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Soliton evolution at diffusive Kerr-type media is analyzed within the framework of the Helmholtz theory. The
angular limitations of previous paraxial studies are overcome when both soliton propagation and diffusion of
carriers are allowed to occur along any arbitrary direction. A model including two-dimensional carrier diffusion
is proposed and its exact soliton solutions within the weakly nonlocal regime are presented. The restriction
of carrier diffusion to a single transverse coordinate leads to the breakdown of the rotational symmetry of the
Helmholtz framework and soliton behavior becomes angular dependent. We study the impact of this limitation
in an intrinsic angular scenario, such as a nonlinear interface.
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I. INTRODUCTION

Nonlocal media hosting soliton propagation have enriched
the already existing vast field of spatial solitons [1,2]. Thermal
media [3] or photorefractive materials [4] have been shown
to accommodate thermal [5] or photorefractive [6,7] solitons,
respectively. More recently, the reorientational ability of the
molecules of a liquid crystal in the nematic phase has been
found to induce optical confinement, so that a new type of
solitary wave or nematicon can arise [8–10]. Nonlocality
hasbeen essential not only in the description of new soliton
families, but also in its ability to ease the comprehension of
soliton dynamics [11–13] or to overcome certain scenarios that
the traditional local models have failed to describe [14–16].
In other cases, the nonlocal response has been essential
in the description of higher-order solutions [17,18], soliton
interactions [19], and boundary [20,21] and interface [22–24]
effects. The works on nematicons at interfaces have been the
basis for the design and implementation of nematic crystal
valves, which have been proposed as candidates for optical
switching devices [25–27].

Regardless of the nature of nonlocal phenomena, soliton
propagation in nonlocal media is usually studied using the
nonlinear Schrödinger (NLS) equation where the slowly vary-
ing envelope approximation (SVEA) is assumed. The scalar
nature of the NLS equation has restricted the study of soliton
propagation in nonlocal media to broad beams (in relation to
its wavelength) that propagate at vanishingly small angles (in
relation to the evolution axis). The first type of limitation is
overcome when one performs a full vectorial analysis based
on Maxwell equations [28,29] that accounts for the small
soliton width in relation to its wavelength. This approach has
been applied to the study of anisotropic dielectrics where the
nonparaxial framework alone has revealed substantial changes
in relation to their paraxial counterparts [30,31].

The second restriction involved in the NLS equation,
however, is essentially an angular limitation which is removed
provided the SVEA is not assumed in the two-dimensional
(2D) scalar Helmholtz equation [32]. Described by a scalar
model, this type of nonparaxiality deals with broad beams
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propagating at arbitrary angles and it has been developed
in the framework of the Helmholtz theory [33,34], where,
for local media, essential corrections to previous paraxial
studies have been revealed [35–39]. As regards nonlocal
media, longitudinal nonlocal effects have been considered in
liquid crystals [40] and, more recently, in thermal media [41].
Even within paraxial propagation contexts, the rapid evolution
of the refractive index along the propagation direction must
be preserved to accurately describe scenarios where soliton
breathing arises or when losses are considered [41]. This type
of on-axis nonparaxiality is, however, not addressed in our
work. We focus, instead, on the off-axis nonparaxiality arising
when shape-preserving beams do not propagate strictly parallel
to the longitudinal axis, so that a full angular treatment of the
problem is desirable [9,42].

We rely again on the Helmholtz theory to study soliton prop-
agation in a diffusive Kerr-type medium where the nonlocal
response accounts for the diffusion of carriers that takes place
when an optical filed propagates in certain Kerr-type media
[43]. However, in order to obtain an adequate description
of soliton evolution at arbitrary angles, a full 2D model for
the diffusion of carriers preserving the rotational invariance
of the Helmholtz framework is required. Otherwise, the
results are shown to exhibit a dependence on the propagation
angle.

This paper is structured as follows. Section II presents the
2D model that rules soliton evolution for diffusive Kerr-type
media within the limits of the weakly nonlocal regime. In
Sec. III, we study the effects of the breakdown of the rotational
symmetry inherent to the Helmholtz framework introduced
when carrier diffusion is restricted to a single direction. In
Sec. IV, the exact soliton solution for the nonlocal Helmholtz
model with 2D carrier diffusion is presented and analyzed.
We finally consider, in Sec. V, an inherent angular scenario,
such as a nonlinear interface. Section VI summarizes the main
conclusions of this work.

