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Atom-field dressed states in slow-light waveguide QED
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We discuss the properties of atom-photon bound states in waveguide QED systems consisting of single or
multiple atoms coupled strongly to a finite-bandwidth photonic channel. Such bound states are formed by an
atom and a localized photonic excitation and represent the continuum analog of the familiar dressed states
in single-mode cavity QED. Here we present a detailed analysis of the linear and nonlinear spectral features
associated with single- and multiphoton dressed states and show how the formation of bound states affects the
waveguide-mediated dipole-dipole interactions between separated atoms. Our results provide both a qualitative
and quantitative description of the essential strong-coupling processes in waveguide QED systems, which are
currently being developed in the optical and microwave regimes.
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I. INTRODUCTION

The coupling of atoms or other emitters to the quantized
radiation field can result in drastically different physical
phenomena depending on the detailed structure of the elec-
tromagnetic environment. While in free space atom-light
interactions are mainly associated with radiative decay, atoms
and photons may undergo processes of coherent emission and
reabsorption in the case of a single confined mode as studied
in the context of cavity QED [1,2]. Recently, due in part
to exciting experimental developments to interface two-level
emitters with nanophotonic waveguides [3–8] and to couple
superconducting qubits to open transmission lines [9–12], a
different paradigm for light-matter interactions has emerged.
Waveguide QED refers to a scenario where single or multiple
(artificial) atoms are coupled to a one-dimensional (1D) optical
channel. The 1D confinement of light makes it possible for
individual photons to be efficiently absorbed by even a single
atom or mediate long-range interactions between consecutive
atoms along the waveguide. This gives rise to many intriguing
phenomena and applications, such as single-photon switches
and mirrors [13–16], correlated photon scattering [17–19],
self-organized atomic lattices [20,21], and the dissipative
generation of long-distance entanglement [22–25] and new
realizations of quantum gates [26–28].

The physics of light-matter interactions in one dimen-
sion becomes even more involved when the waveguide is
engineered to have nontrivial dispersion relations, such as
band edges and band gaps [6,8,29], near which the group
velocity of photons is strongly reduced or free propagation
is completely prohibited. In seminal works by Bykov [30],
John and Quang [31], and Kofman et al. [32] the decay of an
atom coupled to the band edge of a photonic crystal waveguide
was shown to exhibit a nonexponential, oscillatory behavior
with a finite nondecaying excitation fraction. This behavior
can be attributed to the existence of a localized atom-photon
bound state with an energy slightly outside the continuum of
propagating modes [29,33,34]. With many atoms, it has been
proposed that the long-lived nature of such states can facilitate
the exploration of coherent quantum spin dynamics [35,36]

or can be exploited to engineer long-range photon-photon
interactions [37,38].

Motivated by the discussion above, here we study a system
of a few quantum emitters, which are coupled to a common
“slow-light” photonic waveguide realized by a 1D array of
coupled cavities. In the absence of any emitters such a
system forms a finite propagating band with an effective
speed of light that is fully controlled by the tunnel coupling
between neighboring cavities and thus can, in principle,
be made arbitrarily small. Coupled-cavity arrays (CCA)
received significant attention, in particular, as a platform for
observing quantum phase transitions [39–42] and for the
analysis of photon scattering processes in a finite-bandwidth
scenario [15,43–51]. Here again the appearance of localized
photonic states [43,46,50,51] results in unusual two-photon
scattering processes, where, e.g., one photon can remain bound
to an atom [44–46] while the other one escapes. Such processes
are absent in free space or infinite-band waveguides.

Building upon those previous findings, we focus in this
work specifically on the properties of dressed atom-photon
states, which emerge as the elementary excitations of slow-
light waveguide QED systems in the moderate- to strong-
coupling regime. We find that an elegant feature of the CCA
system is that in various parameter regimes one can recover
the behavior of other systems previously discussed (such as
single-mode cavity QED, infinite-bandwidth waveguides, and
band edges), as well as new phenomena not present in those
limiting cases. In our analysis we introduce the single-photon
bound states in waveguide QED as continuum generalizations
of the dressed state familiar from the Jaynes-Cummings model
for single cavities. This analogy then allows us to describe
also many properties of the more involved multiphoton and
multiatom settings in terms of the properties of the single-
photon dressed state. In particular, we discuss the mode
functions and spectral features of multiphoton dressed states,
for which we identify the crossover from a linear regime,
where the bound-state energies are proportional to the number
of excitations Ne to a nonlinear regime where the splitting
of the bound-state energies from the photonic band scales as
∼√

Ne. In the last part of the paper, we show how the usual
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long-range dipole-dipole interactions between multiple atoms
coupled to broadband waveguides are modified in the presence
of bound photonic states. Here we observe the formation of
metaband structures for delocalized dressed states as well as a
partial “melting” of these bands back into the continuum when
specific coupling conditions are met.

The remainder of this paper is structured as follows. In
Sec. II we introduce the basic model of waveguide QED and
briefly summarize in Sec. III the atomic master equation, which
describes the dynamics of this system in the weak-coupling
regime. In Sec. IV we discuss the properties of single-photon
bound states in the absence and presence of decay. Finally, in
Secs. V and VI we analyze the properties of multiphoton and
multiatom dressed states, respectively.

II. MODEL

We consider a system such as that illustrated in Fig. 1(a),
where a set of Na two-level atoms, each with ground (excited)
state |g〉 (|e〉), is coupled to an optical waveguide of finite
bandwidth 4J . We model the waveguide as an array of N →
∞ optical resonators with center frequency ωc and a nearest-
neighbor tunnel coupling J . For atoms located at sites xi the
total Hamiltonian for this system is (� = 1)

H = ωc

∑
x

a†
xax − J

∑
x

(a†
xax−1 + a

†
x−1ax)

+
Na∑
i=1

ωa|e〉i〈e| + g

Na∑
i=1

∑
x

(axσ
i
+ + a†

xσ
i
−)δx,xi

, (1)

FIG. 1. (a) Sketch of a strongly coupled waveguide QED setup
with bound atom-photon dressed states around the atomic locations.
The slow-light waveguide can be modeled as a large array of
coupled optical resonators with nearest-neighbor coupling J . (b)
Band structure of the waveguide without atoms. (c) Single-photon
(i.e., single-excitation) spectrum as a function of the atom-photon
coupling g in the case of a single atom (with ωa = ωc) coupled to a
cavity array according to Hamiltonian (1).

where ax (a†
x) are bosonic annihilation (creation) operators for

the individual cavity modes, σ i
− = (σ i

+)† = |g〉i〈e|, ωa is the
atomic transition frequency, and g is the atom-photon coupling
strength. Note that for the validity of Eq. (1) it has been
assumed that ωa ≈ ωc and that both frequencies are much
larger than the couplings g and J so that counterrotating terms
can be neglected. Under these assumptions we can eliminate
the absolute optical frequencies by changing into a rotating
frame with respect to ωc, and the resulting system dynamics
depends only on the atom-photon detuning δ = ωa − ωc. To
account for atomic emission into other radiation modes as well
as the absorption of photons in the waveguide, we introduce a
bare atomic decay rate γa and a photon loss rate γc for each
cavity as additional phenomenological parameters.

The first line of Eq. (1) represents the tight-binding
Hamiltonian Hc of the waveguide. By introducing momentum
operators ak = 1√

N

∑
x eikxax , where k ∈ ] − π,π ], this can

be written in the diagonal form Hc = ∑
k ωka

†
kak , with mode

frequencies

ωk = ωc − 2J cos(k), (2)

lying inside a band of total width 4J and centered around the
bare cavity frequency ωc [see Fig. 1(b)]. The propagation of
photons inside the waveguide is characterized by the group
velocity

vg(ω) = ∂ωk

∂k

∣∣∣∣
ωk=ω

=
√

4J 2 − (ω − ωc)2, (3)

which vanishes for J → 0 or when operating at frequencies
close to the band edges, i.e., ω ≈ ωc ± 2J . In the limit
J = 0 the cavities are completely decoupled, with each site
being thereby described by a single-mode Jaynes-Cummings
model [1] with coupling constant g and detuning δ. In this
sense the present model captures well finite-bandwidth and
band-edge features over a wide range of parameters. However,
note that the CCA may only crudely approximate the actual
dispersion relation in real photonic band structures and does
not include effects like directional emission, which can occur
in certain waveguide implementations [52–54].

