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Azimuthal entanglement and multichannel Schmidt-type decomposition of noncollinear biphotons
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Purely azimuthal entanglement is analyzed for noncollinear frequency-degenerate biphoton states. The degree
of azimuthal entanglement is found to be very high, with the Schmidt parameter K on the order of the ratio of the
pump waist to its wavelength. A scheme is suggested for partial realization of this high entanglement resource in
the form of a multichannel Schmidt-type decomposition.
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I. INTRODUCTION

A structure of emission in the type-I noncollinear sponta-
neous parametric down-conversion (SPDC) is well known:
SPDC photons propagate along a cone with the axis (0z)
coinciding with the central propagation direction of the pump,
and section of the cone by the plane (xy) ⊥ 0z is a ring
[1–3]. As quantum objects, SPDC photons are characterized
by their wave function depending on transverse components
of wave vectors �k1 ⊥ and �k2 ⊥, where the indices 1 and 2
indicate two indistinguishable SPDC photons and ⊥ refers
to the plane (xy). Each of two SPDC photons has two degrees
of freedom; for example, corresponding to motions in 0x

and 0y directions. In this specific case the biphoton wave
function depends on two pairs of variables, k1,2 x and k1,2 y .
Alternatively, the wave vectors �k1,2 ⊥ can be characterized by
their absolute values ρ1,2 = |�k1,2 ⊥| and angles with respect to
the x axis (azimuthal angles), α1,2. This parametrization of
transverse wave vectors �k1,2 ⊥ is widely used in the analysis
based on the concept of the orbital angular momentum (OAM)
of photons [4–7]. Parametrization used in the present work
slightly differs from that used in the OAM analysis. The
transverse wave vectors �k1,2 ⊥ are assumed to be characterized
by spherical angles of the total wave vectors �ki , i.e., by polar
(zenith) angles θ1,2 defined as angles between �ki and the z axis,
and azimuthal angles α1,2 defined, as previously, as angles
between �ki ⊥ and the x axis. In terms of these definitions
one can investigate separately entanglement of noncollinear
biphotons either in polar or in azimuthal angular variables. As
far as I know, this formulation of the problem differs from
that used in the OAM analysis where azimuthal and “radial”
entanglements (in variables α1,2 and ρ1,2) are considered
usually as inseparable parts of the total biphoton entanglement.
As argued below, consideration of azimuthal entanglement
itself has sense both for theoretical analysis and, potentially,
for practical experimental researches and applications. For the
cases of sufficiently pronounced degree of noncollinearity, the
degree of azimuthal entanglement will be shown to be very
high and, roughly, determined by a large parameter of the pump
waist divided by its wavelength. In principle, this provides a
very large resource of azimuthal entanglement, and a scheme
for its partial realization in experiments will be described.
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II. BIPHOTON ANGULAR WAVE FUNCTION

A. General expressions

Let us consider a biphoton state formed in the non-
collinear frequency-degenerate process of spontaneous para-
metric down-conversion (SPDC) with a cw pump and with
phase matching of type I. In this case the pump is propagating
in a nonlinear crystal as the extraordinary wave, and some
photons of the pump decay for two indistinguishable photons
“1” and “2” of the ordinary wave, e → o + o. The emitted
photons are assumed to have coinciding frequencies equal to
the half of a given frequency of the pump, ω1 = ω2 = ωp/2,
and coinciding horizontal polarizations. Let the pump be
propagating along the z axis and having the waist w. As
usual, the pump waist w is assumed to be much smaller
than the transverse sizes of a crystal, which provides the
transverse-momentum conservation rule:

�kp ⊥ = �k1 ⊥ + �k2 ⊥, (1)

where �kp ⊥ is the projection of the pump wave vector �kp on
the plane (xy) perpendicular to the z axis. In the transverse-
momentum representation the wave function of two emitted
photons is known to have the form [8–10]

� ∝ exp

[
−w2

p

2
(�k1⊥ + �k2⊥)2

]
sinc

(
L�

2

)
, (2)

where the pump amplitude is taken to be Gaussian with the
waist wp, sinc(x) = sin x/x, and L is the length of a crystal in
the pump-propagation direction; � is the phase mismatch

� = kp z − k1 z − k2 z ≈ �0 + (�k1⊥ − �k2⊥)2

4k1
(3)

and

�0 = kp − k1 − k2. (4)

The wave function (2) is assumed to obey the unit normal-
ization condition

∫
d�k1⊥d�k2⊥|�|2 = 1. The proportionality

symbol is used in Eq. (2) and below instead of writing
down explicitly the normalization constant (to avoid too
cumbersome formulas).

B. Spherical angles

In accordance with the goals declared in the Introduction,
let us characterize orientation of wave vectors in a free space
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FIG. 1. Azimuthal (αp) and polar [ϕp(θp)] angles of the wave
vector �kp (ϕp inside and θp outside the crystal); ϕ0 is the angle between
the crystal’s major optical axis OA and the central propagation
direction of the pump (the z axis).

after the crystal by their spherical angles—polar angles θp,1,2

and azimuthal angles αp,1,2:

�kp = 2π

λp

{sin θp cos αp, sin θp sin αp, cos θp},

�k1 = π

λp

{sin θ1 cos α1, sin θ1 sin α1, cos θ1}, (5)

�k2 = − π

λp

{sin θ2 cos α2, sin θ2 sin α2, cos θ2},

where λp is the pump wavelength. As an example, the polar
and azimuthal angles of the pump wave vector are shown
in Fig. 1, with the coordinate frame turned intentionally for
clearer visibility in such a way that the z axis is vertical, though
traditionally and in all further illustrations the propagation axis
0z is taken to be horizontal. Two different notations, ϕp and
θp, are used for polar angles of �kp inside and outside a crystal.
Similar pairs of notations are used below for polar angles of
SPDC photons �k1,2: ϕ1,2 and θ1,2.

