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The generalized theory of Stokes-Mueller polarimetry is employed to develop the third-order optical
polarimetry framework for third-harmonic generation (THG). The outgoing and incoming radiations are
represented by 4-element and 16-element column vectors, respectively, and the intervening medium is represented
by a 4 × 16 triple Mueller matrix. Expressions for the THG Stokes vector and the Mueller matrix are provided
in terms of coherency and correlation matrices and expanded by four-dimensional γ matrices that are analogs
of Pauli matrices. Useful expressions of triple Mueller matrices are presented for cylindrically symmetric and
isotropic structures. In addition, the relation between third-order susceptibilities and the measured triple Mueller
matrix is provided. This theoretical framework can be applied for structural investigations of crystalline materials,
including biological structures.
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I. INTRODUCTION

Three-photon processes such as third-harmonic generation
(THG) reveal unique structural information about the sample
under study [1–4]. The generated third-harmonic signal from
the material is related to the incoming radiation electric fields
and determined by the third-order susceptibility tensor χ (3) of
the material [2]. The third-harmonic generation is an odd order
process and has markedly different symmetry selection rules
compared to the even order processes.

Stokes-Mueller, Poincaré, or Jones formalism can be used
to describe the polarization dependence of the interaction
of light with a medium, each approach having its unique
advantage [5–7]. The Stokes-Mueller method can account for
unpolarized light and describes the depolarization process. The
light polarization in the context of Stokes-Mueller formalism
is represented by a vector, and the interaction of the radiation
with matter is denoted by a matrix. Both partially or completely
polarized light can be represented by the Stokes vector, which
contains real-valued components and is composed of light
intensities that can be measured in an experiment.

The nonlinear Stokes-Mueller equation for the third-order
processes describes the relationship between the generated
nonlinear signal radiation, the nonlinear properties of the
media, and the incoming radiations:

s ′(ωσ ) = M(3)S(3)(ω1,ω2,ω3) (1)

where s ′ is the conventional 4 × 1 Stokes vector of the
generated radiation at ωσ frequency and prime signifies the
measured outgoing signal, while S(3) is a 16 × 1 triple Stokes
vector representing the polarization state of the three incoming
electric fields (with frequencies ω1, ω2, and ω3) that generate
the light via nonlinear interactions. For THG the incoming
radiation frequencies are all the same (Fig. 1). Henceforth,
the s ′ and S(3) are called the polarization state vectors for
outgoing and incoming radiations, respectively. The triple
Mueller matrix M(3) describes the material properties of
a third-order light-matter interaction. The Mueller matrix
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contains the nonlinear susceptibilities, which are independent
of the incoming radiation intensities. The nonlinear Stokes-
Mueller polarimetry is applicable for nonionizing radiations in
the optical range (i.e. Ilaser � Iatomic = 4 × 1020 W/m2), and
the intensity independence of the Mueller matrix components
can be tested by performing polarimetry measurements with
several incoming radiation intensities [2,8].

In this paper, we concentrate on the three-photon pro-
cesses, and develop specific equations for the THG from
the generalized Stokes-Mueller polarimetry formalism [8].
The derivation will follow the same formalism that we used
for the second-harmonic generation process as well as the
generalization for other nonlinear optical processes [8,9].
In Sec. II we will develop the equations for the outgoing
and incoming radiation polarization states, followed by the
expression for the triple Mueller matrix in Sec. III. Specific
examples of the Mueller matrix for real-valued susceptibilities
with isotropic and hexagonal symmetries will be provided,
which have relevance to biological structures. The formalism
introduced in this paper is applicable for measurements in thin
samples, i.e., the phase matching conditions and diffraction
of waves for nonplanar samples is not considered. The
THG signal has been previously observed from thin samples
such as β-carotene microcrystals in orange carrot, retinal
in membranes of fruit fly eye, astaxanthin aggregates in
green algae, and melanin in melanoma cells [1,10–17]. The
method for extracting susceptibility component values from
the Mueller matrix will be provided in Sec. IV. The expressions
for the triple Stokes-Mueller polarimetric measurements will
be presented in Sec. V, including equations for the reduced
polarimetry with linear polarization states of incoming and
outgoing radiations.

II. DERIVATION OF POLARIZATION STATE
OF RADIATIONS

A. Outgoing radiation Stokes vector

The Stokes vector s ′ for the outgoing third-harmonic
radiation is characterized by a 4 × 1 vector just as in the case
for the conventional Stokes vector. The coherency matrix of
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FIG. 1. Schematic representation of a third-harmonic generation
process analyzed by polarimetry. Three photons of incoming beam
with frequency ω are incident onto the sample possessing the third-
order susceptibility χ (3), and the emitted radiation is at thrice the
incoming frequency, 3ω. In three-photon polarimetry, the incoming
radiation is represented by the triple Stokes vector S(3), the medium
is characterized with the matrix M(3), and the outgoing measured
signal is represented by a 4 × 1 Stokes vector s ′.

the third-harmonic signal is [7,8]

C ′
ab(3ω) = 〈�′(3ω) · �′†(3ω)〉ab = 〈�′

a(3ω)�′∗
b (3ω)〉 (2)

where a and b each run from 1 to 2, representing the
orthogonal outgoing polarization orientations perpendicular to
the light propagation direction, and �′(3ω), which is directly
proportional to the polarization density P (3), is the state
(or simply the electric-field) vector of the outgoing beam.
The dagger symbol † denotes the complex conjugation and
transposition. 〈·〉 signifies a time average over an interval long
enough to make the time averaging independent of the interval
and fluctuations. Then, the outgoing radiation Stokes vector is
[7–9]

s ′
t = Tr(C ′τt ) = C ′

ab(τt )ba = 〈�′
a�

′∗
b 〉(τt )ba = 〈�′†τt�

′〉
(3)

where τt (t = 0...3) denotes the 2 × 2 identity and Pauli ma-
trices, which are Hermitian and obey the unique orthogonality

relation Tr(τμτν) = 2δμν , where δμν is the Kronecker delta
(see Appendix A). Additionally, the degree of polarization
(0 � P ′ � 1) of the outgoing radiation in terms of its Stokes
vector components can be obtained according to [18]

P ′ =
√

s ′
1

2 + s ′
2

2 + s ′
3

2
/s ′

0. (4)

The degree of polarization P ′ provides information about the
scattering and depolarization of the third-harmonic radiation.

B. Real-valued triple Stokes vector

The third-order nonlinear signal is generated due to induced
nonlinear polarization Pi

(3) in the material:

P
(3)
i = χ

(3)
ijklEjEkEl = χ

(3)
iA ψ

(3)
A (5)

where the first index i indicates the direction of outgoing
polarization, while the indices j , k, and l indicate the direction
of polarization of incoming electric fields, and summation
is assumed over the repeated indices [2,8]. The index A is
composed of the indices j,k,l and depends on the third-order
process being studied (i.e., THG, coherent anti-Stokes Raman
scattering (CARS), etc.).