III. BROADBAND LIMIT

Let us first consider the weak-coupling or broadband limit
g/J → 0. In this regime the photonic waveguide modes
simply act as a collective reservoir for the atoms and can be
eliminated by using a Born-Markov approximation. As a result
we obtain a master equation for the reduced density operator
of the atoms (see Appendix A)

ρ̇ = −i[Ha,ρ] +
∑
i,j

	ij

2
(2σ

j
−ρσ i

+ − σ i
+σ

j
−ρ − ρσ i

+σ
j
−),

(4)

where in the rotating frame with respect to ωc,

Ha =
∑

i

δ|e〉i〈e| + 1

2

∑
i,j

Uij (σ i
+σ

j
− + σ i

−σ
j
+). (5)

In Eqs. (4) and (5) 	ij and Uij represent correlated decay
rates and coherent dipole-dipole interactions, respectively,
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which arise from virtual or real photons propagating along
the waveguide.

By taking into account small atomic and photonic losses
we obtain 	ij = 2Re{Aij } + γa and Uij = 2Im{Aij }, where

Aij = g2

ṽg(δ)
eiK|xi−xj ] (6)

and

K = π − arccos

[
δ + iγc/2

2J

]
. (7)

Here we have introduced a generalized (complex) group
velocity

ṽg(δ) =
√

4J 2 −
(

δ + i
γc

2

)2

. (8)

For γc → 0 and for atomic frequencies within the photonic
band this quantity reduces to the conventional group velocity
given in Eq. (3). In this case ∼1/|vg(δ)| determines the density
of photonic modes, or, equivalently, the correlation time of the
waveguide. In a system with losses this correlation time is now
replaced by 1/|ṽg(δ)|, which is well defined and nondiverging
even at or beyond the band edges (for a related study of
the group velocity in lossy waveguides see also Ref. [55]).
Therefore, the Born-Markov approximation, which requires

g 
 |ṽg(δ)|, (9)

can be used for all atomic frequencies provided that the
coupling g is sufficiently weak and photon propagation times
are negligible (see Appendix A for additional details on the
validity of the Born-Markov approximation).

Figure 2 illustrates the dependence of 	ij and Uij on the
interatomic distance for different atom-photon detunings δ

and a nonvanishing photon loss rate γc. If, instead, cavity
losses are negligible, Eqs. (5)–(7) reproduce the effective spin
model for two-level atoms coupled to an infinite-bandwidth
waveguide [22,56]. In particular for frequencies within the
propagating band, K becomes purely real, and the system
thus supports both coherent and dissipative dipole-dipole
interactions of equal strength,

	ij � 2g2

vg(δ)
cos(K|xi − xj |),

Uij � 2g2

vg(δ)
sin(K|xi − xj |). (10)

This coupling is infinite in range, with a phase factor
eiK|xi−xj | that reflects the propagation phase of photons at the
atomic resonance frequency that mediate the interaction. This
behavior can be seen in Fig. 2 for δ = 0 (blue curve), with
the deviation from infinite-range interaction due to the finite
cavity losses γc. As expected, by going from the center of the
band towards the edge, δ ≈ 2J (red curve), both the coherent
couplings and the correlated decay rates increase due to a
reduction of the group velocity. However, slow propagation
also means that the photons have more time to decay, and for
a finite γc and large atom-atom distances, there is a trade-off
between an enhanced coupling and a larger propagation loss.
For atomic frequencies outside the band there are no longer

FIG. 2. (a) Correlated decay rates 	ij against the (discrete) inter-
atomic distance |xi − xj | and (b) coherent dipole-dipole interactions
Uij versus |xi − xj | for different detunings δ = ωa − ωc. The solid
lines are a guide to the eye obtained from a continuous interpolation
of Eq. (6). In each case, the photon loss rate has been set to
γc/(2J ) = 0.14.

waveguide modes into which the atom can emit. Therefore, for
γc → 0, the real part of Aij vanishes, and the atoms interact
predominantly in a coherent way via a virtual exchange of
photons. The exponential decay of interactions directly reflects
the exponential attenuation of fields propagating through a
band gap (see green curve in Fig. 2).

In summary Eq. (4) shows that for sufficiently weak
coupling the dynamics of the waveguide QED system can
be described in terms of atomic excitations, which interact via
a quasi-instantaneous exchange of photons. In this regime it is
preferential to work near the band edge or to reduce the waveg-
uide bandwidth altogether in order to enhance waveguide-
mediated atom-atom interactions (coherent or dissipative)
compared to the bare atomic decay. However, eventually, the
Markov condition given by Eq. (9) breaks down, and for larger
couplings the photons emitted by an atom can be coherently
reabsorbed before they decay or propagate along the fiber. In
this strong-coupling regime photons and atoms can be bound
together and form new hybridized excitations.

IV. ATOM-PHOTON DRESSED STATES

In the absence of other decay channels, the atom-light
coupling in Eq. (1) conserves the total number of photons
and excited atoms, Ne = ∑

x a
†
xax+

∑
i |e〉i〈ei |, and the eigen-

states of H can be discussed separately within each subspace
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of given excitation number. For a given value of Ne, the
Schrödinger equation H |φ〉 = E|φ〉 then has two types of
solutions. First, there are scattering states, which are spatially
extended over the whole waveguide and have an energy
E/Ne ∈ [−2J,2J ] within the free Ne-photon band. Second,
there are states with energy |E|/Ne > 2J [57]. These states
are energetically separated from the Ne-photon continuum
and represent bound states with an exponentially localized
photonic component. While both types of states are atom-
photon dressed states, in this work we are primarily interested
in the latter type, namely, in bound dressed states.

Note that in the waveguide QED literature the term photon
bound state is also used to describe correlated propagating
multiphoton wave functions scattered by a nonlinear emitter.
These states are not localized around the atom, but they are
typically infinite in spatial extent and bound only with respect
to the relative coordinates of the photons [17]. In this paper we
do not consider this kind of state and use the term bound state
only for wave functions spatially localized around the atomic
position.

A. Single-photon dressed states

We first consider the simplest setting of a single photon
coupled to a single atom located at position xa . In this case,
Ne = 1 and the solutions of the Schrödinger equation H |φ〉 =
E|φ〉 are superpositions of an atomic excitation |e,0〉 and
single-photon states |g,1x〉 ≡ a

†
x |g,0〉 (|0〉 is the field vacuum

state). Figure 1(c) shows the resulting energy spectrum, which
consists of the above-mentioned band of scattering states and
two bound states with energies E±, which are the real solutions
of (see Appendix B)

E± − δ = g2

E±
√

1 − 4J 2

E2±

. (11)

The corresponding bound-state wave functions can be written
in the form

|φ±〉 = [cos θ±σ+ ± sin θ±a
†
λ,±(xa)]|g,0〉 ≡ D

†
±(xa)|g,0〉.

(12)

Here we have defined the normalized bosonic creation operator

a
†
λ,±(xa) =

∑
x

(∓1)|x−xa |e− |x−xa |
λ±√

coth 1
λ±

a†
x, (13)

which creates a photon in an exponentially localized wave
packet around the atom’s position xa . In Eqs. (12) and (13) the
size of the photonic wave packet, λ± = λ(E±), and the mixing
angle, θ± = θ (E±), are functions of the corresponding bound-
state energies. These two parameters determine the nature of
the bound-state wave functions and are given by

cos θ =
⎛
⎝1 + g2

E2
(
1 − 4J 2

E2

) 3
2

⎞
⎠

− 1
2

(14)

and

1

λ
= arccosh

( |E|
2J

)
. (15)
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FIG. 3. (a) Atomic population p+
a = cos2(θ+) in the upper bound

state as a function of the coupling constant g and the atom-field
detuning δ. (b) The width of the photonic wave packet in the upper
bound state λ+ is plotted as a function of g and for three different
detunings δ.

Figure 3 summarizes the dependence of λ+ and the atomic
excited-state population p+

a = cos2(θ+) on the coupling g

and the atom-photon detuning δ. The analogous quantities
associated with E− can be inferred through the identities
λ−(δ) = λ+(−δ) and θ−(δ) = θ+(−δ).

