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Attosecond lighthouses in gases: A theoretical and numerical study
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We present an extensive theoretical and numerical study of the attosecond lighthouse effect in gases. We study
how this scheme impacts the spatiotemporal structure of the driving laser field all along the generation medium,
and show that this can modify the phase matching relation governing high-harmonic generation (HHG) in gases.
We then present a set of numerical simulations performed to test the robustness of the effect against variations of
HHG parameters, and to identify possible solutions for relaxing the constraint on the driving laser pulse duration.
We thus demonstrate that the lighthouse effect can actually be achieved with laser pulses consisting of up to
∼8 optical periods available from current lasers without postcompression, for instance by using an appropriate
combination of 800- and 1600-nm wavelength fields.
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I. INTRODUCTION

In the past decade, attosecond metrology has enabled the
development ([1] and references therein) and characteriza-
tion [2,3] of attosecond light sources, for probing electron
dynamics in atoms [4], molecules [5], and solids [6] with
an unprecedented time resolution. Attosecond pulse trains
are naturally released during HHG with multicycle lasers.
However, so far, most of the applications used pump-probe
schemes that require single attosecond pulses. Such isolated
bursts remain difficult to produce routinely, because they ne-
cessitate to use either extremely short phase-stabilized driving
laser pulses (∼4 fs), with [7,8], or without [9] a polarization
gate, or multicycle laser pulses (∼30 fs) using a two-color
gating scheme [10–12] or by combining a polarization gate
with two-color mixing [13,14].

An approach called the attosecond lighthouse scheme,
that uses space-time couplings (STCs) on the driving laser,
has recently been demonstrated. STCs [15], which are
often considered spurious effects in laser physics, are used
here to angularly separate the successive pulses of the
attosecond pulse train produced with a multicycle laser pulse.
Proposed [16] and observed [17] for HHG on plasma mirrors,
it was rapidly generalized to HHG in gases [18,19]. Very
recently, the method was also demonstrated with driving
lasers in the midinfrared wavelength range [20,21], thus
enabling the production of single attosecond pulses with
spectra extending up to the water window [21]. Note that
besides the generation of isolated attosecond pulses, a major
interest of this effect is the spatial encoding of the attosecond
pulse train, which makes it possible to use the HH signal to
probe electron dynamics, e.g., in molecules, on a single pump
laser shot with a time resolution of half a laser period—a
measurement scheme called photonic streaking [18,19].

This paper presents an extensive theoretical and numerical
study of the attosecond lighthouse effect in gases, and is
organized as follows: In Sec. II, we first briefly remind of the
general principle of the attosecond lighthouse effect, which
exploits laser beams with a STC at focus known as wave-front
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rotation (WFR), induced by applying pulse front tilt (PFT) to
the beam prior to focusing. Because this effect was discovered
in the context of HHG from plasma mirrors, where generation
occurs in the focal plane, its initial analysis only considered
the space-time structure of the laser field exactly at focus.
The situation is very different for HHG in gases, where the
generation occurs over a certain propagation distance around
focus. A proper understanding of the attosecond lighthouse
scheme in gases thus requires an analysis of the modifications
induced by STC on the amplitude and phase of the driving laser
along its propagation direction. We provide such an analysis
in Sec. III using analytical expressions, and qualitatively
discuss the consequences on HHG in gases, in particular on
its phase-matching conditions. The second half of the paper
is dedicated to numerical simulations. In Sec. IV, we briefly
describe the numerical model used for simulating HHG in
gases, and present a simulation of the lighthouse effect that will
be used as a reference case in the rest of the paper. Section V
presents the results of a parametric study performed using this
numerical model. Section V A is devoted to the study of the
influence of HHG parameters on the lighthouse effect. We
show that the phase-matching relation, which rules HHG in
gases, is modified due to STC introduced on the laser pulse.
Section V B proposes and demonstrates solutions to relax the
constraints on the driving laser pulse duration required to
obtain attosecond lighthouses in gases. A summary of the
results is provided in Sec. VI.

II. PRINCIPLE OF THE ATTOSECOND LIGHTHOUSE
EFFECT

The attosecond lighthouse effect relies on the use of a
laser field whose propagation direction rotates in time at
focus, on the femtosecond scale. This space-time coupling
corresponds to a temporal rotation of the field wave-front.
In these conditions, attosecond pulses produced in successive
cycles (or half cycles in the case of gases) of the laser pulse
propagate in slightly different directions, and can be angularly
separated in the far field if the wave-front rotation velocity is
large enough.

