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Optimizing the output-photon entanglement in multimode optomechanical systems
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Entangled light beams are important resources for quantum information processing. For some applications
like teleportation, only the entanglement between two wave packets (two harmonic oscillators) is needed. So the
calculation of output-photon entanglement involves projecting continuous output modes onto wave-packet modes
by filter functions, thus resulting in a strong dependence of entanglement on the filter functions. In this paper, we
aim at optimizing the filter functions to obtain a large entanglement in a relatively short time, which is important
for utilizing the entangled light beams more efficiently in real experiments. We outline the general optimization
procedures based on our previous schemes of generating entangled beams in a multimode optomechanical system.
Moreover, we give analytic insights into as well as physical explanations of the wave-packet optimization, which
are helpful for experimental estimations.
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I. INTRODUCTION

Entanglement is a unique feature of quantum mechanics and
an important resource for quantum information processing.
In order to generate entanglement, the subsystems should
have direct or indirect mutual interactions. Optomechanics
[1], which deals with the nonlinear interaction between
mechanical motion and light modes, can be used to generate
various entangled states, including the entanglement between
mechanics and light modes [2–6] and between different
mechanical motions [7–10] or light modes [11–22]. Recently,
the entanglement between a microwave pulse and a mechanical
mode was demonstrated in a microwave circuit [23].

Among all the above-mentioned entanglement generations,
the two entangled light beams are of particular interest, as the
flying photons are ready for subsequent use. There are several
schemes [17–22] regarding how to generate entangled light
beams in optomechanical systems. The basic ideas are quite
similar: two cavity modes get entangled by interacting with
the same mechanical mode. Thus the output cavity beams
are also entangled with each other. In our previous work
[22], we increase the generation efficiency by adding an extra
cavity mode. However, the main goal of this article is to
define an entanglement rate to characterize the entanglement
properties of the two output beams, which is quite different
from the usual treatment involving filter functions [24,25].
Usually, filter functions are applied to each cavity output
mode [11,14], and then the entanglement between the two
filtered modes is calculated by using the logarithmic negativity
[26,27]. So the entanglement value depends strongly on the
output-photon spectra and the chosen filter functions. The
usage of filter functions is due to the fact that in applications
like teleportation [14], only the entanglement of two wave
packets (two harmonic oscillators) is needed, while the output
light beams are continuous modes. For experimentalists, the
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most desirable outcome is to obtain a large entanglement in
a relatively short time interval. So, given a set of physical
parameters of the systems, it is natural to ask whether there
is a general method to optimize the filter functions to achieve
this goal, which is important for guiding experimentalists to
better use of the entangled beams.

In this article, we show how to optimize output-photon
entanglement. Optimization of the output entanglement has
also been discussed in detail in Ref. [22]. But there is an
essential difference. In our previous work, we discuss the
total entanglement between the two output beams within
some long time interval. Then we put forward the new
concept of entanglement rate, which is defined as the total
entanglement divided by the considered time interval. This
measure gives the total entanglement emitted from the source
per unit time, which is an inherent property of the source.
However, sometimes only some of the signals from the source
are needed, for example, we only need the entanglement of
two harmonic oscillators in teleportation. This is why we
usually project continuous output modes onto wave-packet
modes and discuss the entanglement of two filtered wave
packets. So the entanglement in this case strongly depends on
the filter functions. In a word, our former work discusses the
entanglement optimization of two sets of harmonic oscillators,
while here we investigate that of two harmonic oscillators.
Which optimization is relevant to the experiments depends on
the concrete applications. Optimization of the entanglement
rate depends only on the physical parameters of the system.
Here, the entanglement of two filtered modes relies on the
specific form of the filter functions as well as the physical
parameters. Our aim is, given a set of physical parameters,
to optimize the filter functions to be in the appropriate
time intervals and frequency ranges. For simplicity, we can
imagine two filtered wave packets coming from the two output
modes, respectively. In this case, the physical parameters
and the form of the filtered functions are fixed, while the
delay time and bandwidth of the filter functions are free
to change. To illustrate the main idea of how to optimize
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these two degrees of freedom, we base our discussions on
the scheme in Ref. [22]. However, the optimization method
is also applicable to other optomechanical schemes [17–21]
and nonlinear systems [28,29]. Our studies show that there is
an optimal delay time between the two filtered wave packets.
After finding the optimal delay time, the optimal bandwidth
(at which the entanglement equals half its maximum) is equal
to twice the frequency mismatch δ (see Sec. II) for some
intermediate region of δ. Moreover, when we increase the value
of δ to be sufficiently large, the optimal bandwidth saturates to
a constant limit. The paper is organized as follows: in Sec. II,
we briefly review our previous scheme for the generation of
entangled light beams and then discuss how to calculate the
output entanglement of two filtered wave packets. In Sec. III,
we show how to optimize both the wave-packet delay time and
the bandwidth to get a larger entanglement in a relatively short
time. In Sec. IV, we summarize our results.