The sign “−” in the definition of �k2 in Eq. (5) deserves a
special explanation. It is known [1–3] that in the noncollinear
SPDC process two photons of each pair are located approx-
imately at the opposite ends of diameters of the ring formed
by a section of the emission cone by the transverse plane
(xy) ⊥ 0z. This condition is provided in different ways in the
two-dimensional (2D) and three-dimesional (3D) geometries.
In the plane geometry, deviations from the z axis can be
characterized by angles θ1,2 having different signs for “up”
and “down” (or “left” and “right”) deviations [11]. In contrast,
in the 3D geometry, both polar angles θ1 and θ2 are always
positive (π � θ1,2 � 0). In this case the condition of location
at the opposite ends of the ring diameters is provided by
different definitions of the azimuthal angles of two photons:
these angles have to differ from each other approximately by
the term π . Alternatively, it is possible to define azimuthal
angles α1 and α2 as being close to each other but counted from
different directions of the x axis: the angle α1 counted from the
positive direction of the x axis and the angle α2 counted from
its negative direction. This definition is illustrated by Fig. 2,

FIG. 2. Section of the emission cone by the plane (xy) ⊥ 0z: α1

and α2 are the azimuthal angles of emitted photons, α0 = 1
2 (α1 + α2),

and θ0 is the opening angle of the cone.

which shows schematically the orientation of transverse wave
vectors �k1 ⊥ and �k2 ⊥, as well as their azimuthal angles α1 and
α2. The inset in Fig. 2 is a diagram of the transverse-momentum
conservation rule (1). It is worth noting that only two vectors
of this diagram, �k1⊥ and �k2⊥, are controllable experimentally
by positions of detectors, whereas the transverse component
of the pump wave vector, �kp⊥, is selected automatically from
all of its possible values and directions by the conservation
rule (1).

Representation of wave vectors in terms of spherical angles
(5) can be used to find rather simple expressions for the squared
difference and sum of �k1 ⊥ and �k2 ⊥ in Eq. (3):

|�k1 ⊥ ± �k2 ⊥|2 = π2

λ2
p

[sin2 θ1 + sin2 θ2

∓ 2 sin θ1 sin θ2 cos(α1 − α2)]. (6)

Let us assume now that deviations of wave vectors �k1 and �k2

from the z axis, as well as the difference of their azimuthal
angles, are small. Let also deviations of the polar angles θ1,2

from the cone-opening angle θ0 be much smaller than θ0; i.e.,
the thickness of the ring in Fig. 2 be much smaller than its
radius. Mathematically these assumptions are formulated as

|θ1,2 − θ0| � θ0 � 1, |α1 − α2| � 1. (7)

In these approximations Eq. (6) takes the much simpler form

|�k1 ⊥ ± �k2 ⊥|2 ≈ π2

λ2
p

[
(θ1 ∓ θ2)2 ± θ2

0 (α1 − α2)2
]
. (8)

C. Refractive index of the pump wave

In a crystal, absolute values of the wave vectors kp and
k1,2 are determined by the corresponding refractive indices:
k1 = k2 = π

λp
no(2λp) and kp = 2π

λp
np(λp,ϕ0,αp,ϕp), where

no(λ) is the isotropic refractive index of the ordinary wave
depending only on the light wavelength, and the pump
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refractive index is given by

np(λp,ϕp,αp,ϕ0)

= no(λp)ne(λp)
{
n2

o(λp)[sin2 ϕp sin2 αp

+ (sin ϕp cos ϕ0 cos αp + cos ϕp sin ϕ0)2]

+ n2
e(λp)(cos ϕp cos ϕ0 − sin ϕp sin ϕ0 cos αp)2

}−1/2
.

(9)

In this formula ne(λp) is the extraordinary-wave refractive
index for the propagation direction along the minor axis of
the polarization ellipse of a crystal. The functions no(λp) and
ne(λp) are determined by the well-known Sellmeier formulas
[12]. For a β-BaB2O4 (BBO) crystal at λp = 0.4047 μm [13]
the numerical values of these functions are no(0.4047 μm) =
1.69236 and ne(0.4047 μm) = 1.56801.

Note that Eq. (9) can be written in a standard and familiar
form [14],

n(ϑ) = no(λp)ne(λp)

[no(λp)2 sin2 ϑ + ne(λp)2 sin2 ϑ cos2 ϑ]1/2
(10)

with ϑ being the angle between �kp and the crystal optical axis.
Equation (10) turns into (9) when ϑ is expressed in terms of
the angles ϕp, αp, and ϕ0 of Fig. 1.

As all deviations from the z axis are assumed to be small,
the refractive index of Eq. (9) can be expanded in powers of
ϕp. With only two first terms of this expansion retained, the
term �0 (4) in Eq. (3) takes the form

�0 = 2π

λp

[np(λp,ϕp,αp,ϕ0) − no(2λp)]

≈ 2π

λp

[np(ϕ0) − no + n′
p(λp,αp,ϕ0)ϕp], (11)

where np(ϕ0) ≡ np(λp,0,0,ϕ0) and no = no(2λp) =
1.66109 μm.