For triple Stoke-Mueller polarimetry of THG, the incoming
radiation electric-field state vector ψ (3)(ω1,ω2,ω3) has the
same frequency ω for all three electric fields. Therefore the
polarization state is

ψ (3)(ω,ω,ω) =

⎛
⎜⎜⎝

E1
3

E2
3

3E1
2E2

3E1E2
2

⎞
⎟⎟⎠ (6)

where the subscripts 1 and 2 represent the orthogonal electric-
field vector orientations forming the plane perpendicular to the
light propagation. Thus, the coherency matrix for the three-
photon process is

ρ(3)(ω,ω,ω) = 〈ψ (3) · ψ (3)†〉 =

⎛
⎜⎜⎜⎜⎜⎝

〈
E1

3 E∗
1

3〉 〈
E1

3 E∗
2

3〉 〈
3 E1

3 E∗
1

2 E∗
2

〉 〈
3 E1

3 E∗
1 E∗

2
2〉〈

E2
3 E∗

1
3〉 〈

E2
3 E∗

2
3〉 〈

3 E2
3 E∗

1
2 E∗

2

〉 〈
3 E2

3 E∗
1 E∗

2
2〉〈

3 E1
2 E2 E∗

1
3〉 〈

3 E1
2 E2 E∗

2
3〉 〈

9 E1
2 E2 E∗

1
2 E∗

2

〉 〈
9 E1

2 E2 E∗
1 E∗

2
2〉〈

3 E1 E2
2 E∗

1
3〉 〈

3 E1 E2
2 E∗

2
3〉 〈

9 E1 E2
2 E∗

1
2 E∗

2

〉 〈
9 E1 E2

2 E∗
1 E∗

2
2〉

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

C3
11 C3

12 3 C2
11 C12 3 C11 C2

12

C3
21 C3

22 3 C2
21 C22 3 C21 C2

22

3 C2
11 C21 3 C2

12 C22 9 C2
11 C22 9 C2

12 C21

3 C11 C2
21 3 C12 C2

22 9 C12 C2
21 9 C11 C2

22

⎞
⎟⎟⎟⎟⎟⎠ (7)

where C is the ordinary 2 × 2 coherency matrix for the funda-
mental beam with frequency ω [18]. In Eq. (7), going from the
first to the second matrix, we assume 〈EjEkElE

∗
mE∗

nE
∗
o 〉 =

〈EjE
∗
m〉〈EkE

∗
n〉〈ElE

∗
o 〉 (indices j,k,l,m,n, and o each run

from 1 to 2), which allows us to use the conventional coherency

matrix to redefine the interacting electric fields. This assump-
tion is justified if the incident radiation is coherent and fully po-
larized, i.e., from a laser source. Note that the requirement for a
coherent and polarized light source is given for nonlinear opti-
cal processes, because the noncoherent fundamental radiation
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is not expected to generate a significant THG signal. Further-
more, this assumption simplifies other equations derived later.

The general triple Stokes vector can be found similar to the
linear and two-photon processes according to

S
(3)
N (3ω) = Tr

(
ρ(3) γ

N

) = 〈
ψ

(3)
A ψ

(3)∗
B

〉
(γ

N
)BA (8)

where A and B = 1, . . . ,4, N = 1, . . . ,16, and the 4 × 4 γ

matrices and the associated identity matrix are analogous
to Pauli matrices. They are Hermitian and obey the unique
orthogonality relation Tr(γMγN ) = 2δMN (see Appendix A).
Therefore, the elements of the triple Stokes vector describing
the polarization state for incoming radiation are

S
(3)
N (ω,ω,ω)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
2

2

(〈
E1

3 E∗
1

3〉 + 〈
9E1

2 E2 E∗
1

2 E∗
2

〉 + 〈
9E1 E2

2 E∗
1 E∗

2
2〉 + 〈

E2
3 E∗

2
3〉)

√
6

6

(〈
E1

3 E∗
1

3〉 + 〈
9E1

2 E2 E∗
1

2 E∗
2

〉 − 〈
27E1 E2

2 E∗
1 E∗

2
2〉 + 〈

E2
3 E∗

2
3〉)

√
3

3

(〈
E1

3 E∗
1

3〉 − 〈
18E1

2 E2 E∗
1

2 E∗
2

〉 + 〈
E2

3 E∗
2

3〉)〈
E1

3 E∗
1

3〉 − 〈
E2

3 E∗
2

3〉〈
E1

3 E∗
2

3〉 + 〈
E2

3 E∗
1

3〉〈
3 E1

2 E2 E∗
2

3〉 + 〈
3 E2

3 E∗
1

2 E∗
2

〉
〈
9 E1

2 E2 E∗
1 E∗

2
2〉 + 〈

9 E1 E2
2 E∗

1
2 E∗

2

〉
〈
3 E∗

1 E2
3 E∗

2
2〉 + 〈

3 E1 E2
2 E∗

2
3〉〈

3 E∗
2 E1

3 E∗
1

2〉 + 〈
3 E2 E1

2 E∗
1

3〉〈
3 E1

3 E∗
1 E∗

2
2〉 + 〈

3 E1 E2
2 E∗

1
3〉(〈

E1
3 E∗

2
3〉 − 〈

E2
3 E∗

1
3〉)i(〈

3 E2
3 E∗

1
2 E∗

2

〉 − 〈
3 E1

2 E2 E∗
2

3〉)i(〈
9 E1

2 E2 E∗
1 E∗

2
2〉 − 〈

9 E1 E2
2 E∗

1
2 E∗

2

〉)
i(〈

3 E2
3 E∗

1 E∗
2

2〉 − 〈
3 E1 E2

2 E∗
2

3〉)i(〈
3 E1

3 E∗
1

2 E∗
2

〉 − 〈
3 E1

2 E2 E∗
1

3〉)i(〈
3 E1

3 E∗
1 E∗

2
2〉 − 〈

3 E1 E2
2 E∗

1
3〉)i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 1

4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
2s0

(
5s0

2 − 3s1
2
)

√
6
(− 4

3 s0
3 + 3 s0

2 s1 + 2 s0 s1
2 − 3 s1

3
)

√
3
(− 8

3 s0
3 − 3 s0

2 s1 + 4 s0 s1
2 + 3 s1

3
)

s1
(
3 s0

2 + s1
2
)

s2
(
s2

2 − 3 s3
2
)

3(s0 − s1)
(
s2

2 − s3
2
)

9s2
(
s2

2 + s3
2
)

3 s2 (s0 − s1)2

3 s2 (s0 + s1)2

3(s0 + s1)
(
s2

2 − s3
2
)

s3
(
3 s2

2 − s3
2
)

−6s2 s3 (s0 − s1)

9s3(s2
2 + s3

2)

−3s3
(
s0 − s1

)2

3s3 (s0 + s1)2

6s2 s3 (s0 + s1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(9)

where s0, s1, s2, and s3 are the Stokes vector components of
incoming laser polarization (note that here and throughout the
paper i = √−1 denotes the imaginary number, while i denotes
an index). The second equality of Eq. (9) is valid for fully
coherent and polarized states of the incoming laser radiation.
For a partially polarized fundamental radiation the incoherent
part is not expected to contribute significantly to the nonlinear
signal. Therefore for the analysis of experimental results with
partially polarized beam, s0 of the fundamental laser beam
can be calculated as s2

0 = s2
1 + s2

2 + s2
3 and used for the triple

Stokes vector in the Stokes-Mueller polarimetry Eqs. (7) and
(9). Note, the last six elements of the vector above vanish when
s3 is zero. It implies that the triple Stokes vector for THG will
have at most the first ten nonzero elements if the incoming
radiation is linearly polarized.