II. PHYSICAL SYSTEM

As shown in Fig. 1, we consider a four-mode optomechan-
ical system including three optical cavity modes with equal
splitting J and one mechanical mode with frequency �. The
optomechanical couplings arise from the radiation pressure
force, and optical mode a0 is resonantly driven by a laser. The
general Hamiltonian of the whole system is (� = 1) [22]

Ĥ =
∑

q=±,0

ωqâ
†
q âq + �b̂†b̂ −

∑
q,q ′=±,0

g
(0)
q,q ′ â

†
q âq ′ (b̂ + b̂†)

+�(â0e
iω0t+φ + H.c.), (1)

where ω± = ω0 ± J , g
(0)
q,q ′ denotes the optomechanical cou-

pling coefficient, and � and φ account for the driving
amplitude and phase, respectively. This kind of Hamiltonian
can be realized in the membrane-in-the-middle setup [30,31] or
three coupled optomechanical cells as described in Ref. [22].
We assume that the frequency mismatch δ = � − J is much
smaller than the mechanical frequency �, i.e., |δ| � �, and

FIG. 1. Schematic level diagram for generating entangled light
beams. Three cavity modes with equal frequency distances J are
nearest-neighbor coupled by the same mechanical mode of vibrational
frequency �. The resonant driving of the middle a0 mode will lead
to EPR entanglement between a± modes via photon scatterings.
Outgoing modes of a±, i.e., â±,out(t), constitute entangled light beams.

the mechanical sidebands are resolved, i.e., κ � �, where κ is
the intensity damping rate of the optical cavity modes. Under
these conditions and a moderate driving strength, only four
optomechanical coupling terms, g

(0)
0,+â

†
0â+b̂† + g

(0)
0,−â

†
0â−b̂ +

H.c., dominate. After transformation to the interaction picture
with respect to Ĥ0 = ∑

q=±,0 ωqâ
†
q âq + J b̂†b̂, the Hamilto-

nian under the rotating-wave approximation and the standard
linearization reads

Ĥlin = δb̂†b̂ − g

2
[(â†

+ + â−)b̂ + H.c.], (2)

with g/2 = g
(0)
+,0α = g

(0)
0,−α, α = −i�e−iφ

κ/2 . Without loss of
generality, g can be chosen as a real number. The effective
optomechanical coupling strength should fulfill |g| � �

to keep the above rotating-wave approximation valid. The
physical process to generate entangled light beams goes as
follows: one photon in the driven a0 mode is scattered into
the a− mode while emitting a phonon, then another a0 photon
will absorb this phonon and be scattered into the a+ mode. So
in total, a pair of a+ and a− photons will be generated from
of a pair of a0 photons via an intermediate phonon. Thus the
effective two-mode squeezing term â

†
+â

†
− + â+â− will lead to

EPR entanglement between a+ and a− modes. The emitted
photons from these two modes constitute the entangled light
beams. This scheme is more efficient than previous schemes
[19–21] in that the driving and the up- and down- conversions
will be fully resonant.

To take into account the mode dissipations, we use the
standard input-output theory [32] and the quantum Langevin
equations are explicitly given by

.

â+ = i
g

2
b̂ − κ

2
â+ − √

κâ+,in(t),

.

â
†
− = −i

g

2
b̂ − κ

2
â
†
− − √

κâ
†
−,in(t), (3)

.

b̂ = −iδb̂ + i
g

2
(â+ + â

†
−) − 	

2
b̂ −

√
	b̂in(t).