The derivative of the refractive index is defined as

n′
p(λp,αp,ϕ0) = ∂np(λp,ϕp,αp,ϕ0)

∂ϕp

∣∣∣∣
ϕp=0

. (12)

A sufficiently simple expression for n′
p can be found analyt-

ically by a direct differentiation of the expression in Eq. (9):

n′
p(λp,αp,ϕ0) = −ζ (λp,ϕ0) cos αp, (13)

with the coefficient ζ (λp,ϕ0) having the form

ζ (λp,ϕ0) = no(λp)ne(λp)
[
n2

o(λp) − n2
e(λp)

]
sin ϕ0 cos ϕ0[

n2
o(λp) sin2 ϕ0 + n2

e(λp) cos2 ϕ0
]3/2 .

(14)

The term with the derivative of the refractive index n′
p in

Eq. (11) determines the well-known spatial walk-off effects.
Very often this term is omitted from consideration at all. Let us
refer this simplification as corresponding to the ‘no walk-off”
or NWO approximation. As shown below, for azimuthal
entanglement, in the case of sufficiently well pronounced
noncollinearity, the NWO approximation is reasonably good.
But in a general case the walk-off term can be important

because it takes into account anisotropy of birefringent crystals
and breaks the axial symmetry of the SPDC process [10]
occurring in the NWO approximation. As follows from the
cosine dependence of n′

p (13) on αp, the walk-off effects
are maximal in the cases αp = 0 or π , i.e., when the pump
wave vector �kp belongs to the plane (OA,z) formed by
the crystal optical axis and the central propagation direction
of the pump. Oppositely, the walk-off term vanishes in
the case αp = π/2 when the pump wave vector is located
in the plane (y,z) perpendicular to the optical-axis plane
(OA,z).

A structure and the role of the walk-off term will be
discussed in more details in Sec. II E. But before this, let us
discuss the structure of other terms in the phase mismatch of
Eq. (3).

D. The NWO parts of the phase mismatch,
linear approximation

The term np(ϕ0) − no in Eq. (11) determines the de-
pendence of the phase mismatch on the angle ϕ0 between
the optical axis and the central pump propagation direction
0z. For a BBO crystal and the pump wavelength λp =
0.4047 μm this dependence is shown in Fig. 3. The an-
gle ϕcoll

0 = 0.5 corresponds to the collinear SPDC regime,
and the noncollinear regime occurs at 0.5 < |ϕ0| < 2.64. In
further numerical examples the angle ϕ0 will be taken to
be equal to 0.7 rad. In particular, at these parameters the
numerical value of the coefficient ζ (14) in the derivative
of the refractive index (13) equals ζ (0.4047 μm, 0.7) ≈
0.12.

The second NWO part in the phase mismatch (3),
1

4k1
(�k1 ⊥ − �k2 ⊥)

2
, is determined by Eq. (8), and together with

the expression of Eq. (11) this gives

�NWO = π
(θ1 + θ2)2 + 8no(np − no) − θ2

0 (α1 − α2)2

4noλp

≡ π

4noλp

[
(θ1 + θ2)2 − 4θ2

0 − θ2
0 (α1 − α2)2

]
, (15)

FIG. 3. The difference of the refractive indices np − no as a
function of ϕ0 for a BBO crystal and the wavelength λp = 0.4047 μm.

033830-3



M. V. FEDOROV PHYSICAL REVIEW A 93, 033830 (2016)

where the angular width of the emission cone θ0 is defined at
last as

θ0 = √
2no(no − np). (16)

Numerically, for a BBO crystal at λp = 0.4047 μm and ϕ0 =
0.7, Eq. (16) yields θ0 = 0.28 ≈ 16◦.

The next simplification step is the linear approximation
in the phase mismatch similar to that of Ref. [11]. The θ1,2-
dependent part of the expression in square brackets in the
second line of Eq. (15) can be rewritten as

(θ1 + θ2)2 − 4θ2
0 ≡ 4θ0(θ1 + θ2 − 2θ0) + (θ1 + θ2 − 2θ0)2.

(17)

Owing to the assumptions of Eq. (7), the second, quadratic,
term on the right-hand side of this equation is much smaller
than the first, linear term, θ1 + θ2 − 2θ0. In the linear approxi-
mation the quadratic terms in θ1,2 − θ0 can be dropped, as well
as the term quadratic in the difference of azimuthal angles in
Eq. (15), θ2

0 (α1 − α2)2, to give

�lin
NWO = π

noλp

θ0(θ1 + θ2 − 2θ0). (18)

Smallness of contributions of the dropped quadratic terms to
the argument of the sinc function will be estimated below in
Sec. II F.

Note also that, in accordance with Eq. (15), the constant part
of the phase mismatch, which is independent of any variables,
equals −πθ2

0 /noλp, and this gives the following expression
for the constant term in the argument of the sinc function in
Eq. (2):

φ = L�0

2

∣∣∣∣
θ1,2=0,α1=α2

= − πθ2
0 L

2noλp

. (19)

Estimated at the same values of parameters as indicated above
(θ0 = 0.28, λp = 0.4047 μm, no = 1.66109 μm) and L =
0.5 cm, Eq. (19) gives φ ≈ −925, which exceeds significantly
the values φ = −2.3 or φ = −4 of Refs. [7] and [6]. At the
same values of λp, L and no as used above, the indicated
small values of φ correspond to a very small degree of
noncollinearity, θ0 � 0.019 ≈ 1◦. As shown below, this large
difference with the case under consideration (θ0 = 0.28 ≈
16◦) explains a large difference in the predicted degree of
azimuthal entanglement.