II. THE MODEL

The time-independent complex field envelope E(x,z) of a
continuous-wave TE-polarized beam evolves according to a
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2D Helmholtz equation,

∂2E

∂z2
+ ∂2E

∂x2
+ ω2

c2
n2E = 0, (1)

where n is the refractive index. This can be decomposed into
a linear and a nonlinear part as n2 = n2

l + 2nlδn, where δn is
the field-induced refractive index [43] described by a diffusion
equation

D2∇2
xzδn − δn + α|E|2 = 0, (2)

where D and α are, respectively, the diffusion and Kerr
coefficients.

If we consider a forward-propagating beam E(x,z) =
(2κnl/α)1/2u(x,z)ejkz and employ the normalizations ζ =
z/LD and ξ = 21/2x/w0, w0 being a transverse scale parameter
equal to the waist of a reference Gaussian beam of diffraction
length LD = kw2

0/2, Eqs. (1) and (2) are transformed into

κ
∂2u

∂ζ 2
+ i

∂u

∂ζ
+ 1

2

∂2u

∂ξ 2
+ φu = 0 (3)

and

d2
0

(
∂2φ

∂ξ 2
+ 2κ

∂2φ

∂ζ 2

)
− φ + |u|2 = 0, (4)

respectively. In this set of transformations κ = 1/k2w2
0 is

a nonparaxiality parameter [32,33], d0 is the normalized
diffusion coefficient d2

0 = 2D2/w2
0, and φ = δn/2κnl is the

normalized field-induced refractive index. Equations (3) and
(4) govern soliton evolution in diffusive Kerr-type media
within the Helmholtz nonparaxial framework. Since no as-
sumptions have been made in their derivation, they are fully
equivalent to their corresponding Helmholtz and diffusion
equations, shown in Eqs. (1) and (2), respectively.

According to Eq. (4) the diffusion process can thus take
place along any arbitrary direction in the xz plane, since no
angular limitation is assumed within the Helmholtz theory.
This imposes an essential difference in relation to previous
paraxial work [44], which, restricted to vanishingly small
angles of propagation, considers only diffusion along the
transverse coordinate,

d2
0
∂2φ

∂ξ 2
− φ + |u|2 = 0. (5)

Equation (4) represents a generalization of Eq. (5) which
can be properly used only in those scenarios restricted to very
small angles of propagation where ∂2φ/∂ζ 2 → 0. The use
of Eq. (5) has been, however, recently proposed to describe
soliton evolution at the interface separating diffusive Kerr-type
media [45]. We show in Sec. III that in this case the rotational
invariance inherent to the Helmholtz framework is broken and
the properties of soliton propagation at large angles may be
affected.

A. Weakly nonlocal regime

The study of nonlocal media traditionally distinguishes
between weakly and strongly nonlocal regimes, depending
on the extent of the response function of the nonlocal media
in relation to the optical beam width [44]. When the response
function is small compared to the beam width, one works

within a weakly nonlocal regime which is mathematically
addressed in a paraxial context provided d2

0 � 1 [44]. In
our Helmholtz framework, however, the weakly nonlocal
approximation deserves further analysis since the angular
content of the problem is also involved.

Equation (4) can be rewritten in the Fourier domain as


(kξ ,kζ )
(
1 + d2

0k2
ξ + 2κd2

0k2
ζ

) = U (kξ ,kζ ), (6)

where kξ and kζ are the transverse and wave numbers, re-
spectively, and H (kξ ,kζ ) = (1 + d2

0k2
ξ + 2κd2

0k2
ζ )−1 is the 2D

Fourier transform of the response function R(ξ,ζ ). U (kξ ,kζ )
and 
(kξ ,kζ ) denote the 2D Fourier transforms of |u(ξ,ζ )|2 and
φ(ξ,ζ ), respectively. The response function associated with
H (kξ ,kζ ) is

R(ξ,ζ ) = 1

4π2

∫ +∞

−∞

∫ +∞

−∞

ejξkξ ejζkζ dkξdkζ

1 + d2
0k2

ξ + 2κd2
0k2

ζ

= 1

2πd2
0

√
2κ

K0

(
1

d0

√
ξ 2 + ζ 2

2κ

)
(7)

for (ξ,ζ ) �= (0,0) [46]. K0 denotes the modified Bessel
function of the second kind and zero order and its decaying
rate is ruled by d−1