Discussion. In their respective limits, Eqs. (11)–(15) re-
produce various results that have been previously obtained
for photonic bound states near band edges or in coupled-
cavity arrays [29,33,34,43,45,46,50,51]. The form of the wave
function given in Eq. (12) provides a unified description of
all those cases in terms of the mixing angles θ± and the
wave-packet lengths λ±. It also establishes a direct connection
to the more familiar dressed states of the single-mode Jaynes-
Cummings model [1] by taking the limit J → 0, where
E± = δ

2 ± 1
2

√
δ2 + 4g2, θ+ = θ− − π/2, and λ± ≈ 0. For a

finite J this single-cavity picture is modified in two ways.
First, the photonic component now extends over multiple
sites and becomes more and more delocalized the weaker
the coupling g is. Second, the total atomic contribution to
both bound states, cos2(θ+) + cos2(θ−) < 1, is always smaller
than 1, and for |δ| < 2J it vanishes as g/J → 0. Although a
bound-state solution always exists, both dressed states become
more photonlike as g/J decreases and eventually become
indistinguishable from the propagating waveguide modes.
For atomic frequencies outside the band, e.g., δ > 2J , the
upper bound state becomes more atomlike as g/J → 0, but
the residual photonic cloud remains localized. Overall, these
results show that a simplified model where the waveguide is
replaced by an effective cavity of size λ would be incomplete.
In particular, such a description misses the fact that for δ �= 0
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photonic wave functions associated with the two dressed states
can significantly differ, i.e., λ+ �= λ− and θ+ �= θ−.

B. Excitation spectrum

An experimentally relevant quantity to probe the properties
of atom-photon dressed states is the atomic excitation spectrum
Sa(ω), which can be obtained by weakly exciting the atom with
a laser of frequency ω and recording the total emitted light. In
the weak-driving limit the excitation spectrum is given by

Sa(ω) = γ 2
a

4

∣∣∣∣〈e,0| 1

Heff − ω1
|e,0〉

∣∣∣∣
2

, (16)

where

Heff = H − i
γa

2
|e〉〈e| − i

∑
x

γc

2
a†

xax, (17)

and the normalization has been set such that S(ω = ωa) = 1
for g = 0.

Figure 4 shows the results for Sa(ω) for different coupling
strengths g and for the two relevant cases δ = 0 (center of the
band) and δ = 2J (upper band edge). For δ = 0 we observe
three different regimes. For very weak coupling there is only a
single peak at the atomic frequency with a width ∼γa + g2/J

due to the enhanced emission into the waveguide (recall that in
the broadband limit the atom emission rate into the waveguide
is g2/J ; see Sec. III). At intermediate couplings g/(2J ) ∼ 1
the spectrum is completely smeared out. The atom is now
partially hybridized with all waveguide modes, and there is
no longer a well-defined frequency associated with the atomic
excitation. At larger couplings two dominant resonances at the

scattering
continuum

bound
states

scattering
continuum

bound
states

E_

E+

E+

E_

(a)

(b)

FIG. 4. Atomic excitation spectrum Sa(ω) (in logarithmic scale)
as a function of g and for an atom-cavity detuning (a) δ = 0 and (b)
δ = 2J . The dotted lines show the bound-state energies E± in the
absence of loss, while the dashed lines correspond to the waveguide
band edges. In both cases, we have set γa/(2J ) = 0.1 and γc/(2J ) =
0.2.

dressed-state energies E± appear. As the coupling increases,
the width of the two bound-state resonances approaches

γ̄ = γa + γc

2
, (18)

as expected from an equal superposition of atomic and
photonic excitations. For δ = 2J a significant hybridization
between atom and photon is already observed at small g,
consistent with the atomic population p+

a ≈ 0.67 predicted
for the dressed state exactly at the band edge [see Fig. 3(a)].
However, in this case the transition from waveguide-enhanced
decay to atom-photon hybridization is not apparent and will
be discussed in more detail in the following.

C. Onset of strong coupling

An important regime of operation in cavity QED is the
regime of strong coupling, where the coherent interaction
between atoms and photons dominates over the relevant decay
processes. For a single cavity in resonance with the atom this
regime is usually defined by the condition

g >
γa + γc

4
. (19)

Our goal is now to identify an equivalent condition for the
waveguide QED system by taking a closer look at the spectral
features for g 
 J . Note that the atomic excitation spectrum
is, in general, given by [31,48]

Sa(ω) = γ 2
a

4

1∣∣ω − δ + i
γa

2 − 
̃(ω)
∣∣2 , (20)

where 
̃(ω) = −ig2/ṽg(ω) is the self-energy in the presence
of dissipation. To bring this result into a more useful form we
define

�±(ω) =
(

ω − δ + i
γa

2

)
ṽg(ω) ± ig2. (21)

It can be shown that �+(ω)�−(ω) is a fourth-order polynomial
in ω with two roots given by the complex eigenenergies Ẽ± of
Heff . We can use this property to further rewrite the spectrum
as

Sa(ω) = γ 2
a

4

|ṽg(ω)�−(ω)|2
|(ω − Ẽ+)(ω − Ẽ−)L(ω)|2 . (22)

Here L(ω) is a quadratic polynomial, which for the limits
discussed below has two roots with real parts inside the
photonic band, and thus describes the atomic emission into the
waveguide continuum. Overall, the structure of the spectrum
then consists of two external poles with a position and a width
given by the real and imaginary parts of Ẽ± and a broader
emission peak inside the waveguide. Note that for γc → 0
the generalized group velocity ṽg(ω), and therefore also the
spectrum, vanishes exactly at the band edge, ω = ±2J . This
is due to a destructive interference between the excitation laser
and the long-lived band-edge mode and leads to a Fano-like
profile for Sa(ω). For nonvanishing γc this interference effect
is washed out.
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FIG. 5. Dependence of the atomic excitation spectrum Sa(ω) near
the band edge and for (a) δ = 0 and (b) δ = 2J . In (a) the values
g/(2J ) = 0.3 and γa/(4J ) = 0.02 and in (b) the values g/(2J ) =
0.2 and γa/(4J ) = 0.05 have been assumed, and in both cases the
spectrum is plotted for different cavity decay rates γc.

We first consider the case δ = 0, where we obtain to lowest
order in g,

Ẽ± � ±2J ± g4

16J 3[1 ± i(γa − γc)/(2J )]
− i

γc

2
, (23)

which shows that for not too large decay rates, the position of
the external peaks essentially follows the bare energy levels
E± and their width is mainly determined by photon loss. For
the polynomial determining the internal peaks we obtain

L(ω) =
(

ω + i
γa

2

)2

+
(

g2

2J

)2

, (24)

which therefore contributes with two purely imaginary poles
at ω = −i(γa ± g2/J )/2. Figure 5(a) shows a close-up of the
resulting spectrum near the band edge for different values of
γc. First, we observe that for large γc the external peak is
completely buried within the tail of the broad internal peak,
and a closer inspection shows that a minimal coupling of

g >
√

Jγc (25)

is required to spectrally resolve the existence of an external
bound state. This condition is equivalent to the requirement
that the atomic emission rate into the waveguide exceeds the
cavity loss rate. Once this condition is fulfilled, we can define
strong coupling by the requirement that the separation of the
external peak from the band edge, Re{Ẽ+ − 2J }, exceeds its
half width given by Im{Ẽ+}. Again, for γc,γa 
 2J we obtain

g >
4
√

8J 3γc (26)

as the strong-coupling condition for a resonantly coupled
waveguide QED system. Note that since in the present regime
the bound states are mainly photonic in nature the atomic decay
is relevant only for higher-order corrections.