E. Evaluation of the “walk-off” term

Let us consider now the “walk-off” term in the phase
mismatch determined by Eqs. (11) and (13):

�WO
0 = −2π

λp

ζ (λp,ϕ0)ϕp cos αp. (20)

In this formula ϕp is the polar angle of the pump wave vector
inside the crystal and αp is its azimuthal angle, uncontrollable
directly in experiments. Both of them have to be expressed
in terms of the experimentally controllable photon angles θ1,2

and α1,2 in free space after the crystal. This can be done with
the help of Eq. (1) (the transverse-momentum conservation
rule).

At first, note that the tangent components of wave vectors
are continuous at the crystal-vacuum boundary. For this reason
the left- and right-hand sides of Eq. (1) can be evaluated,
correspondingly, inside and outside the crystal to give, for the
squared terms on both sides of this equation,

k2
p sin2 ϕp ≈ k2

pϕ2
p = (�k1 ⊥ + �k2 ⊥)2 (21)

or

ϕp = λp

2πnp

|�k1 ⊥ + �k2 ⊥|, (22)

with known expressions for (�k1 ⊥ + �k2 ⊥)2 and, hence, |�k1 ⊥ +
�k2 ⊥| in terms of θ1,2 and α1,2 [(6) and (8)].

Another way of using Eq. (1) consists of projecting both
of its sides on the direction perpendicular to the vector �kp ⊥.
Then, clearly, the left-hand side of Eq. (1) gives zero, and the
right-hand side gives the equation for finding cos αp:

sin θ1 sin(α1 − αp) − sin θ2 sin(α2 − αp) = 0, (23)

The solution of this equation is given by

cos αp= sin θ1 cos α1 − sin θ2 cos α2

[sin2 θ1 + sin2 θ2 − 2 sin θ1 sin θ2 cos(α1 − α2)]1/2
.

(24)

The denominator of this expression is easily recognized to be
coinciding with the angular part of |�k1 ⊥ − �k2 ⊥| of Eq. (6).
The numerator of the fraction in Eq. (24), as previously done,
can be expanded in powers |θ1 − θ2| and |α1 − α2| with only
the lowest-order (linear) terms being retained. Then the final
expression for cos αp takes the form

cos αp = π/λp

|�k1 ⊥ + �k2 ⊥|
× [(θ1 − θ2) cos α0 − θ0 sin α0(α1 − α2)], (25)

where

α0 = α1 + α2

2
. (26)

In contrast to the difference of azimuthal angles α1 − α2,
which is assumed to be small, their sum and a half-sum α0

can change in rather wide ranges, π
2 � α0 � −π

2 . With the
obtained expressions (22) and (25), the contribution (20) of
the walk-off term into the phase mismatch � takes the form

�WO
0 = −πζ

(θ1 − θ2) cos α0 − θ0 sin α0(α1 − α2)

λpnp

. (27)

Note that this expression can seem to be antisymmetric with
respect to the variable transposition θ1 � θ2, α1 � α2, which
cannot be true. However, it should be kept in mind that, in
accordance with the definition of the angles α1,2 shown in
Fig. 2, the variable transposition must be accompanied by the
shift of both angles α1 and α2 for π , which changes the signs of
cos α0 and sin α0 and provides the symmetry of the expression
(27).

F. Final expressions for the wave function and its
double-Gaussian representation

Summation of all derived results (2), (18), and (27) gives
the following general expression for the biphoton angular wave
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function:

� ∝ exp

{
− (θ1 − θ2)2 + θ2

0 (α1 − α2)2

2�θ2
p

}

×sinc

{
1

2�θL

[
θ0(θ1 + θ2 − 2θ0)

− no

np

ζ ( cos α0(θ1 − θ2) − sin α0θ0(α1 − α2))
]}

, (28)

where �θp = λp/πwp and �θL = noλp/πL, and the first
exponential factor is the pump angular amplitude of Eq. (2)
with the expression for (�k1⊥ + �k2⊥)2 taken from Eq. (8).

As mentioned above, in principle, the walk-off terms make
the angular biphoton wave function axially asymmetric, which
is seen in its dependence not only on the difference of
azimuthal angles α1 − α2 but also on their sum via α0 (26).
The symmetry returns in the NWO approximation when the
expression (28) takes the form

�NWO ∝ exp

{
− (θ1 − θ2)2 + θ2

0 (α1 − α2)2

2�θ2
p

}

× sinc

{
1

2�θL

[θ0(θ1 + θ2 − 2θ0)]

}
. (29)

In addition to the dependence only on the difference of
azimuthal angles α1 − α2, the remarkable feature of the NWO
approximation consists of factorization of the dependencies
on polar and azimuthal angles. In other words, the NWO
wave function (29) takes the form of a product of two factors
�NWO = �

pol
NWO × �az

NWO, with �
pol
NWO and �az

NWO depending,
correspondingly, only on polar and only on azimuthal angles:

�
pol
NWO(θ1,θ2) ∝ exp

{
− (θ1 − θ2)2

2�θ2
p

}

× sinc

{
1

2�θL

[θ0(θ1 + θ2 − 2θ0)]