0 , so that in the local limit (d0 → 0) one
has R(ξ,ζ ) → δ(ξ,ζ ). When the response function is narrow
in relation to the field intensity, the normalized field-induced
refractive index φ(ξ,ζ ) = R(ξ,ζ ) ∗ |u(ξ,ζ )|2 can be calculated
based on its 2D Taylor expansion. Since Eq. (7) verifies
that [47] ∫ +∞

−∞

∫ +∞

−∞
R(ξ,ζ )dξdζ = 1 (8)

and

1

2

∫ +∞

−∞

∫ +∞

−∞
ξ 2R(ξ,ζ )dξdζ = d2

0 , (9)

one obtains

φ(ξ,ζ ) ≈ |u|2 + d2
0
∂2|u|2
∂ξ 2

+ 2κd2
0
∂2|u|2
∂ζ 2

. (10)

Equation (10) provides an explicit expression for the nor-
malized field-induced refractive index in the weakly nonlocal
regime, which is the sum of the local Kerr contribution plus a
nonlocal term that accounts for the diffusion processes along
both transverse and longitudinal coordinates.

The substitution of Eq. (10) into Eq. (3) leads to

κ
∂2u

∂ζ 2
+ i

∂u

∂ζ
+ 1

2

∂2u

∂ξ 2
+ u

(
|u|2 + d2

0
∂2|u|2
∂ξ 2

+ 2d2
0κ

∂2|u|2
∂ζ 2

)

= 0, (11)

which governs the propagation of solitons at wide angles in
diffusive Kerr-type media with a weakly nonlocal response.
Equation (11) represents a generalization of the equation
found under the paraxial approximation [44], where the term
κ∂2/∂ζ 2 → 0 is neglected.

B. Angular restrictions

Equation (10) also reveals that the Fourier transform of the
response function under the weakly nonlocal approximation
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is H (kξ ,kζ ) ≈ 1 − d2
0k2

ξ − 2κd2
0k2

ζ , which allows us to obtain
the set of conditions that address the weakly nonlocal regime
within the Helmholtz framework d0kξ � 1 and

√
2κd0kζ �

1. The maximum longitudinal and transverse wave numbers
corresponding to the maximum angle of propagation θ = 90o

are, respectively, kζ,max = 1/2κ and kξ,max = 1/(2κ)1/2 [33].
In this case, the former conditions are transformed into one,
d0 � (2κ)1/2, which establishes the range of parameters where
the weakly nonlocal approximation is valid for all angles of
propagation. However, this is a very strict condition which
can hardly be fulfilled in our scalar Helmholtz framework
where κ � 1. In unscaled coordinates, one has D � λ/(2π )
revealing that the extent of the diffusion process should be
even much less than the optical wavelength.

Since we work with broad beams, the validity of this
approximation will be restricted to those angles whose
transverse wave number verifies kξ � d−1

0 . The strength of
the diffusion process thus limits the angular range where
the weakly nonlocal approximation is valid. This limitation
is taken into account throughout this work, so that soliton
parameters are chosen to verify at least kξ < d−1

0 .

III. ONE-DIMENSIONAL DIFFUSION MODEL

Exact soliton solutions of the NLS equation with 1D
carrier diffusion have been presented in [44]. The assumption
that carrier diffusion takes place only along the transverse
coordinate is adequate within the paraxial propagation regime.
This model has been generalized to a Helmholtz equation
including the same type of restricted transverse diffusion [45],
which reads

κ
∂2u

∂ζ 2
+ i

∂u

∂ζ
+ 1

2

∂2u

∂ξ 2
+ u|u|2 + d2

0
∂2|u|2
∂ξ 2

u = 0. (12)

Compared to Eq. (11), Eq. (12) retains the rapid evolution of
the field envelope along the ζ coordinate but, simultaneously,
discards the contribution of the diffusion process along the
same coordinate.

The general exact soliton solution of Eq. (12) is

±(ξ + V z) = 2d0 tan−1(2d0σ
′)

+
√

1 + 2κV 2

η0
tanh−1

(
σ ′√1 + 2κV 2

η0

)
,

(13)

where η0 is the soliton peak amplitude, V represents the soliton
transverse velocity, and σ ′ is the normalized soliton intensity
[44],

σ ′2 = η2
0 − η2

1 + 2κV 2 + 4d2
0η2

. (14)

The phase has an explicit expression,

ϕ(ξ,ζ ) = −V ξ

√
1 + 2κη2

0√
1 + 2κV 2

+ ζ

2κ

⎛
⎝−1 ±

√
1 + 2κη2

0√
1 + 2κV 2

⎞
⎠.