Here 	 is the mechanical damping rate, and â+,in(t), â
†
−,in(t),

b̂in(t) are the input white noise operators. Their mean
values satisfy 〈âj,in(t)〉 = 〈b̂in(t)〉 = 0, and their correlations
fulfill 〈âj,in(t)â†

j ′,in(t ′)〉 = δjj ′δ(t − t ′), 〈â†
j,in(t)âj ′,in(t ′)〉 = 0,

〈b̂in(t)b̂†in(t ′)〉 = (nth + 1)δ(t − t ′), 〈b̂†in(t)b̂in(t ′)〉 = nthδ(t −
t ′) with j,j ′ = ±, and the mean thermal phonon number nth =
(exp( ��

kBT
) − 1)−1. The output-photon modes are related by

âj,out(t) = √
κâj (t) + âj,in(t). For the resonant driving case,

the system is always stable [22] and the stationary solution of
Eq. (3) can be easily obtained by the Fourier transformations,
i.e., â+(ω) = ∫ ∞

−∞ â+(t)eiωtdt , â
†
+(−ω) = ∫ ∞

−∞ â
†
+(t)eiωtdt .

For some applications like teleportation, only output signals
within certain time intervals and frequency bandwidths are
used [14]. So we need to measure the entanglement of
some filtered output modes. To do this, we first project the
continuous output modes â±,out(t) onto wave-packet modes
by using the relations â±,f = ∫ ∞

−∞ f ∗
±(t)â±,out(t)dt , where

f±(t) are the filter functions for the â+,out(t) and â−,out(t)
modes, respectively. f±(t) fulfill the normalization conditions∫ ∞
−∞ |f±(t)|2dt = 1. These filter functions, which contain the

information on the time interval and frequency bandwidth,
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are realized in experiments by adjusting the temporal mode
functions of the local oscillators in homodyne detection [33].
Then we use the logarithmic negativity [26] to calculate the en-
tanglement between two wave packets â±,f . For convenience,
we define vector u = [x̂+,f p̂+,f x̂−,f p̂−,f ]T with x̂j,f =

1√
2
(âj,f + â

†
j,f ), p̂j,f = 1√

2i
(âj,f − â

†
j,f ). The entanglement

between modes â±,f is determined by the covariance matrix
V with matrix elements Vkk′ = 1

2 〈ukuk′ + uk′uk〉. Inserting the
stationary solutions of Eq. (3), we have

V =

⎛
⎜⎜⎝

N+ + 1
2 0 Re(X) Im(X)

0 N+ + 1
2 Im(X) − Re(X)

Re(X) Im(X) N− + 1
2 0

Im(X) − Re(X) 0 N− + 1
2

⎞
⎟⎟⎠, (4)

where

N+ = 〈â†
+,f â+,f 〉 =

∫ ∞

−∞
dω|f+(ω)|2n+(ω),

N− = 〈â†
−,f â−,f 〉 =

∫ ∞

−∞
dω|f−(ω)|2n−(ω),

X = 〈â+,f â−,f 〉 =
∫ ∞

−∞
dωf ∗

+(ω)f ∗
−(−ω)x(ω),

with

n+(ω) =
∫ ∞

−∞
e−iωt 〈â†

+,out(t)â+,out(0)〉dt

= κ	nth(g/2)2(ω2 + (κ/2)2) + κ2(g/2)4

((−ω + δ)2 + (	/2)2)(ω2 + (κ/2)2)2
,

n−(ω) =
∫ ∞

−∞
e−iωt 〈â†

−,out(t)â−,out(0)〉dt

= κ	(nth + 1)(g/2)2(ω2 + (κ/2)2) + κ2(g/2)4

((ω + δ)2 + (	/2)2)(ω2 + (κ/2)2)2
,

x(ω) =
∫ ∞

−∞
eiωt 〈â+,out(t)â−,out(0)〉dt

= i(−ω + δ)κ(g/2)2

((−ω + δ)2 + (	/2)2)(ω2 + (κ/2)2)

− (n+(ω) + n−(−ω))/2,

and filter functions in the frequency domain fj (ω) =
1√
2π

∫ ∞
−∞ fj (t)eiωtdt . Here n+(ω) and n−(ω) denote the

output-photon spectra for the a+ and a− modes, respectively,
and x(ω) represents the correlation between the ω component
in the â+,out(t) mode and the −ω component in the â−,out(t)
mode. These two components satisfy the energy conservation
laws since their frequency sum equals twice the driven mode
frequency. The logarithmic negativity is defined as E =
max(0, − log(2η−)), with η− being the smaller symplectic
eigenvalue of the partial transpose of matrix V . Its analytical
expression is too cumbersome to show here. There is an in-
teresting limiting case, i.e., when the bandwidths of both filter
functions go to 0 and only single frequencies are considered. In
this case, only the components satisfying energy conservation
have nonzero correlations and thus nonzero entanglement. The
entanglement among different single-frequency components is
then fully described by the spectral density of entanglement