}
(30)

and

�az
NWO(α1,α2) ∝ exp

{
−θ2

0 (α1 − α2)2

2�θ2
p

}
. (31)

These simple expressions for the polar and azimuthal wave
functions can be used for explicit evaluation of smallness of
contributions to the argument of the sinc function from the
dropped quadratic terms in the transition from Eq. (15) to
Eq. (18). Indeed, in accordance with Eq. (30), a characteristic
value of θ1 + θ2 − 2θ0 can be found from the condition that the
argument of the sinc function is on the order of unity, which
gives θ1 + θ2 − 2θ0 ∼ �θL/θ0. Then the contribution to the
argument of the sinc function from the dropped quadratic term
in the phase mismatch (17) is evaluated as

(θ1 + θ2 − 2θ0)2

�θL

∼ �θL

θ0
∼ λp

θ2
0 L

∼ 10−3 � 1, (32)

for L = 0.5 cm, λp ∼ 0.5 μm, and θ2
0 ∼ 0.1.

The second dropped quadratic term in the linearized phase
mismatch (18) is θ2

0 (α1 − α2)2. The difference of azimuthal
angles can be estimated from Eq. (31) as |α1 − α2| ∼ �θp/θ0,

and this gives the following estimate for its contribution to the
argument of the sinc function:

θ2
0 (α1 − α2)2

�θL

∼ �θ2
p

�θL

∼ Lλp

w2
p

∼ 10−4 � 1 (33)

at wp = L = 0.5 cm and λp ∼ 0.5 μm. Actually, the ex-
pression on the right-hand side of the last equation is the
inverse Rayleigh range or the ratio of the crystal length to the
diffraction length of the pump. In any case, the estimates of
Eqs. (32) and (33) indicate clearly that at the chosen values of
all parameters the linear approximation of the phase mismatch
(18) is perfectly justified.

In contrast to the considered case, beyond the NWO
approximation, with the walk-off terms taken into account,
there is no factorization in the wave function of Eq. (28) for
parts depending on polar and azimuthal variables, and no axial
symmetry. However, the linear approximation for the phase
mismatch remains valid.

The next step of simplifications in the general expression
(28) consists of the replacement of the squared sinc function
by the appropriately chosen Gaussian function [15–17]. For
the case with the argument of the sinc function being a linear
function of variables, the best modeling is

sinc2(x) → exp(−0.359x2), (34)

with 0.359 being the best fitting parameter. With this replace-
ment, Eq. (28) takes the form

|�(θ1,α1; θ2,α2)|2

∝ exp

[
− (θ1 − θ2)2 + θ2

0 (α1 − α2)2

�θ2
p

]

× exp

{
− 0.359

4�θ2
L

[
θ0(θ1 + θ2 − 2θ0)

− no

np

ζ (cos α0(θ1 − θ2) − sin α0θ0(α1 − α2))

]2}
. (35)

Note that the arguments of both exponents are quadratic in
variables and, thus, the linear approximation in the argument
of the sinc function in Eq. (28) fits perfectly the quadratic
dependencies in the Gaussian functions (35).

The expression (35) for the squared biphpoton azimuthal-
polar wave function can be integrated over either polar or
azimuthal angles to give, correspondingly, purely azimuthal
or purely polar probability density distributions. The polar
distribution received in this way looks rather complicated
and will be analyzed and discussed elsewhere, whereas the
azimuthal distribution is discussed in detail in the following
section.

III. ENTANGLEMENT

As mentioned in the Introduction, the main goal of
the present consideration consists of characterization and
evaluation of the purely azimuthal entanglement of biphotons
independently of entanglement in the second degree of
freedom, i.e., in polar angles.
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FIG. 4. Density plot of the biphoton azimuthal distribution (36).

A. Coincidence and single-particle widths

It is known [18,19] that the degree of entanglement of
bipartite states with continuous variables can be found by
means of single-particle and coincidence measurements. Such
measurements can be used to plot curves of the corresponding
distributions of numbers of registered particles in dependence
on the corresponding variables. The ratio of widths of the
single-particle and coincidence distributions is the parameter
R characterizing the degree of entanglement [18]. Mathemat-
ically, this parameter is defined as the ratio of the widths
of the curves of unconditional and conditional probability
densities. For double-Gaussian wave functions this parameter
is known [19] to coincide exactly with the Schmidt parameter
K = 1/T r(ρ2

r ), where ρr is the reduced density matrix of the
bipartite state. It is clear also that if particles in a bipartite
state have two degrees of freedom, then to find probability
distributions and entanglement in one of these degrees of
freedom, one has to integrate the total two-degrees-of-freedom
distribution over variables characterizing the second degree of
freedom.

Complete independence of azimuthal and polar-angle parts
in the biphoton angular wave function occurs in the NWO
approximation (29), when the distribution of the biphoton
azimuthal probability density is given by

dW az
NWO

dα1dα2
= ∣∣�az

NWO

∣∣2 = �θp/θ0

π3/2
exp

[
−θ2

0 (α1 − α2)2

�θ2
p

]
,

(36)

with |α1,2| � π/2 and

π

2
� α0 ≡ α1 + α2

2
� −π

2
. (37)

As �θp is very small (∼λp/wp ∼ 10−4), the preexponential
coefficient in the expression on the right-hand side of equation
(36) provides the unit normalization of the probability density,∫

dα1dα2
dW az

NWO

dα1dα2
= 1.

