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Effects of modal dispersion on few-photon–qubit scattering in one-dimensional waveguides
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We study one- and two-photon scattering from a qubit embedded in a one-dimensional waveguide in the
presence of modal dispersion. We use a resolvent based analysis and utilize techniques borrowed from the Lee
model studies. Modal dispersion leads to atom-photon bound states which necessitate the use of multichannel
scattering theory. We present multichannel scattering matrix elements in terms of the solution of a Fredholm
integral equation of the second kind. Through the use of the Lippmann-Schwinger equation, we derive an infinite
series of Feynman diagrams that represent the solution to the integral equation. We use the Feynman diagrams
as vertex correction terms to come up with closed-form formulas that successfully predict the trapping rate of
a photon in the atom-photon bound state. We verify our formalism through Krylov-subspace based numerical
studies with pulsed excitations. Our results provide the tools to calculate the complex correlations between
scattered photons in a dispersive environment.
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I. INTRODUCTION

Recent experimental advances in coupling the radiation
from quantum emitters into waveguides [1–5] motivates us to
analyze light-matter interactions in waveguiding structures. In
a waveguide geometry, the propagating modes slow down due
to modal dispersion, which leads to an increased photon-qubit
coupling in plasmonic and photonic crystal waveguides [6].
Additionally, tight confinement of the modes boosts coupling
as well [7]. Furthermore, effects of dispersion are also im-
portant for single-photon and squeezed light sources that rely
on phase matching [8]. Dispersive effects, particularly around
the band edges, also provide the means to simulate many-
body systems using atoms trapped near photonic waveguides
[9]. Many quantum information processing and quantum
communication proposals require the generation of highly
correlated photonic states that encode information in them.
Controlled interaction of photons and qubits is a key element
of these proposals [10].

Initial studies on qubit-photon dynamics in a dispersive
medium focused on single-photon events near a photonic
band-gap edge [11–16] and near the cut-off frequency of
propagating waveguide modes [17]. In these systems, large
changes in the density of photonic states lead to effects such
as nonexponential decay of excited qubits and enhancements
in photon emission spectrum.

Through the use of the Bethe ansatz technique, analysis of
two-photon scattering in waveguides with embedded qubits
became possible for a linearized modal dispersion [18].
Similar results were later obtained via Lehmann-Symanzik-
Zimmermann reduction [19], input-output method [20], and
diagrammatic series summation [21] as well. Gaussian pulse
scattering [22,23] and interaction of photons with more than
one qubit in a waveguide with a linearized dispersion relation
were subsequently presented [24–27].

Meanwhile, Krylov subspace [28–30], density-matrix
renormalization group [31], matrix product state [32], master
equation [33] based numerical methods were developed. Re-
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cently, numerical analysis of arbitrary dispersion of waveguide
modes in a multiphoton setting became possible [34].

Investigation of photon-qubit scattering in dispersive
waveguides remained mostly at the single-photon level. Tight-
binding cosine dispersion [19,35–40], a quadratic dispersion
[41], and rectangular waveguide dispersion [42] were mod-
eled; extensions were made for multimode waveguides.

One of the interesting effects that develops as a result
of dispersion is the existence of atom-photon bound states
[38,43–45]. Trapping photons in such a bound state was
numerically shown in Ref. [29] by investigating the time
evolution of a two-photon wave packet. Two-photon scattering
matrix elements, involving the bound states, for a tight-binding
system were presented in Ref. [46] through the use of
the scattering eigenstates by solving the time-independent
Schrödinger equation. The solution in Ref. [46] utilizes tech-
niques developed for the Lee model [47–49]. The Lee model
involves two neutral fermions and a relativistic boson field.
Although it has been described as a “guinea pig” [50] on which
mathematical tricks can be deployed at will, the Lee model
played an important role in the birth of the renormalization-
group idea which led to the solution of the Kondo problem [51].

We will follow the lead in Refs. [19,46] and look further
into the links between the Lee model and the multimode
Jaynes-Cummings Hamiltonian that describes photon-qubit
scattering. We will use a resolvent (i.e., Green’s function)
based analysis method, different than the Schrödinger equation
based one used in Ref. [46]. Our analysis will require us to
utilize multichannel scattering formalism to come up with
formulas for predicting elements of the scattering matrix
for the case of two photons interacting with a qubit in a
dispersive environment. In our quest to obtain the S-matrix
elements, we will derive the rules for Feynman diagrams and
use the diagrams to understand the scattering pathways. We
will also provide the analysis with which one can correlate
the results from Krylov-subspace based numerical simulations
with pulsed excitations, and the S-matrix elements so as to
obtain an independent verification of the formulas we derive.

In Sec. II we will make certain definitions used throughout
the paper. In Sec. III we will derive one-photon scattering
results and introduce the machinery of Feynman diagrams. In
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Sec. IV we will extend the results to the case of two photons.
We will introduce the concept of a “channel” and derive the
scattering matrix elements in between every possible channel
in Sec. V. In Sec. VI we test our formalism by comparing
it against pulse based numerical scattering simulations. We
discuss our results in Sec. VII and conclude in Sec. VIII.

Very recently, analysis of one- and two-photon scattering
in a waveguide with an arbitrary dispersion relationship was
investigated in Ref. [52] through the use of path integrals
and Feynman diagrams. We will be referring to [52] in the
upcoming sections.

II. DEFINITIONS

We are interested in the coupling of a two-level atom,
also referred to as a qubit, to a single-mode waveguide.
The Hamiltonian for the system is of a multimode Jaynes-
Cummings type [53]. A real-space, discrete version of the
Hamiltonian can be obtained by treating the waveguide as
composed of a linear array of cavities connected to each other
in a one-dimensional (1D) lattice with a tight-binding coupling
between neighboring cavities [28,36,38]. The discrete version
of the Hamiltonian, Hd , is given by (� = 1)

Hd = −J

N∑
x=1

(â†
x+1âx + â†

x âx+1) + �

2
σz

+ g′(σ+â0 + â
†
0σ

−). (1)

Here, â
†
x (âx) are the creation (annihilation) operators for

photons at lattice site x, J is the coupling constant between
neighboring cavities, � is the level separation for the qubit, σi

are the Pauli spin matrices, g′ is the constant coupling constant
between the qubit at x = 0 and the photons, σ± are the raising
or lowering operators for the qubit, N is the lattice size. We
take the separation among coupled cavities as a = 1. Hd can
be written in terms of free propagating photon states with a
wave vector k,

|k〉 = 1√
N

∑
x

eikx |x〉,

to get

Hd =
∑

k

ωkâ
†
kâk + �

2
σz + g′

√
N

∑
k

(σ+âk + â
†
kσ

−),

where
ωk = −2J cos k. (2)

We take the large N limit with diminishing �k = 2π/N to
transition to a continuous set of k values by changing the sums
to integrals via �k

∑
k → ∫

dk, and the discrete operators to
continuous ones with âk/

√
�k → ak to get [20]

H =
∫ π

−π

dkωka
†
kak + �

2
σz︸ ︷︷ ︸

H0

+ g

∫ π

−π

dk(σ+ak + a
†
kσ

−)︸ ︷︷ ︸
V

, (3)

in which the continuous coupling parameter g is related to the
discrete one as

g = g′
√

2π
. (4)

We separate the Hamiltonian into a noninteracting part H0 and
a coupling part V as well.

We define the resolvent of the Hamiltonian as [54]

G(z) = 1

z − H
.

The resolvent is closely related to the time evolution operator
via

U (t > 0) = lim
η→0+

1

2πi

∫ −∞

+∞
e−ixtG(x + iη).

The time evolution operator U (t > 0) is effectively the inverse
Laplace transform of iG(is) such that

U (t > 0) = L −1{iG(is)}(t),
which can be seen from the Bromwich integral representation
of L −1. The resolvent operator also satisfies the Lippmann-
Schwinger equation for G(z),1

G(z) = G0(z) + G0(z)V G(z), (5)

= G0(z) + G(z)V G0(z), (6)

where

G0(z) = 1

z − H0
. (7)

III. ONE-PHOTON SCATTERING, BOUND STATES,
FEYNMAN DIAGRAM REPRESENTATION

We will first start by calculations in the one-photon sector.
The notation we use is borrowed from [56] in which the Lee
model is solved in its lowest excitation sector. There are four
relevant matrix elements of G(z):2

G1(z) ≡ 〈↑|G(z)|↑〉,
G2(z; k) ≡ 〈k↓|G(z)|↑〉,
G3(z; k) ≡ 〈↑|G(z)|k↓〉,

G4(z; p,k) ≡ 〈p↓|G(z)|k↓〉.
Here |↑〉 and |↓〉 represent the excited and ground states of the
qubit. Through the use of (5) and (6) we get coupled equations
among the matrix elements of G(z). To do so observe that

〈p↓|G0(z)|k↓〉 = δ(k − p)

z − ωk + �/2
,

〈↑|G0(z)|↑〉 = 1

z − �/2
, (8)

since |k↓〉 and |↑〉 are eigenstates of H0. Additionally, the
identity operator in the one-photon sector, 11P, is given by

11P = |↑〉〈↑| +
∫ π

−π

dk|k〉〈k|. (9)

1See Chap. 8 of [55].
2These four functions are analogous to the four τ̂ functions in

Ref. [56].
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FIG. 1. ω± as a function of � for g′ = 1 and g′ = 2. J = 1 taken.
The values at � = 0 are highlighted with filled circles.