Additionally, the first element S1 is proportional to the trace
of the coherency matrix in Eq. (7), which is proportional to the
electric fields and the intensity of the incoming radiation. In
fact, the vector for third-order interaction obeys the following
relation [8]:

3S2
1 �

16∑
N=2

S2
N (10)

where the equality is valid for a purely polarized state.
Therefore, it is convenient to use the degree of polarization
P (3) parameter to characterize the fundamental radiation:

P (3)(ω,ω,ω) =
√√√√ 16∑

N=2

S2
N/3S2

1 (11)

where P (3) ranges from zero to one, which may denote
the unpolarized to fully polarized fundamental radiation,
respectively. Note that the definition of the degree of
polarization for multiple interacting fields is not necessarily
unique. The conventional degree of polarization is unique
only for the two-field case, whereas for the three-field case
there are at least three different ways to define the degree of
polarization. The definition of P (3) in Eq. (11) by analogy is
similar to the conventional form of the degree of polarization
for two electric fields and, as has been previously suggested,
is more convenient than other definitions [19,20].

III. INTERVENING MEDIUM: TRIPLE MUELLER
MATRIX M(3)

By substituting linear and nonlinear Stokes vector expres-
sions [Eqs. (3) and (8), respectively] into the general nonlinear
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polarimetry Eq. (1) the following expression is obtained:

〈�′† τt �
′〉 = M(3)

tN

〈
ψ (3)† γ

N
ψ (3)

〉
. (12)

In this framework, each component of the vector �′ of the
generated electric field is proportional to the polarization
state of incoming electric field and to the susceptibility
tensor components of the material. By substituting explicit
expressions of �′ and �′† into Eq. (12) in the elemental form
the following equation is obtained:〈

χ
(3)∗
aA ψ∗

A(τt )abχ
(3)
bBψB

〉 = M(3)
tN

〈
ψ

(3)∗
A (γ

N
)

AB
ψ

(3)
B

〉
(13)

where the contracted notation A and B = 1, . . . ,4 in χ
(3)
iA =

χ
(3)
ijkl is defined as

jkl : 111 222 112,121,211 122,212,221
A : 1 2 3 4 (14)

and the same contracted notation is used for B. Note that here
the matrix is constructed mainly with the THG process in mind,
where the Kleinman symmetry is not required. In comparison
to the linear Mueller matrix elements, which are composed
of products of linear susceptibilities and Pauli matrices, the
triple M(3) is composed of nonlinear susceptibilities and 4 ×
4 γ matrices. In addition, similar to the linear polarimetry, all
elements of the matrix for the nonlinear interaction are real;
this conclusion leads to a very useful and desired expression
for obtaining the nonlinear susceptibilities as will be shown in
Sec. IV. In extending the matrix for other third-order processes

it may be required to ensure that the Kleinman symmetry is
valid. Otherwise, an effective χ (3) is defined, or the dimensions
of the γ matrices must be increased.

In a highly scattering media such as biological tissue, the
system may not be completely coherent, and the source of
the signal may be an ensemble of scatterers. Therefore, an
ensemble average of individual elements with probability pe

may be more appropriate to consider [21]. In addition, since
Eq. (13) is written in terms of individual elements, the state
functions of the fundamental radiation can be dropped and
the nonlinear Mueller matrix elements MtN can be written in
terms of the third-order susceptibilities as

M(3)
tN = 1

2

[∑
e

pe

(
χ

(3,e)∗
aA χ

(3,e)
bB

)]
(τt )ab(γ

N
)BA (15)

where summation is assumed over repeated indices. In deriving
Eq. (15) for the ensemble of χ (3) the order of variables
is a nonissue because both equations [Eqs. (13) and (15)]
are expressed in the elemental form. The correlation matrix
contains information about the ensemble, and in the case of a
homogeneous medium reduces to a product of χ

(3)∗
aA χ

(3)
bB of a

single source.
Note that the outgoing radiation may not be fully polarized,

since the generated light is no longer originating from a
single source, but rather from an ensemble of sources. Thus,
Eq. (15) is a better representation of experimental data from a
heterogeneous medium.

Similar to the symbolic notation that was given for the
second-order matrix M(2) (see Ref. [9]), the symbolic matrix
for the third-order M(3) becomes

⎛
⎜⎜⎝

NP NP NP NP Ic
♦ I c

 I c
∇ I c

� I c
� I c

� I s
♦ I s

 I s
∇ I s

� I s
� I s

�
NP NP NP NP Ic

♦ I c
 I c

∇ I c
� I c

� I c
� I s

♦ I s
 I s

∇ I s
� I s

� I s
�

Oc Oc Oc Oc OIc
♦ OIc

 OIc
∇ OIc

� OIc
� OIc

� OIs
♦ OIs

 OIs
∇ OIs

� OIs
� OIs

�
Os Os Os Os OI s

♦ OIs
 OIs

∇ OIs
� OIs

� OIs
� OIc

♦ OIc
 OIc

∇ OIc
� OIc

� OIc
�

⎞
⎟⎟⎠.

(16)

The superscripts s and c denote the sin and cos of the relative
phase between the susceptibility tensor elements that make up
the triple Mueller matrix element. Phase-independent (NP )
elements are present in the first two rows and four columns
and are composed of the squares of susceptibility components;
those dependent on the incoming I index are situated in the
first two rows and last twelve columns; elements dependent
on the outgoing O index are located in the last two rows
and first four columns; and the elements that depend on
incoming as well as outgoing OI indices form the remaining
elements.

Additionally, the following symmetry features of the triple
Mueller matrix can be seen: Columns 5 to 10 of the triple
Mueller matrix (N = 5, . . . ,10) have the same susceptibility
products as columns 11 to 16 (N + 6), respectively, where the
retardedness of the components in the last six columns acquires
an additional π/2 phase shift relative to the six columns before

them (superscripts c and s). The corresponding columns with
the same susceptibilities are indicated as subscripts ♦, , ∇,
�, �, and � in the symbolic matrix (16). In the following,
explicit expressions of the triple Mueller matrix for a few
special cases will be presented.