The second important limit is δ = 2J , which for g/J 
 1
also corresponds to the quadratic dispersion relation assumed
in studies of photonic bound states near the band edge of
a photonic crystal waveguide [29,31–34]. Note that in this
regime the initial scaling of the bound-state energy in the

absence of losses (γa = γc = 0) is given by

E+ � 2J +
(

g4

4J

) 1
3

, (27)

where the splitting β = 3
√

g4/(4J ) can be directly identified
with the frequency of coherent atom-photon oscillations at the
band edge [34]. In the presence of decay and for g < |γc − γa|
we obtain instead the modified result

Ẽ+ � 2J − i
γa

2
+ g2

2
√

J |γc − γa|
(1 ∓ i), (28)

where the minus (plus) sign is for the case with γc > γa (γc <

γa). This result shows that not only does the presence of loss
modify the initial scaling of the bound-state energy, Eq. (28)
also predicts that at the band edge and for small g the atom
is critically damped; that is, the coupling-induced losses are
of exactly the same magnitude as the coherent shift of the
bound-state energy. By increasing the coupling further the
imaginary part of the eigenvalue Ẽ+ will eventually saturate at
a value γ̄ /2 [see Eq. (18)] corresponding to a fully hybridized
state. This hybridized regime is reached for coupling strengths

g >
4

√
J |γc − γa|3

4
. (29)

Under this condition the separation of the bound state from
the band edge is then given by β, from which we obtain the
strong-coupling condition β > γ̄ /2, or

g >
4
√

J γ̄ 3/2. (30)

Figure 5(b) shows a close-up of the atomic spectrum Sa(ω) for
δ = 2J and for three different values of the photon decay,
which correspond to the critically damped, intermediate-
coupling, and strong-coupling regimes. Note that for δ = 2J

the internal poles associated with L(ω), i.e., ω1 = 2J − i
γc

2
and ω2 = 2J − i

γa

2 − g2(1 ∓ i)/(2
√

J |γc − γa|), provide an
additional background but do not play a significant role.

D. Localization

For the remainder of this work we are mainly interested in
coherent effects, and for the sake of clarity we will only present
results for idealized systems where γa = γc = 0. Therefore,
the validity of these results in particular requires that the
strong-coupling conditions identified in Eqs. (25), (26), (29),
and (30) are fulfilled in the respective limits. In addition, it
is important to emphasize that all the results discussed in this
work are based on the model of a perfectly regular cavity array.
In real systems disorder in the cavity frequencies or tunnel
couplings introduces an additional localization mechanism,
even in the absence of the emitters. To estimate this effect we
can consider a simple impurity model, where we add an energy
offset ε to one of the lattice sites, Hc → Hc + εa

†
xd

axd
. This

model is well known in the literature [58], and it exhibits a
purely photonic bound state with a localization length

1

λ�

= arcsinh

( |ε|
2J

)
. (31)

This means that random energy offsets of typical strength ε

will create bound states that are localized over λ� ∼ 2J/|ε|
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lattices sites. While atom-photon bound states will also exist
in such disordered waveguides, all the predictions in this work
are based on the assumption that λ� is large compared to the
size of the atom-induced bound states λ±. For a more accurate
treatment of localization in waveguides, see, for example,
Ref. [59] and the supplementary material of [36].

V. MULTIPHOTON DRESSED STATES

While in cavity QED the appearance of a normal-mode
splitting (corresponding to the well-known vacuum Rabi fre-
quency) signifies the onset of strong light-matter interactions,
the hallmark of a fully quantized radiation coupling lies
in the nonlinear scaling of this splitting with the number
of excitations, ∼g

√
Ne. In this section we will address the

properties of multiphoton dressed states to see to what extent
this quantum signature prevails in the context of waveguide
QED. In contrast to the single-excitation case, the Schrödinger
equation H |ψ〉 = E|ψ〉 for Ne > 1 no longer permits simple
analytic solutions, and for exact results one is restricted to
numerical methods in real or momentum space [44–46,48].
In this work we perform such calculations by an approximate
variational approach, which provides additional intuition on
the nature of the multiphoton dressed states and allows us to
evaluate the corresponding bound-state energies for excitation
numbers that are no longer trackable by standard numerical
methods.

A. Two-photon dressed states

Let us first consider the two-excitation subspace, where a
general eigenfunction of Hamiltonian (1) can be written in the
form

|φ〉 =
∑

x

b(x)a†
x |e,0〉 + 1√

2

∑
x,y

u(x,y)a†
xa

†
y |g,0〉. (32)

By assuming that the atom is located at xa = 0 the inversion
symmetry of the Hamiltonian and the bosonic symmetry of the
wave function require u(x,y) = u(y,x), u(−x,y) = u(x,y),
and b(−x) = b(x). This ansatz leads to the set of coupled
equations

−J [u(x + 1,y) + u(x − 1,y) + u(x,y + 1) + u(x,y − 1)]

+ g√
2

[b(x)δ0,y + b(y)δ0,x] = Eu(x,y) (33)

and

−J [b(x + 1) + b(x − 1)]

+ g√
2

[u(0,x) + u(x,0)] = Eb(x). (34)

These equations, which extend the continuous waveguide [17]
case to a discrete model, can be solved numerically, and the
resulting eigenvalue spectrum is shown in Fig. 6 together with
the single-excitation energy band discussed in Sec. IV A. For
our numerical calculations an array of N = 120 coupled res-
onators with periodic boundary conditions has been assumed.
In line with the single-excitation case, we observe a band
of two-photon scattering states with energies E ∈ [−4J,4J ].
In addition, there are two bands with energies E ∈ [E± −
2J,E± + 2J ]. These bands can be simply interpreted as the

1 photon continuum

bound + free photon 
continuum

2 photon
continuum

2 photon
 bound states

1 photon
 bound states

1 2 30

FIG. 6. Sketch of the single- and two-excitation spectrum in a
finite-bandwidth waveguide coupled to an atom for δ = 0. See main
text for more details.

combination of a single-atom bound state with energy E± and
an additional free photon with energy ωk . Finally, we observe
two individual lines at energies E

(Ne=2)
± above and below all

other states, which represent the true two-photon bound states
in the Ne = 2 sector.

Before proceeding with a more detailed discussion of the
two-photon bound states, let us briefly point out another
interesting feature in Fig. 6 in the two-excitation manifold,
namely, the overlap region between the continuum of states
with a single bound photon (shaded in green) and the two-
photon continuum (shaded in purple). In this region, which
extends up to a coupling strength of about g/(2J ) � 3,
scattering processes of the form

|2in〉 ↔ |1out〉|1bound〉 (35)

are energetically allowed, meaning in particular that scattering
processes where two incoming photons evolve into a bound
photon and an outgoing one are allowed. Such processes
have previously been observed in numerical studies [44–46]
and further investigated in Refs. [48,49]. The energy-level
diagram shown in Fig. 6 provides simple energetic arguments
to determine under which conditions such processes can occur.
Note that all the qualitative considerations so far can be
extended to the Ne-excitation subspace. For example, the
Ne = 3 band structure consists of a three-photon continuum
of width 12J , two bands of one bound and two free photons of
width 8J , two bands with two bound and one free photons
of width 4J , two true three-photon bound states, and so
on. Therefore, the complete energy spectrum of a single-
atom waveguide QED system can be constructed from the
knowledge of the Ne-photon bound-state energies E

(Ne)
± .
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B. Variational wave function

While the exact eigenstates of the Ne = 2 subspace can still
be found numerically, we now consider a variational approach
through which additional intuition about the nature of two-
photon bound states can be obtained. In particular, within the
two-excitation subspace, the lower-energy two-photon bound
state corresponds to the ground state and can be generically
written as

|�(2)
− 〉 =[cos(θ )σ+A

†
1 − sin(θ )B†

2]|g,0〉, (36)

where A1 and B2 are single- and two-photon operators,
respectively. Based on the discussion in Sec. V A, a suitable
ansatz for the two-photon state is

B
†
2 = 1

Nu

ã
†
λ1

ã
†
λ2

, (37)

where ãλ = ∑
x e− |x|

λ a
†
x and the normalization constant Nu

is chosen such that 〈0|B2B
†
2|0〉 = 1. This two-photon wave

packet is an exact solution of the Schrödinger equation for
x,y �= 0 with an energy

E
(2)
− = −2J cosh(1/λ1) − 2J cosh(1/λ2). (38)

For the single-photon operator we demand that the wave
function also satisfies the first boundary condition, Eq. (33), at
x = 0 and y �= 0. This leads to

A
†
1 = 1

Nb

[
sinh

(
1

λ2

)
ã
†
λ1

+ sinh

(
1

λ1

)
ã
†
λ2

]
, (39)

where Nb is again a normalization constant. By using this
ansatz we can now find an upper bound for the two-photon
bound state by minimizing Evar = 〈�(2)

− |H |�(2)
− 〉 with respect

to θ and λ1,2. To further reduce the parameter space, it is
reasonable to assume that the wave-packet size of the first
photon λ1 is approximately given by the value of λ−, which
we determined for the single-photon bound state in Sec. IV A.
The variational ansatz is then based on the physical picture
of a two-photon dressed state consisting of the single-photon
dressed state plus an additional photon, which is more weakly
bound and thus less localized, λ2 > λ1. As we will show in
more detail in a moment, this ansatz provides very accurate
values for the bound-state energies.