(15)

Figure 1 plots the soliton transverse profiles given by
Eqs. (13) and (14) for a diffusive Kerr-type medium with d0 =

−4 −2 2 4

1

2

ξ

η(
ξ)

V=8.4
d0=0.14
d0=0.0

V=0
d0=0.14
d0=0.0

FIG. 1. Soliton transverse profiles for different diffusion coeffi-
cients and transverse velocities with 1D carrier diffusion. In all cases,
η0 = 2 and κ = 5e − 3.

0.14 and a local Kerr medium (d0 = 0.0) when two different
transverse velocities are employed. As shown for V = 8.4,
where the solid and dotted lines are almost superimposed, the
angular correction can even mask the nonlocal contribution.

This effect can be mathematically captured taking into
account the relationship between the transverse velocity and
the actual angles of propagation θ tan θ = (2κ)1/2V [33], so
that Eq. (14) can be rewritten as

σ ′ = cos θ

√
η2

0 − η2

1 + 4d2
0 cos2 θη2

= Dθ

d0

√
η2

0 − η2

1 + 4D2
θ η

2
. (16)

In Eq. (16) we have defined an angular diffusion coefficient,

Dθ = d0 cos θ, (17)

revealing that the impact of the nonlocal response on soliton
evolution depends on the angle of propagation. As the angle
of propagation increases nonlocal effects vanish. This can
be seen when Eq. (13) is evaluated in the limit θ → 90o or,
equivalently, Dθ → 0. While the first term in Eq. (13) becomes
negligible,

lim
Dθ→0

2d0 tan−1

(
2Dθ

√
η2

0 − η2

1 + 4D2
θ η

2

)
= 0, (18)

the hyperbolic function

lim
Dθ→0

tanh−1

(
1

η0

√
η2

0 − η2

1 + 4D2
θ η

2

)
= tanh−1

⎛
⎝

√
η2

0 − η2

η0

⎞
⎠
(19)

remains independent of d0, so that one recovers the solution
for local Kerr media [33]. As the propagation angle increases
and the beam direction departs from the ζ axis, the transverse
nonlocal effects become negligible and local effects prevail.
Therefore, soliton behavior becomes angle dependent when
carrier diffusion along the ζ axis is neglected.

IV. NONLOCAL HELMHOLTZ SOLITONS

We now introduce the exact soliton solutions of the
rotationally symmetric Helmholtz equation, (11), including 2D

033826-3
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FIG. 2. Soliton transverse profiles for different diffusion coeffi-
cients and transverse velocities with 2D carrier diffusion. In all cases,
η0 = 2 and κ = 5e − 3.

carrier diffusion effects and analyze their properties. Using the
ansatz u(ξ,ζ ) = η(ξ,ζ ) exp (iϕ(ξ,ζ )) with the sole assumption
that ϕ is a linear combination of both ξ and ζ , the amplitude
of the nonlocal Helmholtz soliton η(ξ,ζ ) can be expressed in
implicit form as

±(ξ + V z)√
1 + 2κV 2

= 2d0 tan−1(2d0σ )

+ η−1
0 tanh−1

(
ση−1

0

)
, (20)

where

σ 2 = η2
0 − η2

1 + 4d2
0η2

, (21)

plus a phase term identical to that of Eq. (15).
The nonlocal Helmholtz soliton solution preserves the ro-

tational symmetry inherent to the Helmholtz framework. One
can easily check that Eqs. (20) and (21) can also be obtained
after rotating in the Helmholtz framework the corresponding
on-axis solution, u(ξ,ζ ) = v(ξ ) exp (iϕ(ζ )) [48]. In contrast to
Eq. (13), Eq. (20) shows that the nonlocal Helmholtz soliton
width preserves its dependency on the nonlocal contribution
even when large angles of propagation are involved. This
is shown in Fig. 2, where soliton transverse profiles for
V = 8.4 are no longer superimposed when compared with
their corresponding counterparts in Fig. 1.