By sandwiching (9) in between V and G in Eqs. (5) and (6),
using (8) one can derive

G1(z) = 1

z − �/2

(
1 + g

∫ π

−π

dkG2(z; k)

)
,

G2(z; k) = gG1(z)

z + �/2 − ωk

= G3(z; k),

G4(z; p,k) = δ(k − p) + gG3(z; k)

z + �/2 − ωp

.

Substitution of G2(z) into the expression for G1(z) gives us

G1(z) =
(

z − �/2 − g2
∫ π

−π

dk
1

z + �/2 − ωk

)−1

.

We call the integral in the expression above

I (z) ≡
∫ π

−π

dk
1

z − ωk

, (10)

and with this definition the solutions to other matrix elements
become

G1(z) = 1

z − �/2 − g2I (z + �/2)
, (11)

G2(z; k) = g

(z + �/2 − ωk)
G1(z),

G3(z; k) = G2(z; k),

G4(z; p,k) = δ(k − p)

(z + �/2 − ωk)

+ g2G1(z)

(z + �/2 − ωk)(z + �/2 − ωp)
. (12)

Properties of I (z) are summarized in Appendix A.
The poles of G1(z) are related to the bound states

of the system. There are two poles with energies ω± outside
the [−2J,2J ] band. Properties of these two bound states for
the � = 0 case were investigated in Ref. [38]. They are also
summarized in Appendix B for completeness. When we work
with bound states, we will also take � = 0 due to the simplicity
of the closed-form formulas for ω± in that particular case. In
Fig. 1 we plot ω± as a function of � for different g′ values.
The special case for � = 0 is highlighted in the figure with
filled circles. At large |�| values one of the poles gets close
to � whereas the other one converges to a value near ±2J ,
but still remaining outside of the band of allowed states, i.e.,

FIG. 2. Photonic part of the bound state as a function of x for
(a) g′ = 1 and (b) g′ = 2, � = 0, J = 1 taken. Black (•) and red (◦)
curves refer to the + and − bound states, respectively. Description of
the bound states is available in Appendix B.

|ω±| > 2J for all �. In Fig. 2 we present the photonic part of
the bound state for the � = 0 case for two values of g′. As can
be seen from the figures, a higher g′ value leads to a tighter
confinement of the photons around the qubit.

The spontaneous emission from an initially excited atom at
t = 0 is of the form of an exponential decay in a nondispersive
waveguide where the photon energy and the k vector are
linearly proportional [57]. However, in a structured photon
medium with dispersion, the picture changes [12]. We can
calculate the time evolution e(t) of an initially excited atom
(with � = 0) as

e(t) = 〈↑|U (t > 0)|↑〉 = L −1{iG1(is)}(t)

= L −1

{
1

s + g′2/
√

4J 2 + s2

}
(t)

= L −1

{
s(s2 + 4J 2)

s4 + 4J 2s2 − g′4 − g′2√s2 + 4J 2

s4 + 4J 2s2 − g′4

}
(t).

(13)

The first term of the last line can easily be inverted by
partial fraction expansion. The second term can be written
as a convolution integral in time domain. Details are left to
Appendix C. In Fig. 3,3 we plot e(t) for g′ = 2. As seen
in the figure, the evolution of atomic excitation is far from
being an exponential decay and shows constant oscillations
at steady state. These oscillations are a signature of the
excitation of the atom-photon bound state in which the atomic

3This figure provides the same information as given in Fig. 2(e) in
Ref. [38] and verifies our formalism in the one-photon sector. See
Eq. (27) in Ref. [38] for the derivation of the 4p2

b limiting value.

033829-3
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FIG. 3. e(t) for g′ = 2 with � = 0 and J = 1.

excitation probability is trapped at the fixed value 4p2
b with a

corresponding photonic cloud around it as in Fig. 2.
Now that we have an understanding of the link between time

evolution and the resolvent, in principle we can start from an
asymptotic state in the infinite past and use the time evolution
operator to arrive at an asymptotic state in the infinite future to
get the scattering matrix element in between those two states.4

However, a more concise way would be to make use of the
relationship between the S matrix and the T operator given as

〈p↓|S|k↓〉 = 〈p|k〉 − 2πi δ(ωp − ωk)

× lim
η→0+

〈p↓|T (ωp − �/2 + iη)|k↓〉, (14)

where T satisfies the Lippmann-Schwinger equation

T (z) = V + V G0(z)T (z). (15)

T (z) and G(z) are intimately related via

T (z) = V + V G(z)V,

G(z) = G0(z) + G0(z)T (z)G0(z), (16)

hence the knowledge of one is sufficient to obtain the other.
Due to the close relationship between S and T matrix

elements, it is of use to get a series representation of T (z).
To do so, we use (15). We first ignore the T (z) term on the
right-hand side and set T (z) ≈ V , the inhomogeneous term.
We then use this expression as an approximation to T (z) on
the right-hand side to get T (z) ≈ V + V G0V . We continue
the iteration process to get an infinite series representation of
T (z) as

T (z) = V + V G0(z)V + V G0(z)V G0(z)V

+V G0(z)V G0(z)V G0(z)V + · · · . (17)

To get the S-matrix elements, we need to put (17) in between
the bra and the ket associated with the initial and final
asymptotic states. For one-photon scattering those states are
denoted by 〈p↓| and |k↓〉. Terms with an odd number of V

operators in Eq. (17) result in a zero value for this particular
choice of initial and final states. We therefore choose terms
with only an even power of V in the expansion. To calculate

4Such a calculation is available on pp. 222–225 of [54].

FIG. 4. Feynman graphs for the first three nonzero elements
of 〈p↓|T |k↓〉 are labeled with the corresponding matrix element
underneath each graph. Formal summation of all graphs lead to
〈p↓|T |k↓〉 represented by the last graph.

those matrix elements, we need to contract a progressively
larger number of creation and annihilation operators. Luckily,
in the one-photon sector, there is only a single way to form the
contraction. We can denote those nonzero contractions in terms
of Feynman graphs as shown in Fig. 4. The graphs go from
right to left to make the connection with the underlying matrix
element in the bra-ket notation more clear. Our graphical
representation is a slightly modified version of previously
published results in impurity scattering.5

Horizontal straight lines denote the state of the qubit,
labeled underneath the line. Wavy lines represent the photons.
Each intersection of a photon line with a qubit line represents
an interaction term, marked with a filled circle at the vertex.
The number of vertices correspond to the order of the
expansion. When a photon line with a label m terminates at a
vertex with label v, the interaction is of the type g

∫
dvσ+av

which represents the absorption of a photon and the excitation
of the qubit, whereas when a photon line exits a vertex, there
is an interaction with g

∫
dva†

vσ
− that shows the emission of

a photon with label v from the qubit and a lowering of the
qubit state. These terms come from the definition of V in
Eq. (3).

There are external vertices to the right and to the left
of the diagrams. These vertices represent the incoming and
outgoing state of the photons, respectively. External vertices

5See p. 227 of [54] and p. 17, Fig. 1.6(ii) of [58]. We merge the two
representations to draw Fig. 4. In Ref. [52] Feynman diagrams are
drawn in an alternative manner, for the infinite series representation
obtained for G(z).
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only have labels such as k,p. Initial and final states of the
qubit are differentiated by blue lined arrows going towards
the first internal vertex, and going away from the last internal
vertex.

Vertical dashed lines, in between the internal vertices,
represent the effect of the G0 operators in the matrix element.
We look at the intersection of photon lines and the qubit line
with the dashed line to get the state, and thus the energy of
the system at the dashed line position. We associate a factor
(z − ∑

ωn ± �/2)−1 with each dashed line:
∑

ωn for the total
energy of all photons intersecting with the dashed line, ±�/2
for the state of the qubit. This factor comes directly from the
definition of G0 in Eq. (7).

For a given Feynman graph, the rules for constructing the
associated matrix element value are given below:

(1) Photons carry the label of the internal or external vertex
they originate from.