The density plot of the distribution (36) is shown schematically
in Fig. 4. In the map (α1,α2), this is a very narrow ridge of a

unit hight, going along the diagonal α1 = α2 from α1 = α2 =
−π/2 and up to α1 = α2 = π/2.

The coincidence distribution in α1 has to be measured with
two detectors: one of them counting photons only at some
given value of α2 and the second one scanning, in the map
(α1,α2), along the horizontal line α2 = const (the blue dashed
line in Figure 4), and with only joint signals registered. In
single-particle measurements one has to use only one detector
scanning horizontally [in the map (α1,α2)] and registering all
photons, independently of and at all possible values of the
second-photon azimuthal angle α2. Clearly, the coincidence
and single-particle widths in such schemes of measurements
are equal to

�α
(c)
1 = �θp

θ0
, �α

(s)
1 = π, (38)

and they correspond to the entanglement parameter

R = �α
(s)
1

�α
(c)
1

= πθ0

�θp

= π2θ0
wp

λp

∼ 104. (39)

Beyond the NWO approximation, polar and angular vari-
ables are not separated in the total wave function (28). In
this case the bipartite azimuthal probability density can be
obtained from the squared wave function of Eq. (35) by
means of integration over the polar angles θ1 and θ2, or,
equivalently, at first over θ1 + θ2 and then over θ1 − θ2. An
important feature of this integration is related to the structure
of the second exponential function in Eq. (35). Though it
depends on both θ1 + θ2 and θ1 − θ2, its integration over
θ1 + θ2 from −∞ to +∞ gives just a number independent
of any variables. This is a direct consequence of the linear
approximation used for evaluation of the argument of the sinc
function in Eq. (28). The second integration, over θ1 − θ2, is
carried out equally easy to give the expression for the azimuthal
biphoton distribution coinciding with that derived in the NWO
approximation (36) and shown in Fig. 4. Hence, all estimates
of the azimuthal coincidence and single-particle widths (38),
and of the parameter of azimuthal entanglement R (39) remain
valid even beyond the NWO approximation when the walk-off
term is taken into account in the phase mismatch in the linear
approximation in θ1 ± θ2 and α1 − α2. Note that this proof is
valid explicitly only for the described derivation of the param-
eter R, because the widths in its definition (39) are defined
as widths of the probability distributions dW/dα1dα2|α2=const

and
∫

dα2dW/dα1dα2, rather than widths of wave functions.
In contrast to this, the alternative derivations described
in the following two subsections deal with wave func-
tions and, thus, they are valid directly only in the NWO
approximation.

Note also that the described picture of the biphoton
distribution in azimuthal angular variables (36) is rather
peculiar and unusual. Its very special feature is the dependence
only on the difference of azimuthal angles of photons α1 − α2

and the missing dependence on their sum or α0 = 1
2 (α1 + α2).

In this case the only limitation for α0 is related to its limited
range of variation, |α0| � π . A great difference between
this limitation and the width of the azimuthal distribution in
α1 − α2 (∼�θp/θ0) is a factor providing a very high degree of
azimuthal entanglement. These features of the azimuthal distri-
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bution contrast with those of the above-mentioned distribution
in polar angles θ1,2, as well as with features of distributions
in Cartesian variables (e.g., kx 1,2 and ky 1,2), which are always
characterized by wave functions with limited and comparable
ranges of localization both in sums and differences of the
corresponding variables. In this sense the azimuthal degree of
freedom is unique: this is the only degree of freedom for which
the distribution in variables has the above-described unusual
features. Qualitatively there are two main reasons for such
features of the biphoton azimuthal distribution. One of them
is the axial symmetry of the biphoton distribution occurring
in the NWO approximation. Mathematically, this symmetry
shows itself just in the missing dependence of the biphoton
azimuthal-angle probability density (36) on α0 = 1

2 (α1 + α2)
and its dependence only on α1 − α2. But, as shown above,
the same results occur even beyond the NWO approximation
if the phase mismatch [(18) and (27)] and the argument
of the sinc function in Eq. (28) are taken in the linear
approximation in the angular variables θ1,2 − θ0 and α1 − α2.
In this approximation, though the walk-off terms do affect
the distribution in the polar angles, they do not affect the
distribution in the azimuthal-angle variables. Thus, the linear
approximation is the second key reason for the unusual features
of the azimuthal distribution and very high degree of azimuthal
entanglement. Validity of the linear approximation is justified
by the assumption about sufficiently high noncollinearity of the
SPDC process determined by the conditions (7). Transition to
the case of smaller noncollinearity, and related modifications
in the character and degree of azimuthal entanglement, will be
discussed separately elsewhere.