Triple Mueller matrix for real susceptibilities

When susceptibilities are real, the Mueller matrix compo-
nents that have sin dependency on the retardance phase reduce
to zero [see the components with superscript s in the symbolic
Mueller matrix (16)]. Therefore, the last six columns of the
first three rows and the first ten elements of the last row in
M(3) are zero. In addition, if Kleinman symmetry is valid
for a third-order process, then there are five unique nonzero
susceptibilities. The Mueller matrix can be expressed by using
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four unique susceptibility component ratios as follows:

M(3)
THG,Kleinman = (

χ
(3)
14

)2

⎛
⎜⎜⎜⎜⎜⎝

√
2

4 (a2+b2+2 c2+2 d2+2)
√

6
12 (a2+b2+2 c2−2 d2−2)

√
3

6 (a2+b2−c2+d2−2) (a2−b2+c2−d2)/2
√

2
4 (a2−b2)

√
6

12 (a2−b2+4 d2−4)
√

3
6 (a2−b2−3 c2+d2+2) (a2+b2−c2−d2)/2

√
2

2 (c+d+a c+b d)
√

6
6 (c−3 d+a c+b d)

√
3

3 (a c−2 c+b d) a c−b d

0 0 0 0

a d+b c c d+b c+d d (1+b) c (a+1) a+c d 0 0 0 0 0 0

a d−b c c d−b c−d d (1−b) c (a−1) a−c d 0 0 0 0 0 0

a b+c d d+b c c d+1 d2+b c2+a c+a d 0 0 0 0 0 0

0 0 0 0 0 0 a b−c d d−b c c d−1 d2−b a−c2 a d−c

⎞
⎟⎟⎟⎟⎠

(17)

where a = χ
(3)
11 /χ

(3)
14 , b = χ

(3)
22 /χ

(3)
14 , c = χ

(3)
13 /χ

(3)
14 , and d =

χ
(3)
12 /χ

(3)
14 . An interesting prediction is that when the incoming

radiations are linearly polarized the outgoing s ′
3 will be zero.

That occurs because the last six components of the triple
Stokes vector are zero for linearly polarized incoming light
[see Eq. (9)], and the first ten elements of the last row in M(3)

are zero for real-valued susceptibilities [see Eq. (17)]. The
condition of real-valued susceptibilities is further explored in
two more specific cases.

1. Triple Mueller matrix for isotropic media

For isotropic material with real susceptibilities, only three
susceptibility components are nonzero, of which only one is
independent: χ

(3)
11 = χ

(3)
22 = 3χ

(3)
14 [2]. By substituting these

symmetry relations into Eq. (17), the matrix for isotropic
material is obtained as follows:

M(3)
iso = (

χ
(3)
14

)2

⎛
⎜⎜⎜⎝

5
√

2 4
√

6
3

8
√

3
3 0 0 3 0 0 0 3 0 0 0 0 0 0

0 −
√

6
3

√
3

3 9 0 −3 0 0 0 3 0 0 0 0 0 0
0 0 0 0 9 0 1 3 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 9 0 −1 −3 3 0

⎞
⎟⎟⎟⎠. (18)

As can be seen, and may readily be verified by an experiment,
the matrix elements for isotropic material scale only with an
effective susceptibility value.

2. Triple Mueller matrix for hexagonal symmetry

For materials possessing hexagonal and Kleinman sym-
metry, three elements are independent: χ

(3)
11 , χ

(3)
22 , and χ

(3)
14 .

Substituting them in Eq. (17), the hexagonal material matrix
assumes the form expressed in Eq. (19).

Equation (19) assumes that the cylindrical axis is oriented
along the axis i = 1. The experimentally measured Mueller
matrix can be used to extract the susceptibility values of the
material. For example, the cylindrically symmetric crystalline
aggregates of biologically important molecules such as as-
taxsanthin and β-carotene have been characterized with THG
polarimetric microscopy and χ

(3)
11 /χ

(3)
14 and χ

(3)
22 /χ

(3)
14 were

extracted from the measurements [17,22]:

M(3)
hex =(

χ
(3)
14

)2

⎛
⎜⎜⎜⎜⎝

√
2

4 (a2+b2+2)
√

6
12 (a2+b2−2)

√
3

6 (a2+b2−2) 1
2 (a2−b2) 0 b 0 0 0 a 0 0 0 0 0 0

√
2

4 (a2−b2)
√

6
12 (a2−b2−4)

√
3

6 (a2−b2+2) 1
2 (a2+b2) 0 −b 0 0 0 a 0 0 0 0 0 0

0 0 0 0 a b 0 1 b a 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 a b 0 −1 −b a 0

⎞
⎟⎟⎟⎟⎠.

(19)
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IV. EXTRACTION OF THIRD-ORDER SUSCEPTIBILITIES
AND PHASES FROM THE MUELLER MATRIX

Following the derivations analogous to the two-photon and
general Stokes-Mueller polarimetry [7–9,23], the expression
for third-order susceptibility tensor elements can be obtained
from the triple Mueller matrix elements. In deriving the
expression for products of a pair of the susceptibility tensor
elements, first matrices T and � are derived by vectorizing the
Pauli τ and γ matrices, respectively [see Eqs. (A5) and (A6) in
Appendix A]. Both T and � matrices are invertible and obey
T −1 = 1

2T † and �−1 = 1
2�†, respectively. Next the pairwise

products of the susceptibilities can be obtained as

X(3) = T −1M(3)� (20)

where the matrix X(3) is for the ensemble average, as was
shown in Eq. (15).

In the elemental form, the susceptibility products can be
found using Xij = 1

2T
†

it MtN�Nj , where i = (a − 1)2 + b and
j = (A − 1)4 + B. Since, χaAχ∗

bB = |χaA||χbB |ei(δaA−δbB ),
then the relative phase between any two susceptibility elements
(δaA − δbB) in the case of a nondepolarizing sample can be
found according to

δaA − δaA = aA,bB = tan−1

(
−i

χaAχ∗
bB − χbBχ∗

aA

χaAχ∗
bB + χbBχ∗

aA

)

= tan−1

(
i
Xkl − Xij

Xkl + Xij

)

= tan−1

(
i
T †

ktMtN�Nl − T †
it MtN�Nj

T †
ktMtN�Nl + T †

it MtN�Nj

)
(21)

where k = (b − 1)2 + a and l = (B − 1)4 + A, and sum-
mation is performed over repeated indices (note that i =√−1 denotes the imaginary number, while i denotes an
index). Equations (20) and (21) show that the products of
the susceptibility tensor components and the relative phases
between the components can be obtained from the Mueller
matrix. In the next section, the description of polarimetric
measurements will be presented to obtain the Mueller matrix
and χ (3) tensor values.