(2) Associate a factor of g for each internal vertex.
(3) Associate a δ(m − v) term for photons with a label m

terminating at an internal or an external vertex v.
(4) Draw dashed lines in between internal vertices and for

each dashed line, associate a (z − ∑
ωn ± �/2)−1 term as

described above.
(5) Integrate over all internal vertex variables.
The application of these rules to the diagrams in Fig. 4

leads to

∫∫ π

−π

dv1dv2g
2 δ(k − v1)δ(p − v2)

z − �/2
+

∫∫∫∫ π

−π

dv1dv2dv3dv4g
4 δ(k − v1)δ(v2 − v3)δ(p − v4)

(z − �/2)
(
z + �/2 − ωv2

)
(z − �/2)

+
∫

· · ·
∫ π

−π

dv1 . . . dv6g
6 δ(k − v1)δ(v2 − v3)δ(v4 − v5)δ(p − v6)

(z − �/2)
(
z + �/2 − ωv2

)
(z − �/2)

(
z + �/2 − ωv4

)
(z − �/2)

+ · · ·

= g2

z − �/2

[
1 + g2I (z + �/2)

z − �/2
+

(
g2I (z + �/2)

z − �/2

)2

+ · · ·
]

= g2

z − �/2 − g2I (z + �/2)
≡ 〈p↓|T (z)|k↓〉.

In the last line, we integrate out the Dirac delta functions,
and employ the definition of I (z) from (10). We see that all
the internal photon contributions, in the shape of “bubbles,”
can be summed to come up with a closed-form expression
for 〈p↓|T |k↓〉. We graphically denote the summation of all
internal bubble diagrams with a hatched qubit line as shown
on the last line in Fig. 4. Since the hatched line contribution
includes both excited and ground states of the qubit, no
particular qubit label is put underneath it. The term associated
with the summed G0 propagator—a dashed line intersecting
the hatched line—with |↓〉 qubit states on both sides is given by
[z − �/2 − ∑

ωn − g2I (z + �/2 − ∑
ωn)]−1. In the one-

photon case,
∑

ωn terms do not show up, however, those terms
will be important when there are two or more photons. The
summed G0 propagator can be used directly when deriving
matrix elements and will be utilized in the two-photon sector.

Our derivation of the matrix element 〈p↓|T |k↓〉 was
through the use of (17). On the other hand, we could have
gotten the same result by noting that we have a closed form
formula for G4 in Eq. (12). It is easy to transition from G4

to 〈p↓|T |k↓〉 via (16). Even though it would have been faster
to obtain 〈p↓|T |k↓〉 in this alternative way, the use of (17)
allowed us to derive the Feynman diagram representations
which will be invaluable in two-photon scattering analysis in
the following sections.

At this moment, we have all the information necessary
to calculate the one-photon scattering matrix. By using the
properties of I (z) from Appendix A we can write the on-shell,6

6Note that we calculated 〈p↓|T (z)|k↓〉 for an arbitrary z value. To
transition to the relevant S-matrix element in Eq. (14) we need the
value at z = ωk − �/2, the energy value of the incoming state |k↓〉,
which leads to the terminology “on the energy shell” or abbreviated

that is z = ωk − �/2, amplitude of the T -matrix element as

lim
η→0+

〈p↓|T (ωk − �/2 + iη)|k↓〉

= −ig22J | sin k|
g′2 + i(2J cos k + �)2J | sin k| ,

where g′ and g are related via (4). In Eq. (14), 〈p|k〉 term
introduces a δ(k − p) factor. We convert δ(ωp − ωk) by the
properties of Dirac delta function and (2) as

δ(ωp − ωk) = δ(k − p)

2J | sin k| + δ(k + p)

2J | sin k| , (18)

to get

〈p↓|S|k↓〉 = tkδ(k − p) + rkδ(k + p),

where

rk = −g′2

g′2 + i(2J cos k + �)2J | sin k| , (19)

tk = 1 + rk. (20)

These equations agree with those in Ref. [36].
Our formalism can also be used to derive results for single-

photon scattering in a waveguide with a linear dispersion
relationship [18]. When the dispersion is linear, I (z) becomes
a constant [21]. The interested reader can look at [52] where
the correspondence between linear and arbitrary dispersion
analysis is made in detail.

as “on-shell.” Through the use of the Dirac delta function in Eq. (14),
incoming and outgoing energies are set equal to each other.
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IV. TWO-PHOTON SCATTERING

Now that we have analyzed one-photon scattering, we will
move into the two-photon domain. Following [59] we define7

the matrix elements in the two-photon sector as

G5(z; p,k) ≡ 〈p↑|G(z)|k↑〉,
G6(z; p1,p2,k) ≡ 〈p1p2↓|G(z)|k↑〉,
G7(z; p,k1,k2) ≡ 〈p↑|G(z)|k1k2↓〉,

G8(z; p1,p2,k1,k2) ≡ 〈p1p2↓|G(z)|k1k2↓〉.
We also need the identity operator in the two-photon subspace
given by

12P = 1

2!

∫∫ π

−π

dk1dk2|k1k2↓〉〈k1k2↓| +
∫ π

−π

dk|k↑〉〈k↑|.

(21)

The term 1
2! arises due to the orthogonality condi-

tion 〈p1p2|k1k2〉 = δ(p1 − k1)δ(p2 − k2) + δ(p1 − k2)δ(p2 −
k1) and the need to have a unity operator when acting on an
arbitrary two-photon state.

Through the use of (5) and sandwiching (21) in between V

and G we get

G5(z; p,k) = δ(p − k)

z − �/2 − ωp

+ g

z−�/2−ωp

∫ π

−π

dpiG6(z; p,pi,k). (22)

Similarly we get

G6(z; p1,p2,k) = g
G5(z; p1,k) + G5(z; p2,k)

z − ωp1 − ωp2 + �/2
, (23)

G7(z; k,p1,p2) = g
G5(z; k,p1) + G5(z; k,p2)

z − ωp1 − ωp2 + �/2
, (24)

G8(z; p1,p2,k1,k2) = g
G7(z; p1,k1,k2) + G7(z; p2,k1,k2)

z − ωp1 − ωp2 + �/2
.

(25)

As seen above, the knowledge of G5 is sufficient to obtain the
remaining matrix elements. We substitute (23) into (22) and
get

[z − �/2 − ωp − g2I (z + �/2 − ωp)]G5(z; p,k)

= δ(k − p) + g2
∫ π

−π

dpi

G5(z; pi,k)

z + �/2 − ωp − ωpi

.

The equation above can be written via z → z − �/2 as

[z − � − ωp − g2I (z − ωp)]G5(z − �/2; p,k)

= δ(k − p) + g2
∫ π

−π

dpi

G5(z − �/2; pi,k)

z − ωp − ωpi

.

Let

H (z; p) = z − � − ωp − g2I (z − ωp). (26)

7The four functions G5 through G8 correspond to τ̂ 5 through τ̂ 8 in
Ref. [59].

Now we will define

U (z; p,k) = H (z; k)[H (z; p)G5(z − �/2; p,k) − δ(k − p)]

g2
.

(27)

As a result we get the following integral equation:8

U (z + iη; p,k)

= 1

z − ωp − ωk + iη

+ g2
∫ π

−π

dpi

U (z; pi,k)

H (z + iη; pi)
(
z − ωp − ωpi

+iη
) . (28)

The equation above is an integral equation in the variable p

for fixed z and k. We will see in the following sections that the
limit η → 0+ is to be taken, for a variety of z values both on
and off the energy shell. The solution of U (z; p,k) gives the
entire picture in the two-photon sector. However, in order to
calculate the scattering matrix elements we will first need to
understand multichannel scattering theory.

V. MULTICHANNEL SCATTERING

Unlike one-photon scattering, when two photons are present
the system has enough energy to excite the atom-photon
bound states with energies ω±. Processes—with no analogs
in the one-photon sector—such as two photons coming in,
one photon getting trapped in a bound state, the other photon
scattering away, become possible. In the two-photon sector,
there are two different sets of stable states that can be the
incoming or outgoing asymptotic states in a scattering matrix
description: (a) two free photons with the qubit in its ground
state; (b) one free photon with the other photon forming
a bound state with the qubit. We refer to these two sets
as two different “channels” [55,60]. From now on, the first
set with two free photons will be called channel 0 and the
second set channel 1. We will use results from three-particle
scattering analysis [61–63]. We will see that off-shell values
of the two-photon matrix elements will be required to describe
multichannel scattering [61].

The multichannel S matrix is given by transitions among
different possible scattering states. Channel 0 states are
denoted by |k1k2↓〉 with two free photons (k1 and k2) and qubit
in the ground state (↓). Channel 1 states are |k
±〉 with one free
photon (k) and a photon-qubit bound state (
±) with energy
ω±. In this part and the following two subsections, we will be
taking � = 0 as in Ref. [38], in order to have a simpler algebra.
For � = 0 we have ω+ = −ω−. There are three possible sets
of transitions between the two channels; from channel 0 to
0, 0 to 1, and 1 to 1. We will call these free to free, free to
bound, and bound to bound scattering matrix elements. The
multichannel scattering matrix element is given by

〈φf |S|φi〉 = 〈φf |φi〉
− 2πiδ(Ei − Ef ) lim

η→0+
〈φf |Uf i(Ei + iη)|φi〉,

(29)

8This equation is analogous to Eq. (13) in Ref. [59].
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where |φj 〉 is an arbitrary asymptotic state in channel
j ∈ {0,1} with energy Ej and Uf i(z) are channel dependent
transition operators. The relationship between the resolvent,
G(z), and Uf i(z) is given by9

G(z) = Gf (z)δf i + Gf (z)Uf i(z)Gi(z), (30)

where Gj (z) = (z − Hj )−1. G0(z) is as previously defined
in Eq. (7). G1(z) has H1 = H0 + V ′ where V ′ has a similar
form to V but redefined to act only on the bound-state part
of the wave function of channel 1, and not on the free photon
part. Let us analyze the result of the operation H1|k
±〉.
Expanding |
±〉 via (B1) we get

H1|k
±〉 = (H0 + V ′)
(√

pb|k↑〉 + √
pbg

∫ π

−π

dp|kp↓〉
ω± − ωp

)
= ωk

√
pb|k↑〉

+√
pbg

∫ π

−π

dp
(ωk + ωp)|kp↓〉

ω± − ωp

+ |k〉 ⊗ V ′|
±〉

= ωk|k
±〉 + |k〉 ⊗ H1|
±〉 = (ωk + ω±)|k
±〉,
where we used the fact that the bound state is an eigenstate of
H1. As a result, we arrive at

G1(z)−1|k
±〉 = (z − ωk − ω±)|k
±〉. (31)

We are now ready to calculate the multichannel scattering
matrix elements.