Es(ω), which gives the logarithmic negativity between the ω

component in the â+,out(t) mode and the −ω component in
the â−,out(t) mode. Instead, for a finite bandwidth, the matrix
elements in V are some mean values over certain frequency
regions, and the filter functions determine the weight functions
in this averaging. With the right choice of filter functions, we
can generate a large output entanglement in a relatively short
time.

III. OPTIMIZATION Of THE OUTPUT-PHOTON
ENTANGLEMENT

Before optimizing the output-photon entanglement, we
check some properties of the output-photon spectrum n±(ω).
The ω component in the interaction picture actually accounts
for the ω± + ω physical components for the â+,out(t) and
â−,out(t) modes, respectively. As shown in Fig. 2(a), there
are typically two peaks separated roughly by frequency δ in
the spectrum. For the â±,out(t) modes, one peak is centered
around ω 	 0, with width κ , and the other is around ω 	 ±δ,
with width 	. The peak around ω 	 0 is dominated by
contributions from optical vacuum noise, while the peak
around ω 	 ±δ is mainly generated by mechanical thermal
noise. Thus the former is more robust to mechanical thermal
fluctuations and has larger entanglement. This is illustrated in
Fig. 2(b), where we plot the spectral density of entanglement
Es(ω). It also has two peaks in the same positions as in the
output-photon spectrum, and the one around ω 	 0 is higher
due to its immunity to the mechanical thermal noise. So we
would choose our filter functions f±(ω) to be centered around
ω = 0.
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FIG. 2. (a) Output photon spectrum n+(ω) for the upper optical
mode with g/κ = 1, 	/κ = 0.001, δ/κ = 5, nth = 100. Contribu-
tions from the optical vacuum noise and mechanical thermal noise are
distinguished by different colors. (b) Spectral density of entanglement
Es(ω), i.e., the logarithmic negativity between the ω component in the
â+,out(t) mode and the −ω component in the â−,out(t) mode. These two
components can be obtained by the filter functions centered around
±ω, respectively, and both with a bandwidth approaching 0.
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FIG. 3. (a) Entanglement as a function of the dimensionless
bandwidth σ/κ and time delay κtd for g/κ = 1, 	/κ = 0.001,
δ/κ = 0, nth = 0. The dashed white line is the optimal delay time
produced by Exp. (6). (b) Optimal delay time κtopt with respect to the
frequency mismatch δ/κ under different driving strengths g/κ with
	/κ = 0.001, nth = 0.

Let us assume that the two filter functions for both output
modes have the same bandwidth σ but a delay time td ,
i.e., f+(ω) = eiωtd /

√
σ , f−(ω) = 1/

√
σ for ω ∈ [− σ

2 , σ
2 ], and

otherwise, f±(ω) = 0. Their Fourier transformations read
f+(t) = √

σ
2π

sin(σ (t−td )/2)
σ t/2 , f−(t) = √

σ
2π

sin(σ t/2)
σ t/2 , which means

that wave packet â+,f arrives a time td later than wave packet
â−,f . In Fig. 3(a), we plot the two-wave-packet entanglement
as a function of the dimensionless bandwidth σ/κ and time
delay κtd . We can see that with increasing bandwidth, the
entanglement decreases almost monotonically. When σ/κ �
1, the entanglement has its maximum value and is independent
of td , since a small bandwidth means a long duration of the
wave packet, thus a finite time delay κtd will not affect the
results. However, there exists an optimal delay time topt at
which the entanglement can decrease relatively slowly when
the bandwidth increases. To determine the topt, we can check
the matrix element X = 〈â+,f â−,f 〉, which accounts for the
correlation between the two wave packets. We expect that a
larger correlation X would lead to larger entanglement. After
inserting the filter functions, we have

X = 1

σ

∫ σ/2

−σ/2
dωe−iωtd x(ω)

= 1

σ

∫ σ/2

−σ/2
dωe−iωtd |x(ω)|ei(ϕ(0)+ dϕ(ω)

dω
|ω=0ω+... ). (5)