Such a temporal wave-front rotation at focus can be induced
by using a laser beam described by the following electric field
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prior to focusing:

Ei(xi,yi,t) = E0
i exp

[
−α2(t + ξxi)2

τ 2
L

]

× exp

[
−x2

i + y2
i

R2

]
exp[i(ωLt + φ0)], (1)

where E0
i is the peak electric field and α = √

2 × ln(2). R is
the beam waist. xi and yi are the transverse coordinates in the
plane of incidence and t is the time coordinate. τL is the full
width at half maximum (FWHM) Fourier-transform limited
pulse duration, ωL is the pulse central frequency, and φ0 is the
carrier-envelope phase (CEP). ξ is a STC parameter known as
pulse front tilt (PFT), expressed in [s/m]. It accounts for a tilt
between the beam wave front and pulse front.

We consider throughout the paper a linearly polarized laser,
propagating along the z axis, in the positive z direction. We
assume that the field is Gaussian in time, as well as in space,
unless otherwise stated. Moreover, since STC only operates
on the xi spatial transverse coordinate, we restrict our analysis
to this coordinate, thus dramatically reducing the computation
time in the simulations presented in Sec. V. We therefore
disregard the y dependence in all the equations of Secs. III
and IV.

Once focused, such a laser field does not present any more
PFT in the focal plane, but only wave-front rotation (WFR).
To demonstrate this, we now calculate the electric field at
the focus of an optics of focal length f , which is the spatial
Fourier transform of the incident field Ei(xi,t). By doing so,
we implicitly assume that the optical element or system used
for producing PFT, for example a glass wedge, is placed in the
object focal plane of the focusing optics [22]. When this is not
the case, the different frequencies composing the laser pulse
can start separating spatially (spatial chirp) before reaching
this object focal plane, and this additional STC then has to be
taken into account in the calculation of the field. This additional
effect, which can modify the position of the plane where
pure WFR is obtained, will be discussed in a forthcoming
article. In our case, the field Ef (xf ,t) in the focal plane
writes

Ef (xf ,t) = E0
f exp

{
− x2

f

w2
0[1 + (αξR/τL)2]

}

× exp

{
− α2t2

τ 2
L[1 + (αξR/τL)2]

}
× exp[iφf (xf ,t)], (2)

with

φf (xf ,t) = ωLt + ζf xf t + φ0, (3)

with ζf = 2α2ξR

w0τ
2
L[1+(αξR/τL)2]

. w0 = λLf

πR
is the usual diffraction

limited beam waist at focus. λL and xf denote respectively
the laser wavelength and the transverse coordinate in the focal

plane. E0
f =

√
R

iw0

E0
i exp(i 2πf

λL
)√

1+(αξR/τL)2
is the peak electric field at

focus. The instantaneous direction of propagation of light, β,
is given by β � k⊥

kL
[16], where kL = 2π

λL
is the laser wave

vector and k⊥ = ∂φf

∂xf
is its transverse component. For the

field of Eq. (2), β, and therefore the instantaneous wave-front
direction, depends on time. This is the key effect used in the
attosecond lighthouse scheme. The WFR velocity, vr [rad/s],
is given by

vr (ξ ) = dβ

dt
= ζf

kL

= α2R2

f τ 2
L

ξ

1 + (αξR/τL)2
. (4)

The effective waist, weff, and pulse duration, τeff, of the
beam at focus are given by

weff = w0

√
1 + (αξR/τL)2, (5)

and

τeff = τL

α

√
1 + (αξR/τL)2. (6)

Due to the PFT ξ initially applied on the laser beam, both
parameters are increased compared to the nominal case
where ξ = 0. As a result, the peak intensity at focus, I 0

f =
1
2ε0c|E0

f |2, is also reduced, by a factor 1 + (αξR/τL)2. From
an experimental point of view, this is the price to pay to obtain
WFR at focus.

An essential feature of the WFR velocity given by Eq. (4)
is that it reaches a maximum of vmax

r = αR
2f τL

, for ξmax = τL

αR
.

When vr = vmax
r , the laser intensity at focus is only half the one

reached with ξ = 0. We have plotted in Fig. 1 the WFR velocity
at focus as a function of the STC parameter ξ for three values
of the laser pulse duration τL. Calculations are performed
for a 1-m focal length optics and a 25-mm incident beam
waist. The rotation velocity is maximum for τL = 5 fs (black
squares). The corresponding optimum coupling parameter is
ξmax = 0.17 fs/mm. As expected from the expression of vmax

r ,
doubling the pulse duration leads to an optimum coupling
parameter twice the one obtained with 5-fs duration pulse
(empty circles), and the maximum WFR velocity is divided by
2. On the other hand, the curve flattens with increasing pulse
duration. For 20-fs pulse duration (black stars), vr is almost
constant for ξ greater than 0.4 fs/mm. In the following, the
calculations are performed with the maximum WFR velocity
obtained for ξmax, unless otherwise stated.