A. Bound to bound scattering

In bound to bound scattering, the free photon scatters off of
the atom-photon bound state while the bound state remains
intact during the scattering process. We will be interested

in calculating the reflection and transmission coefficients for
the free photon, similar to the one-photon scattering case. We
note that, during bound to bound scattering, the bound state
cannot change its energy from ω+ to ω− or vice versa. In
such a case it would be impossible to satisfy energy conser-
vation ωk + ω± = ωp + ω∓ since |ω± − ω∓| = 2|ω±| > 4J

whereas |ωp,k| � 2J . Therefore, the general form of the bound
to bound scattering matrix element can be obtained from (29)
as

〈p
±|S|k
±〉 = δ(p − k) − 2πiδ(ωp − ωk)

× lim
η→0+

〈p
±|U11(ωk + ω± + iη)|k
±〉.

We will drop the limη→0+ expression in the remaining parts of
this section to simplify the notation. In order to calculate the
U11 matrix element we begin by rewriting (30) as

U11(z) = G−1
1 (z)G(z)G−1

1 (z) − G−1
1 (z),

and hence

〈p
±|U11(z)|k
±〉
= (z − ωp − ω±)(z − ωk − ω±)〈p
±|G(z)|k
±〉

− δ(p − k)(z − ωp − ω±), (32)

by the use of (31). Additionally, since we are interested in
the on energy shell limit z → ωp + ω± = ωk + ω± the Dirac
delta term above will drop down as it will be multiplied by a
zero factor. Similarly, we will only be interested in those terms
in 〈p
±|G(z)|k
±〉 that have a double pole at z = ωp + ω±,
the remaining terms will automatically go to zero due to the
presence of the (z − ωp − ω±)(z − ωk − ω±) multiplier.

We expand 〈p
±| and |k
±〉 by the use of (B1) for � = 0
and get

〈p
±|G(z)|k
±〉 = pb〈p↑|G(z)|k↑〉︸ ︷︷ ︸
Term 1

+pbg

∫ π

−π

dk′ 〈p↑|G(z)|kk′↓〉
ω± + 2J cos k′︸ ︷︷ ︸

Term 2

+pbg

∫ π

−π

dp′ 〈pp′↓|G(z)|k↑〉
ω± + 2J cos p′︸ ︷︷ ︸

Term 3

+pbg
2
∫∫ π

−π

dp′dk′ 〈pp′↓|G(z)|kk′↓〉
(ω± + 2J cos p′)(ω± + 2J cos k′)︸ ︷︷ ︸

Term 4

. (33)

We will now investigate the four terms one by one. The first
term can be written via (27) as

〈p↑|G(z − �/2)|k↑〉 = g2U (z; p,k)

H (z; k)H (z; p)
+ δ(k − p)

H (z; p)
. (34)

Note that

lim
z→ωp+ω±

z − ωp − ω±
H (z; p)

= pb, (35)

9See Eq. (III.23) in Ref. [63] and Eq. (2.11) in Ref. [62], and note
the sign in our definition of G(z).

therefore the contribution of the first term to the on-shell bound
to bound transmission matrix element of (32) by the use of
(33)–(35) becomes (remember that � = 0)

Term 1 = p3
bg

2U (z; p,k).

For the second term we use (24) to write it in terms of G5. We
then follow the same path as in the calculation of the first term
to get

Term 2 = p3
bg

4

(∫ π

−π

dk′

(ω± + 2J cos k′)2

)
U (z; p,k).
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Term 3 has the same value as term 2. For the last term we make
use of (25) and get

Term 4 = p3
bg

6

(∫ π

−π

dk′

(ω± + 2J cos k′)2

)2

U (z; p,k).

We add the four terms and simplify the resulting expression
through the use of the normalization condition of the bound
state

pb + pbg
2
∫ π

−π

dk′

(ω± + 2J cos k′)2
= 1, (36)

to arrive at the concise form

lim
z→ωp+ω±

〈p
±|U11(z)|k
±〉 = pbg
2U (ωp + ω±; p,k).

We can now write down the scattering matrix element through
the use of (18) as

〈p
±|S|k
±〉 = t�k±δ(p − k) + r�
k±δ(p + k) where

r�
k± = −2πipbg

2U (ωk + ω±; k,k)

2J | sin k| , (37)

t�k± = 1 + r�
k±.

Here, r�
k± and t�k± refer to the reflection and transmission

coefficients of the free photon with a wave vector k, scattering
off of the bound qubit-photon system with energy ω±.

B. Free to bound scattering

In free to bound scattering, one of the two free incoming
photons gets trapped and forms a bound state with the
qubit. This process is described by the matrix element
〈p
±|S|k1k2↓〉. We use (29) to get

〈p
±|S|k1k2↓〉 = −2πiδ
(
ωk1 + ωk2 − ωp − ω±

)
〈p
±|U10

(
ωk1 + ωk2

)|k1k2↓〉.
The relationship between U10 and G is written via (30) as

U10(z) = G−1
1 (z)G(z)G−1

0 (z).

By using (31) and observing that |k1k2↓〉 is an eigenstate of
H0, we get

〈p
±|U10(z)|k1k2↓〉
= (z − ωp − ω±)

(
z − ωk1 − ωk2

)〈p
±|G(z)|k1k2↓〉.
(38)

We expand |
±〉 via (B1) as in the previous subsection
and use (23) and (24) with (34) to rewrite (38) in terms of
the U function. Then, by keeping terms that remain finite
when z takes its on-shell value zos = ωp + ω± and using the
normalization condition (36) we arrive at the final result

〈p
±|S|k1k2↓〉 = −2πiδ
(
ωk1 + ωk2 − ωp − ω±

)
×g3√pb

[
U (zos; p,k1)

H (zos; k1)
+ U (zos; p,k2)

H (zos; k2)

]
.

(39)

C. Free to free scattering

In free to free scattering, bound states will not explicitly be
used and thus we will allow for finite � �= 0, in contrast to the
previous two subsections. The matrix element we are after is

〈p1p2↓|S|k1k2↓〉
= 〈p1p2↓|k1k2↓〉 − 2πiδ

(
ωp1 + ωp2 − ωk1

−ωk2

)〈p1p2↓|U00(zos)|k1k2↓〉,
where this time the on-shell energy value is given by zos =
ωp1 + ωp2 − �/2 = ωk1 + ωk2 − �/2. A comparison of (16)
and (30) reveals that U00(z) = T (z). Through the use of (30)
we get

〈p1p2↓|U00(z)|k1k2↓〉
= (

z + �/2 − ωp1 − ωp2

)(
z + �/2 − ωk1 − ωk2

)
×〈p1p2↓|G(z)|k1k2↓〉
− (

z + �/2 − ωk1 − ωk2

)〈p1p2↓|k1k2↓〉.
The last line on the right-hand side goes to zero as z → zos.
We can write the scattering matrix element by the help of (34),
(24), and (25) as

〈p1p2↓|S|k1k2↓〉
= 〈p1p2↓|k1k2↓〉 − 2πiδ

(
ωp1 + ωp2 − ωk1 − ωk2

)
×

∑
m,n

(
g2 δ(pm − kn)

H (zpos; pm)
+ g4 U (zpos; pm,kn)

H (zpos; pm)H (zpos; kn)

)
,

(40)

where we defined the photon on-shell energy as zpos =
zos + �/2 for notational brevity. Furthermore m,n ∈ {1,2} are
photon indices, hence the summation above has four different
pairings of (pm,kn). We will wait until after the end of the
next subsection to put (40) into a more familiar form in terms
of single-photon reflection and transmission coefficients. As a
prerequisite, let us first analyze U (z; p,k) perturbatively.