V. MEASUREMENT OF TRIPLE MUELLER MATRIX
OF THE MEDIUM BY THG POLARIMETRY

In order to find each element of M(3) matrix, the outgoing
Stokes vector is measured for each of the 16 unique incom-
ing polarization states. For each measurement Q, all four
components of the outgoing Stokes vector s ′ have to be
recorded. The solution to the third-order Mueller matrix from
the polarimetry data is

M(3) = s ′S−1 (22)

where s ′ is a measured 4 × 16 matrix containing outgoing
Stokes states with components s ′

0, s ′
1, s ′

2, s ′
3 in columns

for the 16 selected incoming polarization states. S−1 is
a 16 × 16 matrix obtained by inverting the matrix for 16
different incoming polarization states. It is necessary to choose
unique incoming polarization states that produce an invertible
matrix. A set of prepared polarization states composed

FIG. 2. Poincaré sphere for the triple Stokes vector. States
S1...S16 have the respective Poincaré sphere coordinate values:
(�,�) = ([0,0],[ π

2 ,0],[ π

4 ,0],[− π

4 ,0],[0, π

4 ],[0,− π

4 ], [− π

8 ,0],[ π

2
π

8 ],
[ π

4 , − π

8 ],[ π

8 ,0],[ 3 π

8 ,0],[ π

8 , π

8 ],[ π

2 ,− π

8 ], [ π

4 , π

8 ],[0, π

8 ], and [− π

8 , π

8 ]).
Note S1 to S6 states are used for linear polarimetry, and S1 to S9 states
are also used for the double Stokes vector [9].

of 16 different orientations for an incoming radiation that
generates an invertible matrix S is shown in Fig. 2. In
terms of Poincaré coordinates, the states are as follows:
(�,�) = ([0,0],[π

2 ,0],[π
4 ,0],[−π

4 ,0],[0, π
4 ],[0,−π

4 ],[−π
8 ,0],

[π
2 , π

8 ],[π
4 ,−π

8 ],[π
8 ,0],[ 3 π

8 ,0],[π
8 , π

8 ],[π
2 ,−π

8 ],[π
4 , π

8 ], [0, π
8 ],

and [−π
8 , π

8 ]). Additionally the S matrix expression is given in
Eq. (B6) of Appendix B.

A requirement for the Stokes-Mueller polarimetry is finding
an invertible matrix using physically realizable incoming
polarization states. The proposed set is not unique; however, it
does include the six conventional polarization states used for
linear polarimetry and the additional three states from SHG
polarimetry; in addition seven new states are introduced to
form an invertible matrix. Finding an invertible matrix from
a set of vectors that represent physical polarization states is
not an easy task, and to our knowledge there has not been any
analytical solution to this mathematical problem. We have
found another set of triple Stokes states, which does not
include the previously used states for the linear and double
Stokes-Mueller polarimetry, and it is included in Appendix B
as an alternative suggestion. Note that the inversion process
for extracting the Mueller matrix is susceptible to noise, and
therefore the nonlinear polarimetry measurements may require
high quality data. Other numerical and analytical approaches
to extract the Mueller matrix have been suggested for linear
polarimetry and may prove useful for the nonlinear case
[24,25]. Numerical optimization methods such as most-likely
estimation of the nonlinear susceptibility product matrix from
a set of measured outgoing Stokes states can also be employed,
similar to the case of multilevel quantum states in the field of
quantum tomography [26,27].
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The Mueller matrix obtained from the measurements can
be used to extract the χ (3) values and retardance phases using
Eqs. (20) and (21), respectively. The extracted χ (3) values are
in the laboratory coordinate frame, and they can be used further
to extract the molecular susceptibilities of the structure.

Reduced THG polarimetry with linearly polarized states

For structures with real susceptibilities, the susceptibility
component values can be obtained by using only the linear
incoming and outgoing polarization states. If the linear
incoming polarization state is used, i.e., s3 = 0, then the
last six components of the S(3) vector are zero [Eq. (9)].
Therefore, the outgoing s ′

3 will also be zero for the structure
with real-valued susceptibilities [see Eqs. (1), (9), and (17)].
Thus, the reduced Stokes-Mueller polarimetry can be em-
ployed for measuring real-valued susceptibility components
by conducting the so-called polarization-in polarization-out
(PIPO) measurements, where linear polarizations of incoming
and outgoing radiation are used. PIPO has been shown to
provide a robust determination of the laboratory coordinate
susceptibility ratios, the molecular susceptibility ratios, and
the orientation angle for cylindrically symmetric materials
[17,28,29]. The PIPO setup uses a linear polarizer (at angle θ )
for the fundamental radiation, a nonlinear interaction medium,
and a linear polarizer (analyzer at an angle ϕ) for the THG. The
THG intensity is measured at different polarizer and analyzer
orientations, and the surface plot of intensities is constructed
as a function of polarizer and analyzer angles.

The dependence of the outgoing THG Stokes vector on the
incoming linear polarization orientation can be derived by mul-
tiplying the Mueller matrix from Eq. (17) with the triple Stokes
vector of linear polarization [see Appendix B, Eq. (B1)]:

⎛
⎜⎝

s ′
0(3ω)

s ′
1(3ω)

s ′
2(3ω)

s ′
3(3ω)

⎞
⎟⎠ ∝

⎛
⎜⎜⎜⎝

σ 2
1 + σ 2

2

σ 2
1 − σ 2

2

2σ1σ2

0

⎞
⎟⎟⎟⎠ (23)

where

σ1 = χ
(3)
12 cos(θ )3 + 3 χ

(3)
14 cos(θ )2 sin(θ )

+3 χ
(3)
13 cos(θ ) sin(θ )2 + χ

(3)
11 sin(θ )3,

σ2 = χ
(3)
22 cos(θ )3 + 3 χ

(3)
24 cos(θ )2 sin(θ )

+3 χ
(3)
23 cos(θ ) sin(θ )2 + χ

(3)
21 sin(θ )3. (24)

The resulting THG from the nonlinear medium passing
through a linear analyzer is

s ′(3ω) = ManalyzerM(3)S(3)(θ )

= L

⎛
⎜⎜⎝

(σ1 sin ϕ + σ2 cos ϕ)2

cos(2ϕ)(σ1 sin ϕ + σ2 cos ϕ)2

sin(2ϕ)(σ1 sin ϕ + σ2 cos ϕ)2

0

⎞
⎟⎟⎠ (25)

where L is a scaling constant accounting for the experimental
conditions and is proportional to the intensity of fundamental
radiation. From Eq. (25) it follows that for real susceptibilities
and linear incoming polarization s ′

3 = 0. Therefore, it is very

informative to measure the s ′
3 component, and if the measured

value is negligible real susceptibilities may be assumed for
the material. Additionally, s ′

3 = 0 shows that the fundamental
and THG radiations do not experience birefringence. Such
assumption applies often when measuring thin samples at the
wavelength away from the fundamental and THG absorption
bands. The s ′

0 component, expressed in Eq. (25), is similar to
the PIPO equation for THG, which has been used previously
to investigate crystalline structures [17,22]. It can be used
in nonlinear microscopy to fit the PIPO surface plot of THG
imaging data, and is more explicitly stated as follows:

s ′
0(3ω) = I3ω(θ,ϕ) = L|σ1 sin ϕ + σ2 cos ϕ|2. (26)

For a sample with isotropic symmetry, there is only one
independent susceptibility (χ (3)

11 = χ
(3)
22 = 3χ

(3)
14 ):

s ′
0(3ω)iso ∝ ∣∣χ (3)

11

∣∣2|cos(ϕ) cos(θ ) + sin(ϕ) sin(θ )|2

∝ | cos(ϕ − θ )|2. (27)

Thus, for isotropically symmetric material the outgoing
intensity directly depends only on the direction of incoming
radiation and scales according to an effective susceptibility.
This predication can be tested in an experiment. The
isotropic distribution of retinal molecules in the fruit fly
eye and the astaxanthin molecules in red aplanospores of
Haematococcus pluvialis has been observed with THG
polarimetric microscopy [17,22].