C. Multiphoton dressed states

An important aspect of our variational wave-function
approach is that it can be extended to higher excitation numbers
Ne in a systematic way. To do so we write the wave function
for the lowest-energy state within the Ne-excitation subspace
as ∣∣�(Ne)

−
〉 = (cos(θ )σ+A

†
Ne−1 − sin(θ )B†

Ne
)|g,0〉. (40)

Based on arguments analogous to those above, we make the
ansatz

B
†
Ne

= 1

Nu

ã
†
λ1

ã
†
λ2

· · · ã†
λNe

(41)

0 1 2 3 4 5

−8

−4

0

1.16 1.18 1.2

−0.7

−0.6

0 1 2 3 4 5

−8

−4

0

1.16 1.18 1.2

−1.2

−1.1

(a)

(b)

FIG. 7. The Ne-photon bound-state energies E
(Ne )
− obtained from

a variational approach are plotted for Ne = 1, . . . ,8 in descending
order and for (a) δ = 0 and (b) δ = −2J . The dashed lines in the
insets show the exact numerical results for Ne = 2 and Ne = 3.

and

A
†
Ne−1 = 1

Nb

[
sinh

(
1

λNe

)
ã
†
λ1

...ã
†
λNe−1

· · ·

+ sinh

(
1

λ1

)
ã
†
λ2

· · · ã†
λNe

]
, (42)

where Nu and Nb are chosen to normalize each photonic
component of the state. To reduce the variational parameter
space, the problem can be solved in an iterative manner, i.e.,
by using the values of λ1, . . . ,λNe−1 as input for minimizing
the energy E

(Ne)
− with respect to θ and λNe

.
Discussion. Figure 7 shows the bound-state energies E

(Ne)
−

obtained from our variational approach for up to Ne = 8 pho-
tons. For Ne = 2,3 these results are compared in the insets with
the energies obtained from exact numerical diagonalization in
the crossover regime g/(2J ) ∼ 1. The excellent agreement
within ∼1% (for smaller or larger values of g the agreement is
even better) demonstrates that our variational ansatz captures
the essential features of the exact wave function.

For Ne = 1,2,3 the shapes of the individual photonic wave
packets associated with the operators ã

†
λi

in Eq. (41) are
sketched in Figs. 8(a) and 8(b). We see that in particular near
the band edge there is a significant difference between λ1 and
λ2, while the differences between λNe

are less pronounced for
higher excitation numbers. It should be noted, however, that
the variational approach, which is constructed to minimize
the energy, is not very sensitive to the exponential decay
of the wave function 〈0, . . . ,0,xNe

|�(Ne)
− 〉 ∼ e−|xNe |/λ̄Ne . For
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FIG. 8. Sketch of the first three photonic wave functions that
appear in the variational ansatz, Eq. (41), for the multiphoton bound
states. Here we have set g/(2J ) = 0.6 and (a) δ = 0 and (b) δ =
−2J − 0+. (c) and (d) The exponential decay length λ̄Ne

as a function
of g for Ne = 1,2, and 3 photons and for δ = 0 and δ = −2J −
0+, respectively. The dashed line shows the result for λ̄ obtained
numerically for the case Ne = 2. (e) and (f) The atomic population
pa = cos2[θ (ENe− )] plotted against g for δ = 0 and δ = −2J − 0+,
respectively.

physical effects that rely on more accurate predictions for the
exponential decay we can, instead of simply setting λ̄Ne

= λNe
,

make use of the exact energy relation [see Eq. (38) for Ne = 2]

E
(Ne)
−

2J
=

Ne∑
n=1

cosh

(
1

λ̄n

)
, (43)

which is valid at distances far away from the atom. Therefore,
from the exact result for λ1 ≡ λ̄1 and the set of bound-state
energies E

(Ne)
− obtained from our variational calculations, one

can iteratively apply Eq. (43) to also calculate values for the
asymptotic decay lengths λ̄Ne

. For Ne = 2 the results of this
procedure are shown in Figs. 8(c) and 8(d) and are compared
with the asymptotic decay length extracted from the numerical
solution of the two-photon wave function u(x,y). We observe
the same general trend as already mentioned above, but at
the same time the use of Eq. (43) provides more accurate
quantitative results. Finally, in Figs. 8(e) and 8(f) we plot the
atomic population of the Ne-photon bound states, showing
the expected increase of hybridization for higher excitation
numbers.

From Fig. 7 we see that for large couplings, g/(2J ) � 1, the
bound-state energies exhibit a splitting from the bare energy by
an amount ∼√

Ne, characteristic of the scaling in conventional
cavity QED [1]. In this limit all bound photons are essentially
localized on the atom site, and the single-mode physics is
recovered. To characterize the nonlinearity of the spectrum
also in the weak- and moderate-coupling regimes we define
the nonlinearity parameter

�nl(Ne) =
∣∣NeE

(1)
− − E

(Ne)
−

∣∣
g|Ne − √

Ne|
. (44)

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

FIG. 9. The nonlinearity parameter �nl(Ne) as defined in Eq. (44)
is plotted for Ne = 2 and different atom-photon detunings δ.

With this definition �nl(Ne) � 1 implies that the excitation
spectrum is as nonlinear as cavity QED under resonance
conditions, δ = 0, while the opposite limit �nl(Ne) � 0
indicates a harmonic spectrum. In Fig. 9 we plot �nl(Ne = 2)
for different values of g and different atomic detunings. For
higher excitation numbers Ne > 2 we observe an almost
identical behavior (not shown). We see that, as expected, in
the strong-coupling limit, g � {J,|δ|}, the waveguide QED
system approaches asymptotically the nonlinear behavior of
the single-mode Jaynes-Cummings model. As the coupling
is reduced �nl decreases, and the nonlinearity vanishes for
couplings g/(2J ) � 0.5 for δ = 0 and for g/(2J ) � 1 for
bound states in the vicinity of the band edge.

VI. DIPOLE-DIPOLE INTERACTIONS BETWEEN
DRESSED STATES

Our analysis so far has focused on the bound states
forming around a single atom. However, a key element of
waveguide QED is the photon-mediated interactions between
two or multiple separated emitters. In the weak-coupling
regime discussed in Sec. III, we have identified effective
dipole-dipole interactions between individual atoms, which
can be long-range and scale as Uij ∼ g2/J . In the following
section we are interested in the corresponding interactions
between dressed states, which represent the elementary
waveguide excitations in the strong-coupling regime. For
previous work on bare atom-atom interactions near band
structures, see, for example, Refs. [60–63].

A. Two-atom dressed states

We first consider the case of two atoms located at positions
x1 and x2 and focus on the single-excitation subspace, Ne = 1.
In this case the Schrödinger equation can still be solved exactly,
and details are summarized in Appendix C. The resulting
energy spectrum has up to four solutions with energies E±,s=e,o

outside the waveguide continuum given by the real solutions of

E±,e − δ = g2e− |x1−x2 |
2λ cosh

( |x1−x2|
2λ

)
E±,e

√
1 − 4J 2

E2±,e

(45)

for the even-parity states and

E±,o − δ = g2e− |x1−x2 |
2λ sinh

( |x1−x2|
2λ

)
E±,o

√
1 − 4J 2

E2±,o

(46)
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for the odd-parity states, where λ ≡ λ(E±,s) has the same
energy dependence as in the single-atom case in Eq. (15).