D. Perturbative analysis of free to free scattering

In the case of one-photon scattering, there was only a single
way to contract the creation and annihilation operators for all
terms in Eq. (17). The situation gets more complicated when
there are multiple photons. Similar to Fig. 4, in Fig. 5 we
illustrate the Feynman graphs for the first three nonzero terms
in Eq. (17) for the case of two free photons in the incoming
and outgoing states. Each plot refers to four similar looking
graphs due to the way the incoming and outgoing photons
can be labeled, that is {i,j} ∈ {1,2} with i ′ �= i,j ′ �= j . The
number of plots doubles as the order of the expansion n in
〈p1p2↓|V (G0V )2n+1|k1k2↓〉 is increased by 1.

The first graphs in each expansion term, that is in Figs. 5(a),
5(b), and 5(d), refer to single-photon scattering events, where
one of the photons goes through the qubit with no interaction.
Schematically, this fact is illustrated by a direct connection
between the input photon ki ′ and the output photon pj ′ . In each
subsequent higher-order term of the single-photon scattering
events, extra bubbles are introduced, essentially the same way
as in Fig. 4. The infinite series of single-photon scattering
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FIG. 5. Feynman graphs for two-photon scattering.

events can be summed to give

g2 δ(ki ′ − pj ′ )

H (z + �/2; ki ′ )
, (41)

as illustrated in Fig. 6(a). The hatched line in the figure refers
to the summed propagator associated with the H (z + �/2; ki ′ )
term.

Other terms in two-photon scattering also show a regular
pattern. Looking at Figs. 5(c), 5(e), and 5(f) one can foresee the
general pattern of internal bubbles to the right and left of the
ki ′-pj ′ crossing. The summation of Figs. 5(c), 5(e), and 5(f)
and all the other higher-order terms with increasingly more
bubbles to the right and left of the ki ′-pj ′ crossing leads to

FIG. 6. Feynman graphs for two-photon scattering after the
internal bubbles are summed. Resummed propagators are shown with
a hatched line. Integration variables in Eqs. (43) and (44) are shown
in panels (c) and (d).

Fig. 6(b) which corresponds to

g4 1

H (z + �/2; pj ′ )
V0(z + �/2; pj ′ ,ki ′)

1

H (z + �/2; ki ′ )
,

where V0(z; p,k) = 1

(z − ωp − ωk)
. (42)

Similarly, the term in Fig. 5(g) and those with similar topology
in higher-order expansions of T (z) but with internal bubbles on
the left, center, and right-hand side of the structure in Fig. 5(g)
lead to Fig. 6(c) which is the Feynman plot referring to the
term

g4 1

H (z + �/2; pj ′ )
V1(z + �/2; pj ′ ,ki ′)

1

H (z + �/2; ki ′ )
,

V1(z; p,k) = g2
∫ π

−π

dv
1

(z − ωp − ωv)H (z; v)(z − ωv − ωk)
.

(43)

Indeed, there are an infinite number of such terms with a
subsequently larger number of crossing loops in cascade. For
instance Fig. 6(d) shows the case of two crossing loops with
all internal bubbles added. Looking at Figs. 6(c) and 6(d) one
can easily predict the pattern of the infinite series of Feynman
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graphs with three or more crossing loops in cascade. For completeness Fig. 6(d) refers to the following term:

g4 1

H (z + �/2; pj ′ )
V2(z + �/2; pj ′ ,ki ′)

1

H (z + �/2; ki ′ )
,

V2(z; p,k) = g4
∫∫ π

−π

dv1dv2(
z − ωp − ωv2

)
H (z; v2)

(
z − ωv2 − ωv1

)
H (z; v1)

(
z − ωv1 − ωk

) . (44)

The summation of the terms in Figs. 6(b)–6(d) and the
remaining infinite series of three or more cascade crossings—
with all internal bubbles summed—lead to Fig. 6(e) where the
cross hatched U = ∑∞

n=0 Vn. The choice of the letter U is not
a coincidence. Let us look at the singular integral equation for
U (z; p,k) given in Eq. (28). One can represent U (z; p,k) with
an infinite Neumann series obtained by initially setting it equal
to (z − ωp − ωk)−1 which is the inhomogeneous term on the
right-hand side of (28). Through the use of this approximation
in the integral on the right-hand side of (28) we get a better
approximation to U (z; p,k). This process can be repeated
infinitely to get

U (z; p,k) = V0(z; p,k) + V1(z; p,k) + V2(z; p,k) + · · · ,

(45)

where V0,V1,V2 are as defined above, and the general form
of Vn can easily be obtained by iteration. We will refer to
V0 as the bare vertex term, and V1,V2, . . . as progressively
higher-order vertex correction terms. As noted in Ref. [21]
except for V0 all higher-order Vn are identically equal to zero
for linear dispersion and this can easily be derived by partial
fraction expansion of the integrands in Vn and the simpler
form of H (z; k) in the case of linear dispersion where I (z)
actually becomes independent of z. The same result can also
be obtained via a path-integral approach [64]. Also note that the
infinite series we obtain for the free to free scattering channel
in the two-photon case agrees with the results of the previous
section; compare (41)–(45) with (40).

We will now focus on (40) and excavate all single-photon
events buried in it by taking steps similar to those for the
linear dispersion case [21]. Note that, in the free to free

scattering channel, at the on-shell energy of zos = ωp1 + ωp2 −
�/2 = ωk1 + ωk2 − �/2, the lowest-order process of Fig. 6(b)
described by (42) will be

g4 lim
η→0+

1

H
(
ωp1 + ωp2 + iη; pj ′

)
×

(
1

ωp1 + ωp2 + iη − ωpj ′ − ωki′

)

× 1

H
(
ωk1 + ωk2 + iη; ki ′

) ,

where we explicitly have shown the η → 0+ limit used in the
S-matrix definition as in Eq. (29). From the definition of (26),
we see that it is not possible to have H (ωp1 + ωp2 ; pj ) = 0 for
any pj ∈ [−π,π ]. Therefore, H (z; k) terms do not lead to any
poles for free to free scattering and η = 0 can safely be taken.
However, the middle term in parentheses above does have a
pole and through the use of the Sokhotski-Plemelj theorem
[65,66] we get

lim
η→0+

1

ωp1 + ωp2 + iη − ωpj ′ − ωki′

= lim
η→0+

1

ωpj
− ωki′ + iη

= P
1

ωpj
− ωki′

− iπδ
(
ωpj

− ωki′
)
,

where P stands for the principal value. We see that there is
a Dirac delta function buried in U (z; k). We will separate it
away from U and call the remaining term with the principal
value U ′. As a result (40) becomes

〈p1p2↓|S|k1k2↓〉 = 〈p1p2↓|k1k2↓〉 + δ

(∑
m

ωpm
− ωkm

)∑
m,n

(
(−2πi)g4U ′(zpos; pm,kn)

H (zpos; pm)H (zpos; kn)

)

+
∑
m,n

[
(−2πig2)δ

(
ωpm′ − ωkn′

)
δ(pm − kn)

H (zpos; pm)
+ (−2π2g4)δ

(
ωpm

− ωkn′
)
δ
(
ωpm′ − ωkn

)
H (zpos; pm)H (zpos; kn)

]
,

where the primed indices denote m �= m′,n �= n′. We used δ(ωp1 + ωp2 − ωk1 − ωk2 )δ(pm − kn) = δ(ωpm′ − ωkn′ )δ(pm − kn) and
δ(ωp1 + ωp2 − ωk1 − ωk2 )δ(ωpm′ − ωkn

) = δ(ωpm
− ωkn′ )δ(ωpm′ − ωkn

) to write the expression above.
Through the use of (18) we convert all δ(ωpm

− ωkn
) to δ(pm ± kn), and by observing that

−2πig2

H (zpos; pm′)2J | sin pm| = rpm
,
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we factor out common terms. We employ the one-photon reflection and transmission coefficients in Eqs. (19) and (20) to arrive
at the final result,

〈p1p2↓|S|k1k2↓〉
= tp1 tp2 [δ(p1 − k1)δ(p2 − k2) + δ(p1 − k2)δ(p2 − k1)] + rp1rp2 [δ(p1 + k1)δ(p2 + k2) + δ(p1 + k2)δ(p2 + k1)]

+ tp1rp2 [δ(p1 − k1)δ(p2 + k2) + δ(p1 − k2)δ(p2 + k1)] + rp1 tp2 [δ(p1 + k1)δ(p2 − k2) + δ(p1 + k2)δ(p2 − k1)]

− 2πig4δ

(∑
m

ωpm
− ωkm

) ∑
m,n

(
U ′(zpos; pm,kn)

H (zpos; pm)H (zpos; kn)

)
. (46)

The equation above is reminiscent of the two-mode, two-
photon scattering results in Ref. [18], generalized to a
dispersive waveguide.

VI. NUMERICAL RESULTS

In this section, our aim is to verify that the equations we
derived for multichannel scattering matrix elements are valid.
To do so, we will be sending Gaussian photon packets of the
form

f (x) = 1

(πs2)1/4
exp

(
− (x − xc)2

2s2
+ ik0x

)
,

towards the qubit either in its ground state, or in a bound
state. Here, s is the spatial width of the pulse, xc is the center
location chosen to be away from the qubit by couple s lengths,
and k0 is the center wave vector. We will evolve the system
described by (1) in time, and wait until all the scattering is
complete. The numerical approach we use for time evolution
is based on a Krylov-subspace based method [28–30]. We will
compare the results from our numerical approach with those
of the equations we derived for multichannel scattering. All
energy values are reported for J = 1.