Here we have expanded the phase function ϕ(ω) of x(ω) in a
Taylor series around ω = 0. When σ increases from 0 but is
within the region in which ϕ(ω) is linear with respect to ω,
to adjust td = dϕ(ω)

dω
|
ω=0

would eliminate the integrand’s phase
dependence on ω, leading to an enhanced value of X. So the
optimal delay time topt is found to be dϕ(ω)

dω
|
ω=0

, and more
explicitly,

topt = C + nth + 1
2

	
((

C + nth + 1
2

)2 + (
δ
	

)2) , (6)

with the cooperativity C = g2

κ	
. The dashed white line in

Fig. 3(a) is predicted by this formula. When the driving
is sufficiently large, i.e., C � nth + 1/2, the dimensionless

optimal delay time is approximately given by

κtopt 	 (g/κ)2

(g/κ)4 + (δ/κ)2
. (7)

There are two special cases: one is on-resonance, i.e.,
δ = 0, and topt 	 1

κ(g/κ)2 . In this case, the entangled photon
pairs will be emitted earlier in the â−,out(t) mode than in
the â+,out(t) mode, which accounts for the down-conversion
happening before the up-conversion. In fact, the processes
also occur in the reversed order, but this does not contribute to
entanglement. As we explained above, the down-conversion
produces a phonon, which is subsequently absorbed in the
up-conversion. So the generated photon pairs are connected by
the same intermediate phonon. However, in the reversed order,
these two scatterings happen independently and the scattered
photons are not correlated. Thus the optimal delay time reflects
the microscopic picture of generating entangled photon pairs.
The stronger the driving, the less the time needed for photon
scattering, and the time interval between the two wave packets
becomes shorter. Another interesting case is the large-detuning
case, i.e., δ � g and topt 	 0, which corresponds to photon
scatterings via a virtual intermediate phonon, and the up- and
down-conversions happen at the same time. In Fig. 3(b), we
plot the optimal delay time κtopt versus the frequency mismatch
δ/κ with different driving strengths g/κ . The maximum value
1/(g/κ)2 is achieved on-resonance, and the curves decrease
to half the maximum at δ/κ = (g/κ)2 and approach 0 when
δ � g. These curves will not be influenced by increasing nth,
if nth is much smaller than the cooperativity C.

Although large entanglement can be achieved with a
small bandwidth, the generation efficiency is low due to the
long wave-packet duration, τ = 2π/σ , which is inversely
proportional to σ . Besides optimizing the wave-packet delay
time, it is also necessary to optimize its bandwidth and make
it as large as possible. At a fixed optimal delay time, we first
check how the entanglement changes with the bandwidth. In
Fig. 4(a), we plot the ratio of entanglement E to its maximum
Emax(δ) with respect to σ/κ for different choices of δ/κ .
The maximum Emax(δ) is reached in the limit of σ = 0 and
decreases with increasing δ/κ due to the reduced peak height
in the output-photon spectrum. The curves of E/Emax(δ)
versus σ/κ decrease almost monotonically but show a sudden
jump at σ/κ 	 2δ/κ . This behavior can be understood by
noting that, as we increase the bandwidth, at some point it
will include the narrow and high peaks around ω = ±δ [see
Fig. 2(a)], and they will suddenly dominate the entanglement
properties. The main problem here is how to define the optimal
bandwidth. If we want to get a large entanglement in a short
time, we might be interested in the bandwidth at which we
can optimize the ratio E/τ . However, the problem is that
in many cases, we get a maximum value of E/τ when τ is
very small. The ratio is high, however, the entanglement is
small given a small τ . Another possibility is to define the
optimal bandwidth σopt as half height width of the above
curves, i.e., E(σopt/κ)/Emax(δ) = 0.5. By this definition, the
entanglement only decreases by half the maximum, so we
can guarantee the amount of entanglement. Here, we adopt
this second definition and analyze its behavior with different
parameters. If the jump happens to intersect with the dashed
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FIG. 4. (a) Ratio of entanglement to maximum entanglement, i.e., E/Emax(δ), as a function of the dimensionless bandwidth σ/κ with
different frequency mismatches δ/κ for g/κ = 1, 	/κ = 0.001, nth = 0. (b) Dimensionless optimal bandwidth σopt/κ versus frequency
mismatch δ/κ with different driving strengths and thermal phonon numbers at fixed 	/κ = 0.001. (c) Optimal bandwidth σopt/κ as a
function of the driving strength g/κ for the resonant case, i.e., δ/κ = 0, with different combinations of 	/κ and nth (black, 	/κ = 0.001,
nth = 0; blue, 	/κ = 0.01, nth = 0; gray, 	/κ = 0.001, nth = 10); solid lines represent numerical results, while dashed lines were given by
σopt/κ = (25(1 + 2nth)/C)1/8. (d) Optimal bandwidth σopt/κ versus dimensionless parameter g2/(δκ) in the adiabatic model, shown by the