B. Schmidt-mode analysis

The same results as described above can be obtained in
the Schmidt-decomposition formalism. Azimuthal Schmidt
modes can be found with the help of a slight modification in the
azimuthal wave function �NWO (29). Let the restriction |α0| �
π/2 (37) be imitated (replaced) by an additional Gaussian
factor exp [−(α1 + α2)2/8π2], which reduces the azimuthal
wave function to the standard double-Gaussian form of
Ref. [19]:

�̃ = N exp

(
− (α1 + α2)2

2a2

)
exp

(
− (α1 − α2)2

2b2

)
(40)

with N = √
2/πab, a = 2π , b = �θp/θ0, and, evidently, a �

b. For such wave functions their Schmidt decomposition and
Schmidt modes are known [15,16,20]:

�̃(α1,α2) =
∑

n

√
λnψn(α1)ψn(α2), (41)

where

λn = 4ab

(a + b)2

(
a − b

a + b

)2n

, (42)

ψn are Schmidt modes

ψn =
(

2

ab

)1/4

un

(√
2 α√
ab

)
, (43)

and un(x) are the Hermite-Gaussian functions

un(x) = (2nn!
√

π )−1/2e−x2/2Hn(x). (44)

The constants λn (42) determine the Schmidt parameter
K characterizing both the degree of entanglement and the
effective dimensionality of the Hilbert space:

K = 1∑
n λ2

n

= a2 + b2

2ab
≈ a

2b
= πθ0

�θp

= π2θ0 w

λp

. (45)

Comparison with Eq. (39) shows that the entanglement
parameters K and R are identically equal to each other and,
thus, the derivation in terms of Schmidt modes confirms
perfectly the very high level of azimuthal entanglement found
above.

C. OAM analysis

Let us consider only the azimuthal part (31) of the
biphoton angular wave function in the NWO approxima-
tion, exp [−(α1 − α2)2/2[�α(c)]2], with �α(c) = θ0/�θp =
θ0λp/πwp. This function can be expanded in a series of
products of adjoint OAM eigenfunctions eilα1 and e−ilα2 , where
l = 0, ± 1, ± 2, . . . are the OAM eigenvalues:

�az
NWO ∝

∑
l

Cl e
ilα1 × e−lα2 . (46)

The expansion coefficients Cl can be easily found to be
proportional to exp [−l2[�α(c)]2/2] with �α(c) being the
coincidence width of the first Eq. (38). As these coefficients
are even in l, only the real part of the product of OAM
eigenfunctions gives nonzero contribution into the sum over l;
i.e., one can substitute the expression

eilα1 × e−ilα2 ≡ cos[l(α1 − α2)] + i sin[l(α1 − α2)]

with

cos[l(α1 − α2)] = cos lα1 cos lα2 + sin lα1 sin lα2.

As a result, the normalized azimuthal wave function takes the
form of the OAM Schmidt decomposition

�(α1,α2) =
∑

l

√
λ

(OAM)
l

[
ψ

(cos)
l OAM(α1)ψ (cos)

l OAM(α2)

+ ψ
(sin)
l OAM(α1)ψ (sin)

l OAM(α2)
]
, (47)

where

λ
(OAM)
l = �α(c)

2
√

π
exp(−l2[�α(c)]2), (48)

and the OAM Schmidt modes are given by

ψ
(cos)
l OAM(α) =

√
2

π
cos lα, ψ

(sin)
l OAM(α) =

√
2

π
sin lα (49)

with |α| � π/2.
All OAM Schmidt modes are twice degenerate, owing to

which the normalization has the form 2
∑

l λ
(OAM)
l = 1, which

is checked by means of summation substituted by integration
over l. The OAM Schmidt entanglement parameter is defined
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as the inverse double sum of squared λ
(OAM)
l :

K (OAM)
az = 1

2
∑

l

(
λ

(OAM)
l

)2 = (2π )3/2 θ0w

λp

. (50)

Compared to the above-found parameters K (45) and R (39),
the OAM Schmidt parameter (50) is about 1.5 times larger,
whereas all functional dependencies and estimates by the
orders of magnitude in all three cases perfectly coincide. As
a whole, this confirms the main conclusion that the azimuthal
degree of freedom is rather peculiar compared to all other
ones and that, typically, the degree of azimuthal entanglement
is very high.

IV. MULTICHANNEL SCHIMDT-TYPE DECOMPOSITION

Thus, the consideration given above indicates that the
resource of entanglement that can be accumulated in the az-
imuthal variables of noncollinear biphotons can be very high.
This means that the effective dimensionality of the Hilbert
space and the amount of equally important Schmidt modes
in any kind of Schmidt decomposition are also very high, on
the order of Kaz ∼ K (OAM)

az ∼ θ0wp/λp ∼ 104. Such a high
amount of important Schmidt modes can make problematic
their physical separation, which can be needed for practical
purposes. Indeed, the high-order Hermit-Gaussian functions
(44) are very strongly oscillating, and neighboring Schmidt
modes are very similar to each other. For these reasons, the
task of separation of true Schmidt modes in experiments
looks almost hopeless. Solution of this problem consists of
separation of other orthogonal sub-states, which are not true
Schmidt modes, but a superposition of which looks like the
Schmidt-type decomposition. A scheme of such an experiment
is shown in Fig. 5. In this scheme pairs of photons are collected
from a series of different planes (xn,z) with axes 0xn ∈ (xy)
directed at angles α(n) with respect to the horizontal x axis.
In each plane (xn,z) photons arise approximately at opposite
ends of the corresponding diameters around azimuthal angles
α

(n)
1 = α(n) and α

(n)
2 = α(n) + π . Black spots at the ends of

FIG. 5. A scheme of a possible experiment for getting the multi-
channel Schmidt-type decomposition of noncollinear biphoton states,
revealing partially their high resource of azimuthal entanglement;
“BS” are beam splitters.

diameters symbolize receiving fibers, sizes of which are
assumed to be larger than the ring thickness (∼�θL/θ0) to
collect all photons with different polar angles θ at any given
αn. On the other hand, the azimuthal-angle distances between
neighboring planes α(n+1) − α(n) must be larger than sizes of
receiving fibers and than the coincidence azimuthal width
�θp/θ0. This last condition provides orthogonality of states
arising in different planes (xn,z). After collection, each pair of
photons from each given plane (xn,z) is sent (with equalized
optical path lengths) to its own beam splitter, which is a
Hong-Ou-Mandel transformer [21] directing united unsplit
pairs of photons either to the up or down channels. In this
way one can get a multichannel Schmidt-type decomposition
with unified pairs of photons originating from each plane (xn,z)
propagating in one of the channels.