A. Bound to bound calculations

In our bound to bound scattering calculations, we are
interested in the scattering of an incoming pulse, f (k), off
of a bound state. The input state is given by

|in〉 =
∫ π

−π

dkf (k)|k
±〉,

with
∫ π

−π
dk|f (k)|2 = 1. We will look at the output in the same

channel, i.e., channel 1, therefore, we will take the projections
onto |p
±〉 to get the output state as

|out〉 =
∫∫ π

−π

dkdpf (k)〈p
±|S|k
±〉|p
±〉.

We use (37) and (B1) to get

|out〉 =
∫ π

−π

dkf (k)(t�k±|k
±〉 + r�
k±|−k
±〉)

=
∫ π

−π

dkf (k)
√

pb(t�k±|k↑〉 + r�
k±|−k↑〉)

+
∫∫ π

−π

dkdpf (k)
√

pbg

(
t�k±

|kp↓〉
ω± + 2J cos p

+ r�
k±

|−kp↓〉
ω± + 2J cos p

)
. (47)

In our numerical calculations, we prepare the initial state as a
free Gaussian pulse propagating towards the bound state |
−〉
as sketched in Figs. 7(a) and 7(b). The spatial form of the bound
state is described in Appendix B. Our numerical approach
returns all parts of the wave function. We call parts with the
form |k1k2↓〉 the ↓ sector and parts with |k↑〉 the ↑ sector. After
scattering, we integrate the pulses propagating to the left and
to the right of the qubit in the ↑ sector to get the total reflection
and transmission probabilities as shown in Fig. 7(b). We note
that we need to normalize the numerical data we get from the ↑
sector by pb due to the

√
pb factor in Eq. (47). The reason we

choose to use the ↑ sector is because the ↓ sector additionally
contains channel 1 to channel 0 transitions which cannot easily
be separated from channel 1 to channel 1 transitions. On the
other hand, the ↑ sector only has contributions from channel 1.

In Figs. 7(c) and 7(d) we illustrate bound to bound scattering
results for g′ = 0.5 and g′ = 1.0, respectively. For calculating
the solid curves in Fig. 7(c) via (37), we take the first two
terms in the expansion of U from (45) and use U ≈ V0 + V1

in Eq. (47). As can be seen, there is a good overlap between
the numerical results and the equations we derived.

When g′ is increased to 1.0, the agreement between the
numerical results and the model prediction with U ≈ V0 + V1

(solid lines) deteriorates. However, when we add the next-order
term and set U ≈ V0 + V1 + V2 (dashed lines) we obtain a
much better fit between the numerical results and our modeling
formalism; see Fig 7(d). We end this subsection by noting that
while calculating the integrals for V1 and V2 we keep a small
but finite iη value as reported in the figure caption.

B. Free to bound calculations

To calculate the probability of exciting the bound state when
a photon packet with two free photons scatter off of a qubit
in its ground state, we need to calculate the scattering matrix
element for the following input state:

|in〉 = 1√
2

∫∫ π

−π

dk1dk2f (k1,k2)|k1k2↓〉, (48)
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FIG. 7. (a),(b) Schematic of the numerical simulation setup. Initially, there is a single-photon packet moving towards the atom-photon
bound state |
−〉 (red). After the scattering there are pulses propagating away from the bound state (black). Integration, denoted by hatched
areas, is done in the ↑ sector to get the reflectionR and transmission T results. In order to have a unit probability incoming pulse as shown in (b)
normalization by pb should be made. (c) Plot of R (blue), T (black), and 1 − R − T (red) for g′ = 0.5 and Gaussian pulse parameter s = 12, as
a function of k0. Symbols (◦,�,�) show Krylov-subspace based numerical results, solid lines show the result of integration in Eq. (47) where
U ≈ V0 + V1 is taken. η = 10−6 in the integrations. (d) Similar to (c) but for g′ = 1.0. Solid lines are for the case U ≈ V0 + V1, dashed lines
are for U ≈ V0 + V1 + V2. η = 10−4 in the integrations. Increasing the order of approximation for U leads to a much better fit to numerical
results.

with
∫∫ π

−π
dk1dk2|f (k1,k2)|2 = 1. Since 〈p1p2↓|k1k2↓〉 has

two pairs of Dirac delta functions, the factor 2−1/2 is required
to have 〈in|in〉 = 1.

The output we are interested in is a bound state thus we get

|out±〉

= 1√
2

∫∫∫
dk1dk2dpf (k1,k2)〈p
±|S|k1k2↓〉|p
±〉

= 1√
2

∫∫∫
dk1dk2dpf (k1,k2)δ

(
ωk1 + ωk2 − ωp − ω±

)
× T

(
ωp,ω±,ωk1 ,ωk2

)|p
±〉, (49)

where T (ωp,ω±,ωk1 ,ωk2 ) refers to (39) without the Dirac delta
function. Note that although U (z; p,k) and H (z; k) functions
are used in Eq. (39), those functions only depend on the
energies ωp/k therefore our choice of arguments for the T

function is justified. The argument of the Dirac delta function
in Eq. (49) defines constant energy contours in the k1-k2 plane
as illustrated in Fig. 8(a). We make a change of variables
k(ωk) = ± arccos(− ωk

2J
). Inverse cosine function is restricted

to the interval [0,π ] to make it single valued and the ± sign is
used when k ≷ 0. As a result the two-dimensional integral over
ki variables is mapped to an integral in the energy variables
ωki

. In Fig. 8 points A, B, C, and D are illustrated in the ki

and ωki
planes. The circuit ABCDA is a closed curve in the

ki plane; it is composed of four overlapping lines in the ωki

plane. Because of the need to use a different sign in each of the
four quadrants of the ki plane when changing variables from

FIG. 8. (a) Two-dimensional isocontours of energy in the k1-k2

plane. (b) Same as (a) but in ωk1 -ωk2 plane.
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ki to ωki
, we get the following expression:

|out±〉 = 1√
2

∫
dp

∫∫ 2J

−2J

dωk1dωk2δ
(
ωk1 + ωk2 − ωp − ω±

)√
4J 2 − ω2

k1

√
4J 2 − ω2

k2

T
(
ωp,ω±,ωk1 ,ωk2

)
× {

f
(
k
(
ωk1

)
,k

(
ωk2

)) + f
( − k

(
ωk1

)
,k

(
ωk2

)) + f
( − k

(
ωk1

)
, − k

(
ωk2

)) + f
(
k
(
ωk1

)
, − k

(
ωk2

))}|p
±〉.
The Dirac delta function above forces the integral on a line with constant total energy as shown in Fig. 8(b). We make another
change of variables with ωk1,2 = E/2 ± � or equivalently E = ωk1 + ωk2 , � = (ωk1 − ωk2 )/2 and obtain10

|out±〉 = 1√
2

∫ Hp±

Lp±
dp

∫ H�

L�

d�
T

(
ωp,ω±,ωk1 ,ωk2

)√
4J 2 − ω2

k1

√
4J 2 − ω2

k2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
s1 = ±1
s2 = ±1

f
(
s1k

(
ωk1

)
,s2k

(
ωk2

))
⎫⎪⎪⎪⎬
⎪⎪⎪⎭|p
±〉. (50)

Here the lower and higher limits of integration for the � integral are given by L� = max(−2 + E
2 ,−2 − E

2 ) and
H� = min(2 − E

2 ,2 + E
2 ) which correspond to the edges of the gray dashed square in Fig. 8(b). For the p integral, the

limits of integration should be chosen such that |p
±〉 is an accessible state from two free photons with a total energy
in the range [−4J,4J ] which implies that the energy of |p
±〉 should obey −4J � ωp + ω± � 4J and since |p〉 is
a free photon we have −2J � ωp � 2J as well. These two conditions can be combined to give the energy interval
ωp ∈ [max(−2J,−4J − ω±), min(2J,4J − ω±)]. Lp± and Hp± should be chosen to obey the energy interval for ωp, taking
into consideration the dispersion relation ωp = −2J cos p. As a result of the Dirac delta function, E = ωp + ω± is used in the
expressions for ωk1,2 and the integral limits.