For concreteness and notational simplicity, we restrict the
following discussion to the two lower bound states with
energies E−,s < −2J below the continuum and even (s = e)
or odd (s = o) symmetry of the atom-field system. The
corresponding eigenstates can be written as

|φs=e,o〉 = 1√
2

[D†
s (x1) ± D†

s (x2)]|g1,g2,0〉, (47)

where the plus (minus) sign holds for the state with even (odd)
symmetry. The dressed-state creation operators D

†
e,o(xi) are

defined as

D†
s=e,o(xi) = cos(θs)σ

i
+ + sin(θs)

ã
†
λ,s(xi)

Ns

, (48)

where ã
†
λ,s(xi) = ∑

x e− |x−xi |
λ a

†
x is an unnormalized photonic

creation operator and

Ne,o =
√

coth
1

λ

(
1 ± e− |x1−x2 |

λ

) ± |x1 − x2|e− |x1−x2 |
λ , (49)

is the corresponding normalization constant [again, the plus
(minus) sign holds for the even (odd) case]. The mixing angle
θ is given by

cos θs =
(

1 + g2N 2
s

4J 2 sinh2 1
λ

)− 1
2

, (50)

which depends on both the bound-state energy and the distance
between the atoms.

Discussion. Figure 10 shows the dependence of the two-
atom dressed-state energies E−,s on the atomic separation
|x1 − x2|. For distances which are large compared to λ both
energies are approximately equal to the single-atom bound
state, E−,e � E−,o � E−; that is, there are no long-range
interactions. At a large but finite separation |x1 − x2| � λ(E−)
the photonic wave functions associated with the single-atom
bound states start to overlap so as to induce a splitting of the

-1
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FIG. 10. The bound-state energy levels E−,s (left column) and the
corresponding atomic populations pa = cos2[θ (E−,s)] (right column)
are plotted as a function of the interatomic distance for the case of
two atoms and for three representative values of g/(2J ). For all plots
δ = 0 is assumed. For comparison, in each panel the dashed line
indicates the corresponding bound-state energy or atomic population
for a single atom.

energies such that E−,e < E− < E−,o. As long as this splitting
is still small, the dressed-state dynamics can be described by
the Hamiltonian

H ≈
∑
i=1,2

E−D
†
i Di + Udd

2
(D†

1D2 + D1D
†
2). (51)

Here Di ≡ D(xi) are the single-atom dressed-state operators
introduced in Eq. (12), which in the approximated model in
Eq. (51) are treated as independent, i.e., mutually commuting
degrees of freedom. Therefore, Hamiltonian (51) describes
a dipole-dipole-like coupling between distant dressed states
with strength (assuming δ = 0)

Udd � J

(
cosh 1

λ

1 + coth2 1
λ

)
e− |x1−x2 |

λ . (52)

This shows that the long-range interactions occurring in the
weak-coupling regime become exponentially localized when
g/(2J ) � 1, even in the absence of losses.

As the atom-atom separation decreases further, the mutual
distortion of the wave packets must be taken into account.
As illustrated in Fig. 11, the even bound state, corresponding
to the lower level E−,e, is a “bonding” state such that the
photon becomes more and more localized between the atoms.
In contrast, the odd state, corresponding to the upper level
E−,o, behaves as an “antibonding” state such that the photon
becomes more and more delocalized as the atomic spacing
decreases. As a result, two regimes must be distinguished. As
shown in more detail in Appendices C and D, for g > gm and
δ > −2J , where

gm = 2J

√
1 + δ

2J
, (53)

both E−,e and E−,o solutions exist for all |x1 − x2| � 1. In
the opposite case, g < gm, we find that there is a finite
distance xm = (gm/g)2 > 1 below which the upper bound state
E−,o reaches the band edge and disappears (see Fig. 10).
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FIG. 11. Spatial profile of the photonic wave function us(x) =
〈x|�s〉 corresponding to the even (red solid line) and odd (green
dashed line) lower band bound states in the case of two atoms for
different coupling strengths and interatomic distances. For all plots
δ = 0 is assumed.
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FIG. 12. Single-excitation energy spectrum in the case of Na =
40 equally spaced atoms as a function of the atomic nearest-neighbor
distance �x. Note the appearance of upper and lower metabands of
bound states. For this plot δ/(2J ) = 0.6 and g/(2J ) = 1 have been
assumed.

This melting of one of the bound states into the waveguide
continuum is related to a progressive delocalization of the
photonic wave packet that eventually becomes completely
delocalized along the array [see, for instance, the dashed green
line in Fig. 11(c)]. This effect is most relevant for resonantly
coupled atoms, δ ≈ 0, and for moderate coupling strengths,
while for δ � −2J both the two-atom bound states always
exist. Note that the current discussion has been restricted to
the two lower dressed states E−,s< − 2J , but analogous results
are obtained for the two-atom bound states above the photonic
band, E+,s > 2J , with the sign of δ reversed. See Appendix D
for more details.

B. Dressed-state band structure

The above analysis can be extended to multiple atoms,
where for N � Na � 1 and equidistant spacings, xi+1 − xi =
�x, the coupling between neighboring atoms leads to the
formation of a metaband structure for propagating dressed-
state excitations below and above the bare photonic band.
This is illustrated in Fig. 12, where single-photon bound-state
energies for Na = 40 atoms are shown as a function of �x.
For large �x we see that the bound states form a narrow
band around the single-atom energies E+ and E− with a width
of �E ≈ Udd. For smaller atomic spacings, the bandwidth
grows, and depending on the parameters, it can either partially
melt into the waveguide continuum or remain energetically
separated.

As shown in Sec. C 2, the metaband is bounded by upper
and lower energies Eu and El , which obey the equations

Eu − δ = g2 coth
(

�x
2λ

)
Eu

√
1 − 4J 2

E2
u

(54)

and

El − δ = g2 tanh
(

�x
2λ

)
El

√
1 − 4J 2

E2
l

, (55)

respectively. Like in the previous section, it is possible to define
a critical coupling

g(Na�1)
m =

√
2gm (56)

for the multiatom band, which only differs by a factor
√

2
from the two-atom case gm given in Eq. (53). For g > g(Na )

m

and |δ|/(2J ) < 1, the metaband is separated from the phonic
continuum regardless of �x. In the opposite case, g < g(Na )

m , a
fraction of the dressed-state band disappears in the waveguide
continuum; that is, unlike in the usual band structure, only a
fraction of the k modes is available.

VII. CONCLUSIONS

In summary, we have analyzed the most essential properties
of single-photon, multiphoton, and multiatom dressed-state
excitations in a slow-light waveguide QED setup. Our results
provide both a qualitative and quantitative description of the
basic linear and nonlinear optical processes in this system
and intuitively explain and connect various effects that have
been previously described in different limiting cases. We
have derived the necessary requirements that are needed to
observe atom-photon bound states under realistic experimental
conditions, which can be achieved, for example, with state-
of-the-art superconducting circuits [9–12]. More importantly,
our analysis of nonlinear and multiatom effects can serve as a
starting point to further explore the complexity of waveguide
QED systems when the regime beyond a few excitations is
considered.

Note added. Recently, a closely related work on multi-
photon bound states in waveguide QED systems by T. Shi
et al. [64] appeared.
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APPENDIX A: MASTER EQUATION

In this Appendix we outline the derivation of the master
equation (4) in the weak-coupling limit g/J → 0. Starting
from Hamiltonian (1), we change to an interaction picture
with respect to H0 = ∑

i ωa|e〉i〈e| + Hc, and we obtain the
atom-field interaction Hamiltonian

Hint(t) = g

Na∑
i=1

[σ i
+E(xi,t)e

iωat + σ i
−E†(xi,t)e

−iωat ], (A1)

where

E(x,t) = 1√
N

∑
k

e−iωkt eikxak (A2)

is the field operator at site x and k = 2πm/N , with m =
−N/2, − N/2 + 1, . . . ,N/2 − 1. The field operators obey the
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commutation relations

[E(x,t),E†(x ′,t ′)] = �(x − x ′,t − t ′), (A3)

where

�(z,τ ) = 1

N

∑
k

e−ikze−iωkτ

= e−iωcτ

N

N−1∑
n=0

e−i2πzn/Nei2J cos(2πn/N)τ

= e−iωcτ

N

N−1∑
n=0

e−i2πzn/N

∞∑
m=−∞

imJm(2Jτ )ei2πnm/N

= e−iωcτ i|z|J|z|(2Jτ ). (A4)