Note that a scheme with collecting photons from different
points of the emission ring has been realized experimentally in
the works [22,23]. Compared to these experiments, the scheme
of Fig. 5 is simpler. In particular, the experiment [22] deals
with the four-mode biphoton states, whereas the scheme of
Fig. 5 assumes using only two-mode states. Also, a scheme of
manipulations with collected photons in the experiment [22] is
more complicated than that of Fig. 5, where only a single beam
splitter is assumed to be used for any given two-mode state. But
the final goals are similar: formation of multipath entangled
states. Also, it is worth noting that there are other schemes
for creating multichannel orthogonal decompositions, even
from a single-plane collection of noncollinear biphotons sent
afterwards on the multislit devices [24–26].

By returning to the scheme of Fig. 5, the state vector of all
manifold of photons to be collected in the N planes is given
by

|�〉 = 1√
N

N∑
n=1

∣∣1
α

(n)
1

,1
α

(n)
2

〉
. (51)

The state vector of the state arising after the HOM transformers
is given by

|�〉final = 1√
2N

N∑
n=1

(|2↑ n〉 − |2↓ n〉), (52)

where the arrows ↑ and ↓ indicate the up and downchannels
and n indicates the plane (xnz) from which pairs of photons
arrive at the nth beam splitter BSn. Two such pairs of
channels are shown in Fig. 5. Altogether, the state (52)
describes a physically separated multichannel Schmidt-type
decomposition. In this state each pair of SPDC photons can
appear with equal probability λn = 1/2N in one and only one
(but arbitrar) of the 2N channels. The degree of entanglement
in such a state grows with the growing amount of channels.
The Schmidt parameter K and entropy of the reduced density
matrix are equal to

K = 2N, Sr = −2
N∑

n=1

λn log2 λn = 1 + log2 N. (53)

The maximal amount of channels which can be created in
this way is limited by the condition of orthogonality of
“modes” arising in neighboring planes, αn+1 − αn � �α(c),

033830-8



AZIMUTHAL ENTANGLEMENT AND MULTICHANNEL . . . PHYSICAL REVIEW A 93, 033830 (2016)

where �α(c) = πθ0λp/wp ∼ 10−4. If αn+1 − αn is taken to
be 10 times larger than �α(c), this gives Nmax ∼ Kmax ∼ 103.
Of course, in reality the maximal achievable degree of entan-
glement can be limited at lower values because of technical
reasons. Nevertheless, it seems evident that the realizable
amount of channels and achievable degree of entanglement
in this scheme can be very high.

In principle, with the help of attenuators, the decomposition
coefficients in |�〉final (52) can by made different. Also, phases
in front of terms |2↑n〉 and |2↓n〉 can be arbitrary modified to
reduce the state (52) to the form

|�̃〉 = 1√∑
n(λ↑n + λ↓n)

×
N∑

n=1

(
√

λ↑ne
iφ↑n |2↑n〉 − √

λ↓ne
iφ↓n |2↓n〉). (54)

With the normalization taken into account and with exclusion
of the unmeasurable common phase, this leaves 2(2N − 1)
parameters λi and φi , which can be used for encoding and
transmission of information. Being transmitted, this informa-
tion is readable with a series of measurements. The constants
λi can be measured by counting numbers of photons in all
channels. As for measurement of the phases φi , one can apply
the procedures described in Refs. [11,27]. At first, one has to
change photon polarizations (H → V ) in one of the channels
i0. Then the signal from this channel has to be merged with the
signal from any other channel i with the help of the polarization
beam splitter. Finally, the arising unified beam has to be split
again by the beam splitter turned 45◦ around the propagation
direction, and the coincidence signal between the two arising

channels will provide information about the relative phase
φi − φi0 [27]. Repeated for all i channels, these measurements
will permit one to reconstruct all information accumulated in
the constants λi and φi .

V. CONCLUSION

Entanglement of noncollinear biphoton states in azimuthal
angles of photon wave vectors is considered, and the degree
of azimuthal entanglement is found to be extremely high.
The degree of azimuthal entanglement is evaluated by three
methods: (1) by finding the parameter R given by the ratio
of the single-particle to coincidence widths of the angular
distributions, (2) via the Schmidt parameter K found for
a model double-Gaussian wave function of two azimuthal
angles, and (3) in terms of the OAM analysis, in the frame
of which the OAM Schmidt modes and decomposition are
defined and found, as well as the OAM Schmidt number KOAM

az .
All three methods are found to give the same estimate for the
degree of entanglement, which is found to be determined by
the ratio of the pump waist to its wavelength times the opening
angle of the SPDC emission cone, θ0 w/λp. For reasonably
chosen values of all parameters the degree of entanglement
and the effective dimensionality of the Hilbert space are found
to be on the order of 104 � 1. A scheme is suggested for
this very high resource of azimuthal entanglement to be seen
experimentally, at least partially.
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