Attosecond lighthouses consist of N well-separated beam-
lets in the far field, each of them carrying a single attosecond
pulse. For separating adjacent beamlets, the rotation β =
vrt of the wave-front in the time interval t between the
emission of two successive attosecond pulses must be larger
than the divergence θq of light beam around frequency qω.
In the optimal case, i.e., when vr = vmax

r , this leads to the
following condition:

θq

θL

� 1

pNcycle
, (7)

where θL = R
f

is the laser beam divergence, and Ncycle = τL

αTL
is

the number of optical cycles in the pulse. TL is the laser period
and p is the number of attosecond pulses emitted per cycle
(p = 2 for gases and p = 1 for plasma mirrors). Therefore,
assuming the same ratio of harmonic and laser divergence,
attosecond lighthouses in gases necessitate laser pulses twice
shorter than those required for plasma mirrors. Note that the
divergence θq involved in condition (7) is actually the one
obtained in the presence of WFR, which can be different from
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FIG. 1. (a) WFR velocity as a function of STC parameter ξ

calculated for τL = 5 fs (black squares), 10 fs (empty circles), and
20 fs (black stars). (b) Normalized WFR velocity as a function of
the distance to the focus z1 = z − zf (in units of zR), for τL = 5-fs
and for ξ = 2/3 × ξmax (dashed green line), ξmax (solid red line) and
3/2 × ξmax (dotted blue line). The corresponding WFR velocities
in z1 = 0 are indicated by the vertical lines in (a). (c) Variation of
the phase with the distance to the focus in x = w0, with the same
parameters and same color codes and symbols as in (b). The curve
with black circles depicts the phase of a focused regular Gaussian
beam.

the one obtained with a standard STC-free driving laser beam
(see Fig. 3 in Sec. III).

III. ANALYTICAL DESCRIPTION OF THE LASER FIELD

When a laser beam with PFT is focused, there is a gradual
transition from this initial PFT to WFR at focus, over a
distance of the order of the Rayleigh length. In the case of
harmonic generation in gases, the condition given by Eq. (7),
although necessary, may thus not be sufficient to ensure a good
separation of adjacent beamlets in the far field, because the
harmonic field builds up while copropagating with the driving
field, over distances such that the spatiotemporal structure of
the laser field can evolve. It is therefore necessary to consider
this spatiotemporal structure out of focus. We calculate the
field at a distance z1 = z − zf from the focus by means of

the Huygens-Fresnel integral. It is convenient to perform the
calculation in the frequency domain. To start, we thus calculate
the time Fourier transform of the field at focus [Eq. (2)]:

Ef (xf ,ω) = τeff
√

π

α
E0

f exp

[
− x2

f

w2
eff

]

× exp

[
− τ 2

eff

4α2
(ζf xf + ω − ωL)2

]
. (8)

The field at each point of coordinates (x, z) is then given by

E(x,ω,z) ∝ exp

[
− x2

w(z)2

]
exp

[
−τ(z)2

4
[ζ (z)x + ω − ωL]2

]

× exp

[
i
φ(2)(z)

2
(ω − ωL)2 + iψ(z)x(ω − ωL)

]
.

(9)

Note that E(x,ω,zf ) ≡ Ef (xf ,ω). w(z) is the laser beam waist
at position z along the propagation axis, given by

w(z) = w0

√
1 +

(
αξR

τL

)2

+
(

z1

zR

)2

(10)

= weff

√
1 +

(
z1

zRweff/w0

)2

(11)

with zR = πw2
0

λL
the Rayleigh range corresponding to ξ = 0.

Similarly to the effective waist [Eq. (5)], one can thus define
an effective Rayleigh range, a key parameter for HHG in
gases:

zeff
R = πw0weff

λL

= zR

√
1 +

(
αξR

τL

)2

. (12)

Note that the beam waist and associated Rayleigh range are
unaffected for the other transverse spatial coordinate yf . τ (z)
is the local Fourier-transform limited pulse duration:

τ (z) = τL

α

√√√√1 + (
αξR

τL

)2 + (
z1
zR

)2

1 + (
z1
zR

)2 . (13)

For z = zf (z1 = 0) in Eqs. (10) and (13), we recover Eqs. (5)
and (6). The spatial chirp ζ (z) at position z is given by