In Fig. 9(a) we visualize the function |T (ωp = ωk1 + ωk2 − ω+,ω+,ωk1 ,ωk2 )|2 + |T (ωp = ωk1 + ωk2 − ω−,ω−,ωk1 ,ωk2 )|2
which is indicative of the total trapping rate into two bound atom-photon states given by 〈out−|out−〉 + 〈out+|out+〉. The
visualization is done on a logarithmic coloring palette. There are resonances when ωk1 + ωk2 = ω± as shown by the gray dashed
lines and when ωk1 + ωk2 = 0. We numerically send two-photon Gaussian pulses with the same center wave vector k0 for both
of the photons. We scan k0 value from π/6 to 5π/6 as shown by the dashed circles which illustrate the two-photon wave packets.
We time evolve the system, and measure the total excitation trapped in the ↑ sector, normalized by pb. This value gives us
the total trapping rate, which we also calculate from (50) as 〈out−|out−〉 + 〈out+|out+〉. In Fig. 9(b) we compare the results of
integration (blue curve) with those of numerical simulations (red curve). In the integrals we approximate U ≈ V0 + V1. The
same approximation is also used in the definition of the T function in Fig. 9(a). We also solve (28) by the numerical scheme
described in Ref. [70] (gray curve). All three results have the same order of magnitude and show an increase in the trapping
rate at resonances, highlighted by red dashed circles in Fig. 9(a). The numerical values of integration are particularly in good
agreement with those of Krylov-subspace based simulations. We did not increase the order of approximation for U because of
the long times required for multidimensional numerical integrals. However, we expect that the fit between the blue and red curves
in Fig. 9(b) would get even better as the order of approximation is increased.

C. Free to free calculations

For the case of free to free scattering, input state is the same as (48). The output state becomes

|out〉 = 1

2
√

2

∫∫∫∫ π

−π

dk1dk2dp1dp2f (k1,k2)〈p1p2↓|S|k1k2↓〉|p1p2↓〉,

with the 1
2 factor due to (21). We proceed as in the free to bound subsection but use (46) for the scattering matrix element. We

apply the same change of variables to integrate out the Dirac delta function to get

|out〉 = 1√
2

∫∫ π

−π

dp1dp2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩f (p1,p2)tp1 tp2 + f (−p1,−p2)rp1rp2 + f (p1,−p2)tp1rp2 + f (−p1,p2)rp1 tp2

+ 1

2

∫ H�

L�

d�
B

(
ωp1 ,ωp2 ,ωk1 ,ωk2

)√
4J 2 − ω2

k1

√
4J 2 − ω2

k2

∑
s1 = ±1
s2 = ±1

f
(
s1k

(
ωk1

)
,s2k

(
ωk2

))
⎫⎪⎪⎪⎬
⎪⎪⎪⎭|p1p2↓〉. (51)

10These set of transformations are in line with the co-area formula [67–69].
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FIG. 9. (a) Plot of |T (ωp = ωk1 + ωk2 − ω+,ω+,ωk1 ,ωk2 )|2 +
|T (ωp = ωk1 + ωk2 − ω−,ω−,ωk1 ,ωk2 )|2 in Eq. (50) with g′ = 0.5.
Logarithmic coloring is used. U ≈ V0 + V1 is taken. Integrals are
done with η = 10−6. Dashed circles indicate the center wave vector,
k0, of Gaussian packets. (b) Plot of total trapping rate 〈out−|out−〉 +
〈out+|out+〉 as a function of k0 obtained from Krylov-subspace based
simulations (red, •), the use of Eq. (50) (blue, �), and the numerical
algorithm described in Ref. [70] for solving integral equations (dashed
gray, �).

The B function is defined as the last line of (46) without
the Dirac delta term. L� = max(−2 + E

2 ,−2 − E
2 ) and H� =

min(2 − E
2 ,2 + E

2 ) as before but the total photon energy is
given by E = ωp1 + ωp2 .

In Fig. 10(a) we plot the two-photon scattering spectrum
in the p1-p2 plane via (51) for a two-photon Gaussian pulse
excitation with both photons centered around the wave vector
k0 = 2π/5. The width of the Gaussian in real-space represen-
tation is s = 12. The coupling parameter g′ = 0.5,η = 10−6 is
used in integrals, � = 0 is taken for the qubit. In the definition
of the B function in Eq. (46), U ≈ V0 is taken. The dashed line
shows the fixed energy contour E = 2ωk0 . The bright peaks
around the contour refer to factorizable one-photon scattering
events on the first line of (51), the “wings” around the bright
peaks are due to the B function. We label each quadrant as
RR, LR, LL, and RL denoting the propagating direction (right
or left) of photons, analogous to [18]. Right-going photons
are transmitted, left-going ones are reflected. In Fig. 10(b)

FIG. 10. (a) Spectrum of free to free scattering obtained from
(51) with the parameters listed in the text. (b) Spectrum of free to
free scattering obtained from Krylov-subspace based simulations, by
taking the FFT of two-photon scattering part of the wave function.
Logarithmic color map is used in both plots.

we take the ↓-sector part of the total wave function from
Krylov-subspace simulations and translate it into the p1-p2

plane by a fast Fourier transform (FFT). A comparison of the
subplots (a) and (b) show that even the lowest-order bare vertex
approximation for U is sufficient to get the overall scattering
spectrum for two-photon scattering.

VII. DISCUSSION

In the previous sections, we provided the infrastructure for
multiphoton calculations in a dispersive photonic environment
extending the techniques obtained for the Lee model. The
particular form of the dispersion relationship within the Lee
model is given by ω2 = k2 + m2 for a fixed m value.11

11Incidentally, this dispersion relationship is very similar to that for
modes in a rectangular waveguide, analyzed in Ref. [42] for the single
excitation case.

033829-14



EFFECTS OF MODAL DISPERSION ON FEW-PHOTON– . . . PHYSICAL REVIEW A 93, 033829 (2016)

Furthermore, in the Lee model, there are subtleties associated
with the renormalization of energy levels, masses, and the
coupling constants to get a mapping to physically observable
quantities [48]. Such complexities do not occur in the multi-
mode Jaynes-Cummings Hamiltonian that we analyze in this
paper.

In the Lee model, it is possible to get a closed-form formula
for the solution of the integral equation for U (z; p,k)—one
which is analogous to (28)—by using the branch cuts of
ω2 = k2 + m2 and complex analysis [59,71–77]. In Ref. [46]
the time-independent Schrödinger equation within the two
excitation sector is solved by constructing an ansatz based
on the tight-binding dispersion relationship of the waveguide.
Although few details are given in Ref. [46] regarding the
method of solution, we verified that the bound-to-bound
scattering matrix elements provided in Ref. [46] agree with
(37). Comparison of the two approaches is available in
Ref. [78].

Our approach in calculating the S-matrix elements is based
on Feynman diagrams, through which we obtain arbitrary order
vertex correction terms—a method suggested in Ref. [21].
The Feynman diagram approach for approximating the matrix
elements was considered starting from the original Lee model
paper [47] and was used to understand more complicated
Hamiltonians with extra particles [79]. For three [80] or more
[81] excitations, the Feynman diagram approach proved very
useful in the absence of exact results within the Lee model. It
is likely that a similar conclusion also holds for the multimode
Jaynes-Cummings Hamiltonian. We think that it should be
possible to extend the analysis we present to three or more
photons interacting with a qubit, or to the case of multiqubit
systems with multiple photons bouncing between them—a
scenario that is very relevant for designing quantum gates.

The link between Feynman diagrams and Neumann series
expansion of the integral equation for U was reported in
Ref. [82], and we were heavily influenced by the diagrammatic
description shown there to generate Fig. 6.

While building the link between Feynman diagrams and
the S-matrix elements, the passage through multichannel
scattering theory is crucial. If, for instance, instead of the
channel dependent transition operators, Uf i in Eq. (29),
the single-channel equation in Eq. (14) is used, expressions
obtained for the S-matrix terms diverge and do not agree with
results obtained from Krylov-subspace based calculations.

In Sec. VI we detail the steps needed to compare results
from purely numerical approaches (e.g., obtained from the
Krylov-subspace method) and analytical expressions (e.g.,
obtained through multichannel scattering theory and Feynman
diagrams). Dispersive effects lead to complications when
considering multiphoton Gaussian packets and one needs to
be careful with the integrals.12 Although we present results for
two-photon wave packets, the case of three or more photons
can be considered in a similar vein, through a judicious
application of the co-area formula [67–69].

Recently, numerical results for scattering between photons
and bound atom-photon states in a tight-binding lattice were

12In Ref. [78] we provide the Mathematica code used to generate
the data for the figures.

reported in Ref. [83] through an equivalence to the Hubbard
model. A similar mapping is also used in Ref. [37] to analyze
two-photon scattering in a tight-binding lattice. However, the
results reported in Ref. [37] involve current operators and
it is not immediately obvious how to translate those results
to ones comparable with the reflection, transmission, or free
to bound trapping probabilities reported in this paper. The
Appendix of [45] illustrates another similar mapping, one
in which the qubit is replaced with a hard-core boson [27].
Various matrix elements of G(z) are obtained for an arbitrary
dispersion relationship through the hard-core boson approach.

Scattering in the two-photon sector in a dispersive waveg-
uide is very recently investigated in Ref. [52]. There, the
results are obtained through a path-integral approach with
an equivalent Hamiltonian where the Pauli spin operators are
mapped to auxiliary fermions. Whereas we chose to base our
Feynman diagram description in terms of the matrix elements
of the T operator, in Ref. [52] diagrams are provided for
equivalent matrix elements for G(z). The relationship between
linear and arbitrary dispersion profiles are described in detail
in Ref. [52]. Additionally, band-edge effects for ω ∝ k2 are
also investigated. However, there are no explicit formulas
for scattering matrix elements, nor an independent numerical
verification of the formalism in Ref. [52], and our results
supplement their analysis.