For hexagonally symmetric samples, where Kleinman
symmetry is also valid, there are three independent nonzero
susceptibilities (χ (3)

11 ,χ
(3)
22 , and χ

(3)
14 ):

s ′
0(3ω)hex ∝ ∣∣cos(ϕ)

(
χ

(3)
22 cos (θ )3 + 3χ

(3)
14 cos(θ ) sin (θ )2

)
+sin(ϕ)

(
3χ

(3)
14 cos (θ )2 sin(θ ) + χ

(3)
11 sin (θ )3

)∣∣2.
(28)

This relation can be used to fit the two-dimensional (θ,ϕ)
intensity (PIPO) surface plot when performing polarimetry for
a sample possessing hexagonal symmetry such as H aggregates
of astaxanthin and β-carotene aggregates in orange carrot root
cells [17,22].

VI. DISCUSSION AND CONCLUSION

The three-photon polarimetry equations, just like in two-
photon polarimetry, follow from the general Stokes-Mueller
polarimetry formalism [8]. The dimensions of the coherency
matrix, the polarization state vector, and the material matrix
are larger for the three-photon compared to the two-photon
polarimetry. The 4 × 4 γ matrices expand the coherency ma-
trix as well as the corresponding Mueller matrix. The Mueller
matrix M(3) and polarization state vector S(3) have 4 × 16 and
16 × 1 dimensions, respectively. Similar to two-photon po-
larimetry, the M(3)- and X(3)-matrix components can be sorted
into four groups (NP , I , O, and OI ) with distinct phase rela-
tions between the incoming and outgoing retardance effects.

A complete three-photon polarimetry experiment utilizes a
set of 16 unique polarization states of incoming radiation each
composed of 16 triple Stokes vector elements, which forms
an invertible matrix, with numerical values given in Eq. (B6)
in Appendix B. This 16 × 16 matrix is used together with
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the outgoing polarization states s ′ to determine uniquely all
elements of the material matrix M(3). For the material with
real susceptibilities, and when Kleinman symmetry is valid, the
Mueller matrix is composed of five independent susceptibility
tensor elements, and it reduces to four ratios. Therefore, all
64 elements of matrix M(3) are not independent. In addition,
by a reduced polarimetry a subset of M(3) components may
be exploited to determine the susceptibility ratios for certain
material symmetries. For instance, PIPO measurements, with
linearly polarized states of incoming and outgoing radiations,
can be used to deduce the real-valued susceptibilities in
cylindrically symmetric materials [17,22].

For the isotropically symmetric materials, the Mueller ma-
trix is composed of constants, independent of susceptibilities,
and the THG signal scales with an effective susceptibility
[Eq. (18)]. Thus, the outgoing radiation has a simple depen-
dence on the M(3) matrix, and the matrix component values
can be easily verified experimentally with the polarimetric
measurement in isotropic media. The triple Mueller matrix of
hexagonally symmetric material depends on two ratios, and
some elements depend only on a single ratio. Therefore, in
designing experiments for a material possessing hexagonal
symmetry, a reduced polarimetry may be conducted to obtain
the susceptibility component ratios, using only a few polariza-
tion states of incoming and outgoing radiation.

In summary, we presented a framework for the triple
Stokes-Mueller polarimetry of three-photon processes. The
theory is provided in the context and in analogy with previous
works on Stokes-Mueller formalism as well as conventional
nonlinear optics notations [8,9]. The derived equations relate
the outgoing Stokes vector for the THG signal to the polariza-
tion state of the incoming fundamental radiation beam and to
the third-order susceptibility tensor values of the intervening
medium. We have additionally described the method for per-
forming a complete three-photon Stokes-Mueller polarimetry,
which requires 16 independent polarization states for the
incoming radiation. Various symmetries of a material can
be explored with expressions of a triple Mueller matrix, and
consequently a reduced polarimetry may be performed for
known symmetries to extract the corresponding susceptibility
ratios and orientations of the principle axis of the material.

The triple Stokes-Mueller polarimetry can be extended to
other three-photon processes as well, including CARS, by
redefining the polarization state vector for incoming radiation.
However, the validity of the intensity independent susceptibil-
ities has to be tested by performing experiments with different
incoming radiation intensities, especially when the incoming
radiation wavelength approaches resonant transitions of the
molecules in the material. The extension of three-photon
polarimetry to other nonlinear processes provides a great
opportunity for future research into triple Stokes-Mueller
polarimetry.
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APPENDIX A: PAULI AND GAMMA MATRICES

Three-photon polarimetry requires the expansion of the
coherency matrix for the incoming and outgoing radiation
to obtain the corresponding real-valued Stokes vector com-
ponents, as well as the triple Mueller matrix elements. Due
to a size difference between the dimension of the matrices
for the incoming and outgoing radiations, the corresponding
expansions are also different. The outgoing radiation is
expanded by the conventional 2 × 2 τ matrices, also known as
Pauli matrices, while the incoming radiation and M(3) require
4 × 4 γ matrices.

Following the recipe as described in Ref. [8], the γ matrices
for three-photon polarimetry are developed in two steps: First,
the matrix γ ′′

jk is defined such that only the value of element
jk of the matrix γ ′′

jk is one, and it is zero for all other elements
(both j and k run from 1 to 4). These two-dimensional sets
of matrices are shown in Eq. (A1), where each element of the
set is a 4 × 4 matrix.

γ ′′
1,1 =

⎛
⎜⎜⎝

1 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ γ ′′

1,2 =

⎛
⎜⎝

0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠ γ ′′

1,3 =

⎛
⎜⎝

0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠ γ ′′

1,4 =

⎛
⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠

γ ′′
2,1 =

⎛
⎜⎜⎝

0 0 0 0

1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ γ ′′

2,2 =

⎛
⎜⎝

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠ γ ′′

2,3 =

⎛
⎜⎝

0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

⎞
⎟⎠ γ ′′

2,4 =

⎛
⎜⎝

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

⎞
⎟⎠

γ ′′
3,1 =

⎛
⎜⎜⎝

0 0 0 0

0 0 0 0
1 0 0 0
0 0 0 0

⎞
⎟⎟⎠ γ ′′

3,2 =

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

⎞
⎟⎠ γ ′′

3,3 =

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎞
⎟⎠ γ ′′

3,4 =

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞
⎟⎠

γ ′′
4,1 =

⎛
⎜⎜⎝

0 0 0 0

0 0 0 0
0 0 0 0
1 0 0 0

⎞
⎟⎟⎠ γ ′′

4,2 =

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0

⎞
⎟⎠ γ ′′

4,3 =

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0

⎞
⎟⎠ γ ′′

4,4 =

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞
⎟⎠

. (A1)
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Note that γ ′′ matrices can also expand the coherency matrix ρ(3) of Eq. (7). However, the resulting vector for S(3) and M(3)

matrices will be complex. Thus, in a second step, the desired Hermitian matrices for a third-order process are obtained using the
following relations for the two-dimensional γ ′ matrices:

γ ′
jk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γ ′′
jk + γ ′′

kj , if j < k

i(γ ′′
jk − γ ′′

kj ), if j > k√
2

j 2+j

[(∑j

m=1 γ ′′
mm

) − jγ ′′
j+1,j+1

]
, if 1 � k = j < 4

1√
2
I4, if j = k = 4

(A2)

where I4 is the 4 × 4 identity matrix. When j < k, γ ′
jk =

γ ′′
jk + γ ′′

kj matrices are real; when j > k, γ ′
jk = i(γ ′′

jk − γ ′′
kj )

matrices are complex, and have similar nonzero elements as
in their real-value counterparts; when 1 � j = k < 4), the
obtained γ ′

jk matrices are diagonal and real, including when
j = k = 4 that generates the identity matrix.