ζ (z) = ζf

1 + (
αξR

τL

)2

1 + (
αξR

τL

)2 + (
z1
zR

)2 . (14)

By taking z = zf , one recovers ζ (zf ) = ζf . The z-dependent
PFT parameter ψ(z) writes

ψ(z) =
(
f/z2

R

)
ξz1

1 + (
z1
zR

)2 . (15)

This equation shows that there is no PFT at focus [ψ(zf ) =
0], as previously mentioned. The φ(2)(z) term, correspond-
ing to the frequency chirp induced by the propagation
of the laser spectral components in different directions, is
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written

φ(2)(z) = (f/zR)2ξ 2z1

kL

[
1 + (

z1
zR

)2] . (16)

One can note that there is no frequency chirp at focus (z1 = 0)
and far from it (z −→ ∞).

Coming back to the time domain by calculating the
Fourier transform of Eq. (9) with respect to ω, we split the
spatiotemporal phase into three parts:

�(x,t,z) = φxt (z) − φxx(z) + φtt (z). (17)

Using Eqs. (13)–(16), we derive φxt (z) = vr (z)t , with vr (z)
the z-dependent WFR velocity given by

vr (z) = 1

kL

τ (z)4ζ (z) + 8ψ(z)φ(2)(z)

τ (z)4 + 16[φ(2)(z)]2
. (18)

By rewriting vr (z) as a function of ( αξR

τL
)2 and z1

zR
, it gives

vr (z) = ζf

kL

[
1 + (

αξR

τL

)2]2[
1 + (

z1
zR

)2]
[
1 + (

αξR

τL

)2 + (
z1
zR

)2]2 + (
αξR

τL

)4( z1
zR

)2 . (19)

As expected, for z = zf , vr = ζf

kL
. Letting z −→ ∞ leads to

vr −→ 0, confirming that there is no WFR far from the focus.
Figure 1(b) displays the relative WFR velocity as a function of
the distance from the focus normalized to the Rayleigh range.
The calculation is performed for a 5-fs initial pulse duration,
for three values of the coupling ξ parameter, equal to 2/3 ×
ξmax, ξmax, and 3/2 × ξmax, depicted respectively by green,
red and blue lines. The two parameters ξ = 2/3 × ξmax and

3/2 × ξmax lead to the same WFR velocity right at focus, that
corresponds to 90% of vmax

r , as shown by the vertical dashed
lines in Fig. 1(a). However, the variation of vr with the distance
to the focus z1 is very different in the two cases, becoming
stronger as ξ decreases. In z = ±zR , the WFR velocity drops
to 0.7 × vr (zf ) (0.6 × vmax

r ) for ξ = 2/3 × ξmax while it is still
0.9 × vr (zf ) (0.8 × vmax

r ) for ξ = 3/2 × ξmax. This is due to
the increase of the beam waist [see Eq. (5)], and consequently
the Rayleigh range, with ξ . Hence, one must emphasize that
two different values of ξ giving the same WFR velocity at
focus do not lead to the same evolution of the laser pulse out
of focus—larger ξ leading to a slower evolution that should be
more favorable for HHG in gases.

The application of PFT on the unfocused beam also gives
rise to an additional term in the laser spatial phase φxx(z) which
then writes as

φxx(z) = x2

w2
0

z1/zR

1 + (z1/zR)2
− tan−1 z1/zR

+ x2 τ (z)4ζ (z)[ζ (z)φ(2)(z) −ψ(z)] − 4ψ(z)2φ(2)(z)

τ (z)4+16[φ(2)(z)]2
,

(20)

where the two first terms on the right-hand side of the equality
are the usual phase terms for a focused regular Gaussian beam;
the first corresponds to wave-front curvature, and the second
one, independent of the transverse coordinate x, is the well-
known Gouy phase. The third term is exclusively due to the
presence of STC. After replacing τ (z), ψ(z), ζ (z), and φ(2)(z)
in Eq. (20) by their expression as a function of ( αξR

τL
)2 and z1

zR
,

and after some simplifications, we finally get

φxx(z) = x2

w2
0

z1

zR

1 + {
2 + (

αξR

τL

)2[
1 − (

αξR

τL

)2]}( z1
zR

)2 + (
z1
zR

)4

[
1 + (

z1
zR

)2]{[
1 + (

αξR

τL

)2 + (
z1
zR

)2]2 + (
αξR

τL

)4( z1
zR

)2} − tan−1 z1/zR. (21)

The off–axis phase is significantly modified by STC,
as shown in Fig. 1(c), which displays φxx(z) for x = w0.
Calculations are performed for the same values of coupling
parameter and are displayed with the same color codes and
symbols as in Fig. 1(b). For −0.5 � z1/zR � +0.5, this phase
varies linearly with z, with a slope larger in magnitude than in
the absence of STC (black circles) that increases with ξ .