solid line. Analytic approximation (23/8)4/5e− 11
50 g2/(δκ) in the vicinity of g2/(δκ) = 0, indicated by the dash-dotted line.

0.5 constant line, then σopt/κ 	 2δ/κ , while the cases where
the jump occurs above and below lead to σopt/κ > 2δ/κ and
σopt/κ < 2δ/κ , respectively. This feature is reflected by the
solid red line in Fig. 4(b), where the linear region originates
from the intersecting case. The existence of this linear region
is quite general for different parameters if 	/κ � 1, which is
also common in real experiments [1,30,31,34–36].

As above, we also give analytic predictions for two special
cases: for the resonant case, i.e., δ = 0, and under the strong
driving conditions C � nth + 1/2, we have σopt/κ 	 (25(1 +
2nth)/C)1/8. We compare this formula with the numerical
results in Fig. 4(c) and see that when C/(nth + 1/2) > 103,
these two results agree very well. In the large-detuning case,
i.e., when δ � κ,	,g, we could adiabatically eliminate the
mechanical modes to get the simplified Hamiltonian Ĥad =
δb̂†b̂ − g2

4δ
(â†

+â+ + â
†
−â− + â

†
+â

†
− + â+â−). Thus all the en-

tanglement properties are determined solely by g2/(δκ). In
Fig. 4(d), we plot the optimal bandwidth σopt/κ as a function
of g2/(δκ) in the adiabatic model. This is done by starting from

the effective Hamiltonian Ĥad and performing a numerical
search. If δ is large enough to make g2/(δκ) � 1, the behavior
of the optimal bandwidth is indicated by the dash-dotted-line
relation (23/8)4/5e− 11

50 g2/(δκ) up to g2/(δκ) 	 0.1. This relation
predicts that all the curves in Fig. 4(b) will ultimately reach
the limiting value (23/8)4/5 	 2.33.

IV. CONCLUSION

In summary, we have shown how to optimize output-photon
entanglement based on our previous scheme. Our goal is, given
a set of physical parameters, to determine how to optimally
filter out two wave packets (two harmonic oscillators) from the
entangled light beams. The method presented here applies to
other optomechanical schemes [17–21] and nonlinear systems
such as the Kerr medium [28] and Josephson parametric
converter [29]. We first consider the output-photon spectrum
to determine the frequency region where there are high photon
number densities and a small effect of the mechanical thermal
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noise (this noise is only for optomechanical systems). We
then choose a filter function centered around the spectral peak
in this region and introduce a delay time between the two
wave packets. The wave-packet entanglement will generally
decrease monotonically with increasing bandwidth due to the
averaging effects in the covariance matrix. However, there
exists an optimal delay time, at which the entanglement
decreases relatively slowly. At this optimal delay time, we
discuss the optimal bandwidth, at which the entanglement
decreases to half its maximum. There are several interesting
features of the optimization: (i) The optimal delay time reflects
the second-order process for generating entangled photon
pairs. For the resonant case, the up-conversion comes after
the down-conversion, while for the large-detuning case, they
happen at the same time. The time differences for these
two processes are captured by the optimal delay time. (ii)
At the optimal delay time, the entanglement decreases with
increasing bandwidth; in particular, a sudden jump appears
at σ 	 2δ, which is a common phenomenon for 	 � κ and
gives rise to a linear relation σopt 	 2δ for some intermediate
region of δ/κ . (iii) When the frequency mismatch δ is

much larger than all the other characteristic parameters, the
entanglement is fully determined by g2/(δκ). The optimal
bandwidth σopt/κ goes to a limiting value, 2.33, when g2/(δκ)
approaches 0. In addition, we give some analytic results
for wave-packet optimization with the aim of facilitating
experimental estimations. To obtain a large entanglement in a
relatively short time is experimentally feasible and important,
and we believe that our study is quite useful for applications
relying on entangled light beams.
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