for φ, given all previous measurements at the
detectors. The precision with which we can measure the phase
is then taken to be the standard deviation of this probability dis-
tribution. Taking an average over many simulations provides
the �φ results that are described in the main text.
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