The two-dimensional γ ′ set is then converted to a one-
dimensional set of matrices [30]: γ ′

jk → γN , where N =
1, . . . ,16. In Eq. (A3), the two-dimensional 4 × 4 γ ′ set

is shown but labeled with the one-dimensional 16-element
set γ . The presented order of γ matrices in Eq. (A3) is
chosen to remain consistent with the order of the linear
Stokes vector [determined by Pauli matrices in Eq. (A4)]
as well as the second-order Stokes vector (determined by
Gell-Mann matrices in Ref. [9]). These matrices satisfy all the
requirements as desired for expanding the coherency matrix
for the nonlinear polarimetry. In addition, they ensure that γ

obeys Tr(γMγN ) = 2δMN :

γ4 =

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠ γ5 =

⎛
⎜⎝

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠ γ9 =

⎛
⎜⎝

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞
⎟⎠ γ10 =

⎛
⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎞
⎟⎠

γ11 =

⎛
⎜⎝

0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠ γ3 =

√
3

3

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 −2 0
0 0 0 0

⎞
⎟⎠ γ6 =

⎛
⎜⎝

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎞
⎟⎠ γ8 =

⎛
⎜⎝

0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

⎞
⎟⎠

γ15 =

⎛
⎜⎝

0 0 −i 0
0 0 0 0
i 0 0 0
0 0 0 0

⎞
⎟⎠ γ12 =

⎛
⎜⎝

0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

⎞
⎟⎠ γ2 =

√
6

6

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −3

⎞
⎟⎠ γ7 =

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠

γ16 =

⎛
⎜⎝

0 0 0 −i
0 0 0 0
0 0 0 0
i 0 0 0

⎞
⎟⎠ γ14 =

⎛
⎜⎝

0 0 0 0
0 0 0 −i
0 0 0 0
0 i 0 0

⎞
⎟⎠ γ13 =

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

⎞
⎟⎠ γ1 =

√
2

2

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠

.

(A3)
The Pauli τ matrices and 2 × 2 identity matrix are special cases of η matrices with dimension 2 [8]. They have the orthogonal
property Tr(τμτν) = 2δμν , where δμν is the Kronecker delta:

τ0 =
(

1 0
0 1

)
τ1 =

(
1 0
0 −1

)

τ2 =
(

0 1
1 0

)
τ3 =

(
0 −i
i 0

) . (A4)

The matrix T , used in Sec. IV to derive the susceptibility tensor elements in terms of the Mueller matrix, is obtained by the
vectorization operation, where each row of the matrix T comes from the Pauli matrices. T is invertible and obeys T −1 = 1

2T †:

T ≡ (vec(τ0), · · · ,vec(τ3))T =

⎛
⎜⎝

1 0 0 1
1 0 0 −1
0 1 1 0
0 i −i 0

⎞
⎟⎠. (A5)

In Sec. IV matrices T and � are used to derive the third-order susceptibilities and their phases in terms of the triple Mueller
matrix elements. � is derived from γ matrices [Eq. (A3)], where each row of � is expressed by vectorizing γ matrices. � is
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invertible and �−1 = 1
2�†:

� ≡ (vec(γ1),vec(γ2), . . . ,vec(γ15),vec(γ16))T

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
2

2 0 0 0 0
√

2
2 0 0 0 0

√
2

2 0 0 0 0
√

2
2

√
6

6 0 0 0 0
√

6
6 0 0 0 0

√
6

6 0 0 0 0 −3√
6√

3
3 0 0 0 0

√
3

3 0 0 0 0 −2√
3

0 0 0 0 0

1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0

0 i 0 0 −i 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 i 0 0 −i 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 i 0 0 −i 0

0 0 0 0 0 0 0 i 0 0 0 0 0 −i 0 0

0 0 i 0 0 0 0 0 −i 0 0 0 0 0 0 0

0 0 0 i 0 0 0 0 0 0 0 0 −i 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
(A6)

APPENDIX B: S(3) VECTOR FOR VARIOUS POLARIZATIONS

1. Triple Stokes for linearly polarized states

When the incoming electric field is linearly polarized at an angle θ from the primary axis, E(ω) = [E1(ω),E2(ω)]T =
E0[sin θ, cos θ ]T . Substituting this in Eq. (9), the linearly polarized incoming state for THG is

S(3)(θ ) = 〈
E6

0

〉

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
2

2 [cos(θ )6 + 9 cos(θ )4 sin(θ )2 + 9 cos(θ )2 sin(θ )4 + sin(θ )6]
√

6
6 [cos(θ )6 − 27 cos(θ )4 sin(θ )2 + 9 cos(θ )2 sin(θ )4 + sin(θ )6]

√
3

3 [cos(θ )6 − 18 cos(θ )2 sin(θ )4 + sin(θ )6]

sin(θ )6 − cos(θ )6

2 cos(θ )3 sin(θ )3

6 cos(θ )4 sin(θ )2

18 cos(θ )3 sin(θ )3

6 cos(θ )5 sin(θ )

6 cos(θ ) sin(θ )5

6 cos(θ )2 sin(θ )4

0

0

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B1)
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Multiplying Eqs. (B1) and (17), the outgoing THG Stokes vector is obtained as shown in Eq. (23). The outgoing Stokes vector
shows that by using incoming linearly polarized states the outgoing polarization will also be linear, i.e., s ′

3 = 0 in Eq. (23). This
feature is used in linear PIPO measurements as described in Sec. V.

2. Triple Stokes vector on Poincaré sphere

The Poincaré sphere is a useful geometrical representation by which different polarization states can be visually identified. In
addition, in order to determine values of the Mueller matrix M(3) elements from polarimetry measurements, numerical values
for the incoming polarization states are required [see Eq. (22)]. The numerical values can be obtained by deriving the triple
Stokes vector in terms of Poincaré coordinates in general, and subsequently evaluating triple Stokes vector elements values by
substituting the corresponding state’s coordinates. The Stokes vector in the Poincaré sphere coordinates is

s = 〈
E2

0

〉⎛⎜⎝
1

cos(2�) cos(2�)
sin(2�) cos(2�)

sin(2�)

⎞
⎟⎠ (B2)

where the variables 2� and 2� are the azimuth and latitude coordinates on the Poincaré sphere as shown in Fig. 2. The triple
Stokes vector in terms of Poincaré coordinates is derived by substituting s values from Eq. (B2) into Eq. (9) and is shown
in Eq. (B3).