The behavior of the nonlocal Helmholtz soliton is numeri-
cally tested by computing the numerical integration of Eq. (11)
using the nonparaxial beam propagation method [49]. The
contour plots in Fig. 3 display soliton evolution in diffusive
Kerr-type media with d0 = 0.2 (left) and d0 = 0.1 (right) at
two transverse velocities.

The power flow of the nonlocal Helmholtz soliton is

Pf =
∫ +∞

−∞

(
1

2κ
+ ∂ϕ(ξ,ζ )

∂ξ

)
|u(ξ,ζ )|2dξ

=
√

1 + 2κη2
0

[
η0 + 1 + 4d2

0η2
0

2d0
tan−1(2d0η0)

]
(22)

and remains independent of the angle of propagation. Sim-
ulations have been designed to test the validity of Eq. (22).
The numerical computation of the integral shown in Eq. (22)

(a) (b)

ζ

d0=0.2
θ=0o
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ζ

ξ
d0=0.1
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0 10 30 40−200

0

200

FIG. 3. Nonlocal Helmholtz solitons propagating in diffusive
Kerr-type media (a) on axis and (b) off axis, θ = 20◦. In all cases,
η0 = 1 and κ = 1e − 3.

is plotted with symbols in Fig. 4, while horizontal lines
correspond to the analytical result. The agreement between
theory and numerics is excellent for all values tested.

This result differs from the one obtained for power flow of
the solution given by Eqs. (13)–(15) when the 1D model for
carrier diffusion is assumed. In this case, the power flow

Pf =
√

1 + 2κη2
0

[
η0 + 1 + 4D2

θ η
2
0

2Dθ

tan−1(2Dθη0)

]
(23)

depends on the angle of propagation through Dθ , so that the
breakdown of the rotational symmetry manifests again. This
is illustrated in Fig. 5(a), where Eq. (23) is displayed as a
function of the angle of propagation for different values of d0

and η0.
While dotted horizontal lines account for Eq. (22), solid

black lines represent the power flow in local Kerr media
for η0 = 1 and η0 = 2 [48]. These two limits constitute,
respectively, the maximum and minimum values that Eq. (23)
may exhibit. Only for very small angles of propagation θ → 0
do the power flows of the 1D and 2D diffusion models
agree. As θ → 90o and local effects prevail, the power flow
tends to the one obtained for local Kerr media. The result
of numerical simulations shown in Fig. 5(b) reinforces the
angular dependence of the power flow when the 1D model
is assumed and reveals the good agreement between theory
(lines) and numerics (circles, diamonds, and squares).

We now test the validity of the weakly nonlocal regime
approximation used so far compared to the complete nonlocal
model represented by Eqs. (3) and (4). The field-induced
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FIG. 4. Soliton power flow for different diffusion coefficients and
transverse velocities. In all cases, η0 = 1 and κ = 2.5e − 3.
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FIG. 5. (a) Power flow dependence on the angle of propagation
for different amplitudes and diffusion coefficients with 1D carrier
diffusion. (b) Numerical results for the power flow with 1D carrier
diffusion. In all cases, κ = 2.5e − 3.

refractive index given by Eq. (10) is substituted into Eq. (4)
to obtain an estimation of the error assumed upon taking the
approximation

�φ = max

{∣∣∣∣d2
0

(
∂2φ

∂ξ 2
+ 2κ

∂2φ

∂ζ 2

)
+ |u|2 − φ

∣∣∣∣
}
. (24)

Equation (24) can be rewritten as

�φ = d4
0 max

{∣∣∣∣∂4|u|2θ=0

∂ξ 4

∣∣∣∣
}
, (25)

where |u|2θ=0 denotes the intensity of the soliton propagating
along the longitudinal axis.

V. NONLINEAR INTERFACES

In Secs. III and IV, we have shown that the study of
diffusive Kerr-type media can be properly addressed only
when the diffusion of carriers can occur along any arbitrary
direction. Otherwise, the inherent rotational symmetry of
the Helmholtz framework is broken and results have been
demonstrated to exhibit an angular dependence. It is essential
to take this into consideration when one works in nonlinear
scenarios that have an inherent angular character, such as
nonlinear interfaces [50–53]. Interfaces separating diffusive
Kerr-type media have been traditionally studied within the
paraxial framework, where modifications to the traditional
local models have been reported [54,55]. More recently, the
study of such interfaces has been performed in the Helmholtz
framework assuming the 1D model described in Sec. III [45].
Nevertheless, this analysis is strictly valid only provided that
vanishingly small angles of propagation are involved. The
possible impact of this shortcoming is analyzed in the example
below.