Up to second order in g and by performing the usual Born-
Markov approximation [65], we end up with a time-local
master equation governing the time evolution of the atom’s
reduced density operator

ρ̇(t) = −
∫ ∞

0
dτ Trc{[Hint(t),[Hint(t − τ ),ρc ⊗ ρ(t)]]},

(A5)
where in the absence of any driving fields ρc = |0〉〈0| is the
vacuum state of the waveguide modes. The master equation
can be expressed in the form

ρ̇ =
∑
ij

Aij (σ j
−ρσ i

+ − σ i
+σ

j
−ρ) + A∗

ij (σ i
−ρσ

j
+ − ρσ

j
+σ i

−),

(A6)
where

Aij = g2
∫ ∞

0
dτ 〈E(xi,t)E

†(xj ,t − τ )〉eiωaτ

= g2
∫ ∞

0
dτ �(xi − xj ,τ )eiωaτ e−γcτ/2

= g2i|xi−xj |
∫ ∞

0
dτ J|xi−xj |(2Jτ )e−( γc

2 −iδ)τ (A7)

and the cavity decay rate γc appears through the replacement
ωc → ωc − iγc/2. The final integral can now be evaluated
with the help of∫ ∞

0
dτ Jm(aτ )e−bτ = 1√

a2 + b2

(
a

b + √
a2 + b2

)m

, (A8)

and we obtain

Aij = g2eiK|xi−xj ]√
4J 2 − (

δ + i
γc

2

)2
, (A9)

where K is given in Eq. (7). Finally, since Aij = Aji , we can
regroup the individual terms into the form given in Eq. (4),
where we identify 	ij = 2Re{Aij } and Uij = 2Im{Aij }.

The derivation of the master equations relies on the validity
of the Born-Markov approximation, which requires that the
kernel in Eq. (A7) either decays faster or oscillates faster than
the system evolution time set by the coupling ∼g. For a single
atom this condition is satisfied as long as g 
 |ṽg(δ)|, and by
assuming in addition that γa 
 |ṽg(δ)|, we can also add to 	ii

the bare atomic decay, without influencing the coupling to the
waveguide.

For multiple atoms the Bessel function J|xi−xj |(2Jτ )
reaches its maximum at a finite time

τ ≈ |xi − xj |
2J

, (A10)

which reflects the minimal time it takes a photon to propagate
between the atoms. More generally, for the validity of a
time-local master equation for Na atoms with spacing �x

we must ensure that the maximal retardation time τR ∼
(Na − 1)�x/|ṽg(δ)| is short compared to the system evolution
determined by the single-atom spontaneous-emission time 	−1

with 	 = 2g2/|ṽg(δ)| [see Eqs. (10) and (A9)]. This yields

g 
 |ṽg(δ)|√
(Na−1)�x

(A11)

as a slightly more stringent condition for large systems. See
also Refs. [23,66].

APPENDIX B: SINGLE-PHOTON BOUND STATES
WITH A SINGLE ATOM

In this Appendix we review the derivation of the eigenvalue
equation (11) for the bound states in the case Ne = 1 and
a single atom located at position xa . In particular, this
will provide the basis to derive the analogous results in
the multiatom case. In a frame rotating with frequency ωc,
Hamiltonian (1) can be expressed in the momentum space as

H = −2J
∑

k

cos(k)a†
kak +

Na∑
n=1

δ|e〉n〈e|

+ g√
N

Na∑
n=1

∑
k

(
a
†
kσ

n
−eikxn+akσ

n
+e−ikxn

)
. (B1)

A state in the single-excitation sector has the form (we set
σ± ≡ σ 1

±)

|φ〉 =
(

b σ+ +
∑

k

cka
†
k

)
|g,0〉. (B2)

Plugging this ansatz into the Schrödinger equation H |φ〉 =
E|φ〉 yields the coupled equations

b(E − δ) = g√
N

∑
k

ck e−ikxa ,

ck(E + 2J cos k) = g√
N

b eikxa .

(B3)

Using the second equation to eliminate ck in the first one, we
end up with

E − δ = 
1(E), (B4)

where the self-energy 
1(E) (in the continuous limit) is given
by


1(E) = 1

2π

∫ π

−π

dk
g2

E + 2J cos k
= g2

E

√
1 − 4J 2

E2

, (B5)

where in the last identity we calculated the integral explicitly
using |E| > 2J [58]. Replacing the self-energy in Eq. (B4),
we end up with Eq. (11) in the main text. This equation has
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two real solutions E±, where E+ (E−) lies above (below) the
continuum E ∈ [−2J,2J ]. The corresponding bound states
can be worked out with the help of Eq. (B3) as

|φ±〉 = b(E±)

[
σ++ 1√

N

∑
k

geikxa

E± + 2J cos k
a
†
k

]
|g,0〉,

(B6)

where, using the fact that the state must be normalized,

b(E) =
⎛
⎝1 + g2

E2
(
1 − 4J 2

E2

) 3
2

⎞
⎠

− 1
2

. (B7)

In the real space, the bound state reads

|φ±〉 = b(E±)

⎡
⎣σ+ + g

∑
x(∓1)|x−xa |e− |x−xa |

λ a
†
x

E±
√

1− 4J 2

E2±

⎤
⎦|g,0〉.

(B8)

Exploiting again the normalization of |φ±〉, one eventually
ends up with Eq. (12) defined in terms of the photonic operators
a
†
λ and the mixing angle θ defined in Eqs. (13) and (14),

respectively.

APPENDIX C: SINGLE-PHOTON BOUND STATES
WITH MANY ATOMS

For Ne = 1, but considering multiple atoms, the bound
states can be derived by exploiting the mirror symmetry of
the system. For the sake of argument, here we focus on bound
states below the continuum, i.e., such that E < −2J [67]. In
accordance with the mirror symmetry, we define the pair of
collective atomic operators

Ss=e,o =
Na∑
n=1

(±1)|n+1|σn
−, (C1)

where the plus (minus) sign holds for s = e (s = o). In the
case Na = 2, the operators (C1) reduce to the (unnormalized)
symmetric and antisymmetric combinations of σ 1

− and σ 2
−.

Based on this definition, here we look for bound states of the
form

∣∣φ(Na )
s

〉 =
(

b S†
s +

∑
k

cka
†
k

)
|g,. . .,g,0〉. (C2)

If Na > 2, the bound states defined in Eq. (C2) are those whose
energies form the borders of the dressed-state metabands (see
Fig. 12). Imposing the requirement that the ansatz (C2) be an
eigenstate of Hamiltonian (B1) with eigenvalue E yields an
eigenvalue equation analogous to Eq. (B4) with the self-energy
now given by


s(E) =
∑

n

(±1)|n+1| 1

2π

∫ π

−π

dk
g2eik(xn−xa )

E + 2J cos k

= 
1(E) fNa,s(E), (C3)

where 
1(E) is the single-atom self-energy in Eq. (B5) and

fNa,s(E) =
∑

n

(±1)|n+1|e− |xn−xa |
λ , (C4)

with λ = λ(E) being the same energy function as in Eq. (15).
We introduced the atomic position xa that set the choice of
placing the atomic ensemble in the array. As in the one-atom
case, in deriving the last identity of Eq. (C3) we used E < −2J

to calculate the integral over k through standard methods [58].
The self-energy, and hence the eigenvalue equation, is thus

determined by the function fNa,s(E) in Eq. (C4). We will
analyze this function now in more detail for the paradigmatic
cases Na = 2 and Na � 1, which are the cases considered in
Sec. VI.