Last, we would like to talk briefly on numerical issues
related to scattering simulations involving bound states. In our
Krylov-subspace based numerical investigations, we were not
able to simulate cases with a low g′ value, due to the fact that
the size of bound state becomes excessively large because of
the slow decay of the exponential tails, cf. Fig. 2. On the other
hand, when g′ is large, more and more correction terms to the
U function are required, with higher dimensions in numerical
integrals. We therefore chose g′ = 0.5 and g′ = 1.0 values
during various calculations, which was a compromise to get
a bound state with a tightly bound photonic part as well as
getting relatively quick convergence when making Feynman
diagram based calculations. In our calculations we used the
NIntegrate function of the Mathematica system, however,
there are other packages specifically designed for high-
dimensional integrals in Feynman diagrams, such as CUBA

[84]. Moreover, numerical algorithms specifically developed
for handling the singularities in integrals exist as well [85]. We
received many warning messages while using the code from
[70] when solving (28) numerically and had many convergence
issues. Although in Fig. 7 we show that the results of [70] have
the same order of magnitude as other independent calculations,
for the free to bound case we could not get converging results
from [70]. This is not surprising, since [70] was not designed
for singular integral equations. Finally, the methods outlined
in Ref. [86] combining interpolation and numerical integration
in an iterative manner can provide alternative means to tackle
(28).

VIII. CONCLUSION

In this paper, we aimed to provide a synoptic vision of
qubit-photon scattering where photons occupy the dispersive
modes of a waveguide. We provided the general framework
of one- and two-photon scattering in terms of the resolvent
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of the Hamiltonian, while linking the resolvent approach to a
variety of cases such as the time evolution of states, definition
of scattering matrix elements, multichannel scattering in
the presence of atom-photon bound modes and Feynman
diagrams. We verified our formulas by independent numerical
simulations and have shown their validity.

Our derivations follow the steps taken in the analysis
of the Lee model, but for the particular case of photon-
qubit interactions defined by a multimode Jaynes-Cummings
Hamiltonian. Although elementary particles are represented
as “mere shadows of their true selves” within the Lee model
[87], the Jaynes-Cummings Hamiltonian has been verified in
a number of experiments [6].

The energy levels and spatial profiles of photon-atom
bound states play an important role in the scattering of free
photons from such states. The energy level of the bound
state was made to intersect the continuum of propagating
states via a frequency-dependent coupling of the qubit to the
photons [35]. Localized eigenstates were shown to appear in a
waveguide with linear dispersion and two qubits in them [24].
It would be of interest to study the dynamics of photon-atom
bound states for two or more qubits [43–45] in the presence
of modal dispersion and frequency-dependent photon-qubit
coupling. Recent analyses show that a periodical drive of
many atoms coupled to a nanophotonic waveguide can lead
to the formation of topological states enabled via atom-atom
interactions obtained through the help of the bound states
[88]. Scattering of one- and two-photon pulses from such
systems could lead to novel effects that can have experimental
significance in waveguides carved into photonic band-gap
structures where precise control over dispersion is possible.

Correlations among scattered photons were shown to
depend on the dispersive characteristics of the waveguide [89].
An analysis of pulse shape effects [90] on the correlations
among two or more photons [91,92] scattering off of qubits
(or atoms with a more complicated energy-level structure
[93]) in a dispersive waveguide can lead to useful results for
quantum information and quantum communication proposals
[10] where universal gate designs based on qubit integrated
nanophotonic waveguides have been presented [94].
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APPENDIX A: PROPERTIES OF I(z)

The definition of I (z) is given by (10). For |z| > 2J there
is no singularity in the integrand and the integral can be
calculated by using the residue theorem. For |z| < 2J with
Re(z) = 0, one needs to add an infinitesimally small imaginary

part to z to get13

I (z) = lim
η→0+

∫ π

−π

dk
1

z − ωk + iη
,

so that the integral is well defined. We again use the residue
theorem, and choose the pole in the upper half part of
the complex plane enclosed within the contour composed
of joining the points (−π,i∞),(−π,0),(π,0),(π,i∞) where
we specify the real and imaginary parts of points as 2D
coordinates. The end result is the following expression for
I (z):

I (z) =

⎧⎪⎪⎨
⎪⎪⎩

−2π√
z2−4J 2 z < −2J,

−2πi√
4J 2−z2 −2J < z < 2J,

+2π√
z2−4J 2 2J < z.

(A1)

APPENDIX B: PROPERTIES OF THE BOUND STATES

In this Appendix we will briefly summarize the properties
of the atom-photon bound state for the case when � = 0.
Chapter 6 of [95] and [38] provide more detailed calculations
on the bound states. As noted in the main text, the bound states
are associated with the poles of G1(z). We use (11) and (A1)
to get the bound-state energies ω± for � = 0 as

ω+ = −ω− =
√

2J 2 +
√

4J 4 + g′4.

From the theory of Green’s functions we can write

〈↑|
±〉〈
±|↑〉 = Res (〈↑|G(z)|↑〉,ω±) = pb.

The residues of G1(z) at ω± are the same and are given by

pb = g′4

2ω2±(ω2± − 2J 2)
,

with which (35) can also be shown. Similarly, in order to
calculate the photon part of the bound state in |k〉 representation
we need

〈p↓|
±〉〈
±|k↓〉
= Res(〈p↓|G(z)|k↓〉,ω±)

= g2 Res(G1(z),ω±)
(ω± − ωk)(ω± − ωp)

= g2pb

(ω± − ωk)(ω± − ωp)
,

where in the last line we used (12). Putting all these results
together gives us the bound state as

|
±〉 = √
pb|↑〉 + √

pbg

∫ π

−π

dk
|k↓〉

ω± + 2J cos k
. (B1)

It can explicitly be shown through integration that 〈
±|
±〉 =
1, written as (36).

In order to convert (B1) to real-space representation, we
use the relationship

|x〉 = 1√
2π

∫ π

−π

dk e−ikx |k〉,

13See Sec 5.3.1 in Ref. [95].
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obtained in the continuum limit, N → ∞ [38]. As a result we
have

〈x↓|
±〉 = g′√pb

∫ π

−π

dk
eikx

ω± + 2J cos k
.

We evaluate the integral above using the residue theorem to
get

〈x↓|
+〉 = g′√pb√
ω2+ − 4J 2

(
−ω+

2J
+

√
ω2+
4J 2

− 1

)|x|
,

and

〈x↓|
−〉 = −g′√pb√
ω2+ − 4J 2

(
ω+
2J

−
√

ω2+
4J 2

− 1

)|x|
.

These real-space functions denote localized photons around
the qubit at x = 0 as plotted in Fig. 2. Note that although we
took the continuum limit for the k variable, the x variable
is still discrete, and summations should be used to show
〈
±|
±〉 = 1 in the |x〉 representation. Last, the definitions
of the square roots on p. 88 of [95] are unconventional, never-
theless the results there agree with the results in this appendix,
written in terms of the conventional positive square-root
definition.

APPENDIX C: DETAILS FOR THE CALCULATION OF e(t)

In this Appendix we will provide an expression for e(t), the
inverse Laplace transform of (13). We split (13) into two parts.
The first part can be inverted via partial fraction expansion

to get

L −1

{
s(s2 + 4J 2)

s4 + 4J 2s2 − g′4

}
(t)

=
√

4J 4+g′4+2J 2

2
√

4J 4+g′4 cosh s1t +
√

4J 4+g′4−2J 2

2
√

4J 4+g′4 cos s2t,

(C1)

where

s1 =
√√

4J 4 + g′4 − 2J 2, s2 =
√√

4J 4 + g′4 + 2J 2.

In order to invert the second part, we make the substitution
v = √

s2 + 4J 2 and get

L −1

{ −g′2v
v4 − 4J 2v2 − g′4

}
(t).

We apply partial fraction expansion in terms of v to the
expression above. We then rewrite the result in terms of s

to arrive at

−g′2

2
√

4J 4 + g′4 L −1

{
1√

s2 + 4J 2

[
s2

1

s2 + s2
2

+ s2
2

s2 − s2
1

]}
(t).

We use the property that the multiplication in Laplace domain
corresponds to convolution in time domain to write the inverse
Laplace transform of the second part as

= −g′2

2
√

4J 4 + g′4

×
∫ t

0
dτ J0(2Jτ )

[
s2

1

s2
sin s2(t − τ ) + s2

2

s1
sinh s1(t − τ )

]
,

(C2)

where J0(t) = L −1{(s2 + 1)−1/2} is the Bessel function of the
first kind of order 0. Addition of (C1) and (C2) gives us e(t).
We used high-precision arithmetic in the numerical integration
that led to the generation of Fig. 3.
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