Figure 6 represents soliton evolution at the interface
separating local and nonlocal diffusive Kerr-type media with
d0 = 0.1. Solitons, initially propagating in a local medium,
impinge a nonlinear interface at an angle of incidence θ ,
thus undergoing refraction. Soliton evolution in the second
medium has been computed twice, depending on the carrier
diffusion model assumed. While the 2D model relies on the
numerical integration of Eq. (11), the 1D model is based on
Eq. (12).

The two pictures in Fig. 6 are visually very similar, although
differences can be appreciated under a careful evaluation of
the soliton parameters such as the peak amplitude and width.

(a) (b)
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ξ

local
d0=0.1

θ

0 2 4 6
35

0

−50

I+d0
2∂2 I
∂ ξ2
____ +2κ d0

2 ∂2 I
∂ ζ2
____

ζ

ξ

local
d0=0.1

θ

0 2 4 6
35

0

−50

I+d0
2 ∂2 I

∂ ξ2
____

FIG. 6. Soliton evolution at an interface separating local and
nonlocal media when (a) the 2D and (b) the 1D diffusion models
are used.

Figure 7 represents the evolution of the soliton peak amplitude
for three angles of incidence when the 2D (dotted lines with
filled symbols) and 1D (solid lines with open symbols) models
are used. Since a sech-type beam is not the exact solution for
diffusive Kerr-type media, the beam undergoes breathing upon
entering the second medium. For small angles of incidence,
such as 10◦ or less, differences between the two models
are negligible. Dotted and solid lines with circles are almost
superimposed. However, as the angle of incidence increases,
the evolution of the soliton peak amplitude displays noticeable
differences. The 2D model exhibits a lower peak amplitude,
which corresponds to a larger soliton width. The diffusion
process is enhanced since carriers can diffuse not only along
the transverse, but also along the longitudinal coordinate.

Differences between the two models become more ex-
plicit at interfaces where, in addition to different diffusion
coefficients, local mismatchings, � = (n2

l,1 − n2
l,2)/n2

l,1 and
α = α2/α1, come into play. Such an interface is shown in
the two pictures of Fig. 8, which illustrate the evolution of a
soliton that initially travels in a nonlocal medium (d01 = 0.2)
and impinges the interface at an angle θ = 10.44◦.

The only difference between the two pictures in Fig. 8 is
due to the model assumed for soliton propagation in the first
medium, which is 2D in Fig. 8(a) and 1D in Fig. 8(b). The
whole field-induced refractive index in the first medium is
slightly raised in the 2D case, which makes the critical angle
increase. That explains why the soliton propagating at an angle
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1.9
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So
lit
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 p
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de θ=30o

θ=20o

θ=10o

FIG. 7. Evolution of the soliton peak amplitude for an interface
between a local and a diffusive Kerr-type medium with d0 = 0.1. In
all cases, η0 = 2 and κ = 1e − 3.
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FIG. 8. Soliton evolving at the same interface when (a) a 2D and
(b) a 1D propagation model is assumed in the first medium.

close to the critical angle undergoes internal reflection in the
former case but refraction in the latter.

Optical switching devices based on soliton reflection and re-
fraction have been proposed for diffusive Kerr-type media [56],
photorefractive materials [57,58], and nematic liquid crystals
[23,24], where the paraxial approximation has been assumed.
Our nonparaxial approach can overcome this limitation and aid
the understanding of experiments based on soliton reflection
and refraction when nonvanishingly small angles are involved.

The study of this type of nonlocal interfaces is the basis for a
forthcoming work on this topic.

VI. CONCLUSIONS

In this work we have studied the propagation of solitons
in diffusive Kerr-type media within the framework of the
Helmholtz theory. Our analysis is valid for wide angles of
propagation as long as a 2D model for the diffusion of carriers
is considered. Exact soliton solutions have been presented
and their power flow analysed. A model that only accounts
for carrier diffusion along the transverse coordinate breaks
the rotational symmetry of the Helmholtz framework, thus
restricting its validity to angles of propagation that are not
too large. This limitation has been analyzed with an example
involving nonlinear interfaces. The validity of our findings
has been computationally contrasted with the numerical
integration of the corresponding evolution equations, showing
an excellent agreement between theory and numerics.
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