3. The Matrix of prepared triple Stokes elements for complete Mueller polarimetry measurement

The matrix composed of triple Stokes states to perform a complete polarimetry measurement has to be invertible. One
invertible matrix can be constructed from the 16 polarization states given by the Poincaré coordinates in Eq. (B4) and shown on
the Poincaré sphere in Fig. 2. By substituting these coordinates into Eq. (B2), the 4 × 1 Stokes vector values are obtained as in
Eq. (B5). Furthermore, by substituting the Poincaré coordinate values from Eq. (B4) into Eq. (B3) below, the triple Stokes vector
values for the 16 states are obtained [see Eq. (B6)]:

S(3)(�,�) = 1
4

〈
E0

6
〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
2[5 − 3cos (2 �)2 cos (2 �)2]

√
6
[−3cos (2 �)3 cos (2 �)3 + 2cos (2 �)2 cos (2 �)2 + 3 cos (2 �) cos (2 �) − 4

3

]
√

3
[
3cos(2 �)3 cos(2 �)3 + 4cos(2 �)2 cos(2 �)2 − 3 cos(2 �) cos(2 �) − 8

3

]
cos(2 �)3 cos(2 �)3 + 3 cos(2 �) cos(2 �)

cos(2 �)3 sin(2 �)3 − 3 cos(2 �) sin(2 �)2 sin(2 �)

3 (cos(2 �) cos(2 �) − 1) (cos(2 �)2 (cos(2 �)2 − 1) − cos(2 �)2 + 1)

−9 cos(2 �) sin(2 �) (cos(2 �)2 cos(2 �)2 − 1)

3 cos(2 �) sin(2 �) (cos(2 �) cos(2 �) − 1)2

3 cos(2 �) sin(2 �) (cos(2 �) cos(2 �) + 1)2

−3 (cos(2 �) cos(2 �) + 1) (cos(2 �)2 (cos(2 �)2 − 1) − cos(2 �)2 + 1)

−sin(2 �)3 + 3 sin(2 �) sin(2 �)2 (sin(2 �)2 − 1)

6 cos(2 �) sin(2 �) sin(2 �) (cos(2 �) cos(2 �) − 1)

−9 sin(2 �) ((sin(2 �)2 − 1) (sin(2 �)2 − 1) − 1)

−3 sin(2 �) (cos(2 �) cos(2 �) − 1)2

3 sin(2 �) (cos(2 �) cos(2 �) + 1)2

6 cos(2 �) sin(2 �) sin(2 �) (cos(2 �) cos(2 �) + 1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B3)

The 16 × 16 matrix S of the triple Stokes states, given in Eq. (B6), can be used in polarimetric measurements to recover the
triple Mueller matrix values according to Eq. (22). The chosen triple Stokes states include the states that also are used for linear
and double Stokes polarimetry [9]. However, other states can be used as long as the corresponding 16 × 16 matrix defined
by the triple Stokes polarization states is invertible for use in Eq. (22). An alternative set is (�,�)Q = ([0,0],[π

2 ,0],[π
4 ,0],

[−π
4 ,0],[0, π

4 ],[0,−π
4 ],[−π

8 ,0],[ 3 π
8 ,0],[0, π

8 ],[π
2 ,−π

8 ], [π
4 , π

8 ],[−π
4 ,−π

8 ],[ 3 π
8 , π

8 ],[π
2 , π

8 ],[π
8 ,0],[π

8 , π
8 ]).
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In terms of Poincaré coordinates one set for the triple Stokes vector states is (also shown in Fig. 2)

((�,�)Q) =
(

[0,0],
[π

2
,0
]
,
[π

4
,0
]
,
[

− π

4
,0
]
,
[
0,

π

4

]
,
[
0,−π

4

]
,
[

− π

8
,0
]
,
[π

2
,
π

8

]
,
[π

4
,−π

8

]
,
[π

8
,0
]
,
[3 π

8
,0
]
,
[π

8
,
π

8

]
,

[π

2
,−π

8

]
,
[π

4
,
π

8

]
,
[
0,

π

8

]
,
[

− π

8
,
π

8

])
, (B4)

(st,Q) = (st,1 st,2 st,3 st,4 st,5 st,6 st,7 st,8 st,9 st,10 st,11 st,12 st,13 st,14 st,15 st,16)

⎛
⎜⎝

s0,Q

s1,Q

s2,Q

s3,Q

⎞
⎟⎠ ∝ 〈

E2
0

〉
⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 −1 0 0 0 0
√

2
2 −

√
2

2 0
√

2
2 −

√
2

2
1
2 −

√
2

2 0
√

2
2

1
2

0 0 1 −1 0 0 −
√

2
2 0

√
2

2

√
2

2

√
2

2
1
2 0

√
2

2 0 − 1
2

0 0 0 0 1 −1 0
√

2
2 −

√
2

2 0 0
√

2
2 −

√
2

2

√
2

2

√
2

2

√
2

2

⎞
⎟⎟⎟⎟⎟⎟⎠

, (B5)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S1,Q

S2,Q

S3,Q

S4,Q

S5,Q

S6,Q

S7,Q

S8,Q

S9,Q

S10,Q

S11,Q

S12,Q

S13,Q

S14,Q

S15,Q

S16,Q

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∝ 〈
E6

0

〉

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
2

2

√
2

2
5

√
2

4
5

√
2

4
5

√
2

4
5

√
2

4
7

√
2

8
7

√
2

8
5

√
2

4
7

√
2

8
7

√
2

8
17

√
2

16
7

√
2

8
5

√
2

4
7

√
2

8
17

√
2

16
√

6
6

√
6

6 −
√
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3 −

√
6

3 −
√
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3 −

√
6

3

√
6 (9
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2−4)

48 −
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48 −
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6

3

√
6 (9
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48 −
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48
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3
3 −
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48

√
3 (9

√
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48 −67
√

3
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√
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√
2−8)

48 −2
√

3
3 −

√
3 (9

√
2+8)

48 −67
√

3
96

1 −1 0 0 0 0 7
√

2
16 −7

√
2

16 0 7
√

2
16 −7

√
2

16
13
32 −7

√
2

16 0 7
√

2
16

13
32

0 0 1
4 −1

4 0 0 −
√

2
16 0 −

√
2

8

√
2

16

√
2

16 − 5
32 0 −

√
2

8 0 5
32

0 0 3
4
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4 −3
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4
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2
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√

2
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2
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2
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2
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2
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2
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2
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2
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27
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2
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2
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2
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2
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2
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2
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2
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2
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2
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2
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√
2
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0 0 0 0 9
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√

2
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2
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√

2
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2

16
9

√
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9
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2

16
27

√
2

32
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3
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√
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