1. Two atoms

For Na = 2 and choosing xa = x1, Eq. (C4) simply yields

f2,e = e− �x
2λ cosh

(
�x

2λ

)
, f2,o = e− �x

2λ sinh

(
�x

2λ

)
(C5)

for the even- and odd-parity states, respectively (recall that
�x = |x1−x2|). This provides the self-energy and thus the
eigenvalue equation for the energies E−,s [see Eq. (C3)]. The
corresponding bound states can be derived in terms of E−,s in
a way essentially analogous to that in Appendix B. For bound
states below the continuum, this gives

|φ−,s〉 = b(E−,s)

[
σ 1

+ ± σ 2
+

+ 1√
N

∑
k

g(eikx1 ± eikx2 )

E−,s + 2J cos k
a
†
k

]
|g1,g2,0〉, (C6)

where function b(E) follows from the normalization constraint
and reads

b(E) =
(

2 + g2N 2
s

2J 2 sinh2 1
λ

)− 1
2

, (C7)

with Ns defined by Eq. (49). In position space, state (C6) reads

|φ−,s〉 = b(E−,s)

⎡
⎣σ 1

+ ± σ 2
++ g

E−,s

√
1 − 4J 2

E2−,s

×
∑

x

(
e− |x−x1 |

λ ± e− |x−x2 |
λ

)
a†

x

]
|g1,g2,0〉. (C8)

In analogy with the single-atom case, one can arrange such
bound states in the form (47) in terms of the polaritonic
operators (48) and the mixing angle (50).

Regarding bound states above the band, one can follow
an analogous reasoning by taking into account the differ-
ent definition of operators Ss [67]. While this affects the
expression of the bound states, namely, the counterparts of
Eqs. (C6) and (C8), Eq. (C3) for the self-energy turns out to
be unaffected. The self-energies (C3) thereby hold both above
and below the continuum.

At this time, we also mention that, while our approach
based on the collective atomic operators (C1) is devised so
as to easily tackle the Na � 1 limit, in the Na = 2 case an
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equivalent method would be to block diagonalize H , with
the blocks corresponding to even- and odd-parity sectors
of the entire single-excitation Hilbert space (including the
field). In the even (odd) subspace, the problem is reduced
to an effective single atom coupled to the cosine-shaped (sine-
shaped) field modes. This approach was followed in Ref. [68],
where, however, the authors focused only on bound states
in the continuum (BIC) [69]. The effective Hamiltonian in
each parity-definite subspace differs from the Fano-Anderson
model in Eq. (B1) (case Na = 1) in that the atom-mode
couplings are k dependent. Such a “colored” Fano-Anderson
model was first investigated in Ref. [70] in the case of
sine-shaped couplings.

2. Na � 1 atoms

In the limiting case of a very large number of equispaced
atoms, Na � 1, function (C4) can be written in a compact
form by setting xa = xNa/2 [71] since it reduces to a geometric
series. By expressing in Eq. (C4) each atomic position as xn =
xa + (n − Na/2)�x, we end up with

fNa�1,e = coth

(
�x

2λ

)
, fNa�1,o = tanh

(
�x

2λ

)
, (C9)

which provides the eigenvalue equation for the bound states
|φ(Na�1)

s 〉. We confirmed numerically that the metaband-
edge levels (see Fig. 12) for growing Na converge to the
numerical solutions of the eigenvalue equation E − δ =

1(E)fNa�1,s(E). Specifically, above the continuum (E >

2J ) the solution for s = e (s = o) gives the upper (lower)
metaband edge, while below the continuum s = e (s = o)
corresponds to the lower (upper) metaband edge.

APPENDIX D: MULTIATOM BOUND STATES

Here we address a number of properties of the multiatom
bound-state levels in the case Na = 2 and Na � 1, with the
goal of proving the salient features of the energy spectra in
Figs. 10 and 12 discussed in the main text.

1. Na = 2

As discussed in Appendix C, the bound-state levels are
the solutions of the equation E − δ = �s(E) in the domain
|E| > 2J . Using Eqs. (C3), (C5), and (15), the self-energy
function explicitly reads


s(E) = g2

E

√
1− 4J 2

E2

[
1±

( |E|
2J

−|E|
2J

√
1−4J 2

E2

)|x1−x2|]
,

(D1)

where as usual the plus (minus) sign holds for s = e (s = o).
The corresponding expression for E < −2J follows straight-
forwardly from the fact that 
s(E) is an odd function of E.

Below the continuum, i.e., for E < −2J , both 
e(E) and

o(E) monotonically decrease with E [see Eq. (D1)]. Thereby,
if the value taken by the linear function y = E − δ at E = −2J

lies above 
s(−2J ), then a single bound state (for fixed s)
of energy E−,s < −2J certainly occurs. This condition thus
explicitly reads −2J − δ > 
s(−2J ). This is always fulfilled

for s = e given that 
e(−2J ) = −∞. Instead, for s=o, by
calculating 
o(−2J ) = −g2|x1 − x2|/(2J ) [see Eq. (D1) for
E→(−2J )+], the above condition results in

g >
2J

√
1 + δ

2J√|x1 − x2|
= gm√|x1 − x2|

, (D2)

where gm is the same as in Eq. (53). Hence, as discussed in
Sec. VI, both E−,e and E−,o solutions exist for any interatomic
distance when g > gm. If, instead, g < gm, at the critical
distance |x1 − x2| = (gm/g)2 the solution E−,o merges with
the continuum, i.e., E−,o = −2J , and it no longer exists for
|x1 − x2| < xm (see Fig. 10). Moreover, note that in light of the
geometrical criterion given above, if E−,o exists, then E−,o >

E−,e since 
o(E) > 
e(E) [see Eq. (D1)]. Equation (D2)
holds for δ > −2J . For δ � −2J , E−,o always exists since
−2J − δ is positive while 
o(2J ) is negative anyway.

As for bound states above the continuum, a similar rea-
soning can be carried out. Recalling that 
s(−E) = −
s(E),
we have 
o(2J ) = g2|x1 − x2|/(2J ) and 
e(2J ) = +∞, with
both functions 
s(E) monotonically decreasing with E for
E > 2J . The condition for the existence of a bound state will
now read 2J − δ < 
s(2J ). Again, it is always fulfilled when
s = e since 
e(2J ) diverges to +∞. Instead, for s = o the
threshold condition for δ < 2J reads

g >
2J

√
1 − δ

2J√|x1 − x2|
, (D3)

which is analogous to Eq. (D2) but with the replacement δ →
−δ in the expression of gm. For δ > 2J both levels E+,s exist.
Moreover, since now 
o(E) < 
e(E), we have E+,o < E+,e.

To summarize, outside the continuum, a pair of bound states
of even symmetry and energies E±,e always exist, one above
and one below the photonic band. At most two additional
odd-symmetry bound states of energies E±,o may be present
as well, depending on the values of g, |x1 − x2|, and δ. Note
that, for |δ| < 2J , the critical coupling strengths appearing
in Eqs. (D2) and (D3) are different, which means that three
cases are possible: E+,o exists while E−,o does not (or vice
versa), E±,o both exist, and E±,o both do not exist. Combining
together Eqs. (D2) and (D3), the conditions for these three
cases to occur, for |δ| � 2J , read

g >
2J

√
1+ |δ|

2J√|x1 − x2|
⇔ both E+,o and E−,o exist, (D4)

2J

√
1− |δ|

2J√|x1 − x2|
<g<

2J
√

1+ |δ|
2J√|x1−x2| ⇔ only Esgn (δ),o exists, (D5)

g <
2J

√
1− |δ|

2J√|x1 − x2|
⇔ neither E+,o nor E−,o exists. (D6)

2. Na � 1

The analysis for Na � 1 proceeds similarly to that for the
Na = 2 case. The explicit self-energy functions 
s=e,o(E) are
obtained from Eqs. (C3), (C9), and (15). Like in the two-
atom case, 
e(E) > 
o(E) [
e(E) < 
o(E)] for E > 2J

(E < −2J ), with 
e(E) diverging to +∞ and −∞ for E →

033833-14



ATOM-FIELD DRESSED STATES IN SLOW-LIGHT . . . PHYSICAL REVIEW A 93, 033833 (2016)

(2J )+ and E → (−2J )−, respectively. Instead, 
o(±2J ) =
±g2�x/(4J ). Accordingly, the same geometrical criterion
as in the previous section entails that the conditions for the
existence of E+,o and E−,o are the same as in Eqs. (D2)
and (D3), respectively, apart from the factor

√
2 on either

right-hand side. The same factor thereby appears in Eqs. (D4)–
(D6), which are now interpreted as the conditions for estab-
lishing whether neither [Eq. (D4)], only one [Eq. (D5)], or
both [Eq. (D6)] of the metabands merge with the photonic
band.
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