Finally, the last term on the right-hand side of equality (17)
is the z-dependent temporal chirp, given by

φtt (z) = 4φ(2)(z)t2

τ (z)4 + 16[φ(2)(z)]2
. (22)

When replacing φ(2)(z) by expression (16), we obtain

φtt (z) = α2t2

τ 2
L

z1

zR

(
αξR

τL

)2[
1 + (

z1
zR

)2]
[
1 + (

αξR

τL

)2 + (
z1
zR

)2]2 + (
αξR

τL

)4( z1
zR

)2 . (23)

To illustrate the effect of STC on the laser pulse while
propagating, we have reported in Fig. 2 the space-time
distribution of the electric field, E(x,t,z), calculated at four
positions z along the propagation axis. We consider an incident

laser beam of 25-mm waist and 5-fs FWHM Fourier-transform
limited pulse duration, focused by a f = 1 m optics. The
waist at focus is w0 = 10 μm, and the Rayleigh range is
zR = 400 μm. The STC parameter is 0.17 fs/mm. Figure 2(a)
displays the laser field distribution at focus. One clearly sees
wave-front rotation in time. As the laser beam propagates,
PFT appears and progressively dominates on WFR, as can
be observed in Figs. 2(b)–2(d), computed for propagation
distances of respectively 0.5 × zR , 1.0 × zR , and 2.5 × zR .

From the results summarized in Figs. 1 and 2, one can
anticipate that the evolution of the spatiotemporal shape of
the field out of the best focus will complicate the attosecond
lighthouse effect in gases, compared to the case of plasma
mirrors. This will most likely be detrimental when the length of
the generation medium or its distance to the best focus become
comparable or larger than the effective Rayleigh length zeff

R .
On the other hand, the increase in effective Rayleigh length
resulting of the application of PFT can be beneficial for the
HHG efficiency. To study these different effects quantitatively,
we now turn to a numerical model of HHG in gases, described
in the next section.
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FIG. 2. Space-time laser electric-field distribution calculated for
τL = 5 fs, ξ = 0.17 fs/mm, and zR = 400 μm. (a) Distributions at
focus and (b) after propagation on distances of 0.5 × zR , (c) 1.0 × zR ,
and (d) 2.5 × zR . Time is normalized to the laser period TL.

IV. DESCRIPTION OF THE MODEL

In the present study, we use a nonadiabatic model in
Cartesian geometry, in a two-dimensional (2D) version—one
dimension in the transverse direction and one along the
longitudinal direction. We numerically solve the coupled
wave equations for the fundamental and the harmonic fields,
in the paraxial approximation. A detailed description of the
principle of this code is given in Refs. [23–25]. In contrast
to the codes described in Refs. [23–25], we do not assume
cylindrical symmetry and therefore use Cartesian rather than
cylindrical coordinates. This is simply achieved by changing
the Laplacian operator in the equation of propagation of the
laser and harmonic fields from 
2

⊥ = ∂2

∂r2 + 1
r

∂
∂r

to ∂2

∂x2 . We
thus briefly outline here the main stages of the calculation. We
first solve the wave equation for the fundamental field which is
then used for calculating the source term in the wave equation
for the harmonic field. The atomic dipole moment entering
the source term is calculated in the strong-field approximation
(SFA), following the model described in Ref. [26]. The optical-
field ionization (OFI) of the gas, leading to the depletion of
the medium, to the refraction of the fundamental field, and
to the electron dispersion on the harmonic field, is modeled
by Ammosov-Delone-Kraı̈nov (ADK) tunneling rates [27].
Atomic dispersion and absorption of the gas are also taken
into account in the wave equation for the harmonic field for
photon energies greater than 10 eV [28]. The effect may be
significant, even though we consider thin (<1 mm) targets
here. The coupled wave equations are solved in the frame
moving with the laser pulse, using a finite-difference scheme
in space. Time derivatives are eliminated from the equations
by a Fourier transform of the fields. Here, we typically use
28 points in time per optical cycle, which is large enough
for resolving the highest frequency in the simulations. The
step size is 0.5 μm in the transverse direction and 2 μm in
the propagation (longitudinal) direction. The grid size is four
times the target width along z. The laser beam is initialized

FIG. 3. Far-field space-time square modulus of the attosecond
pulse electric fields generated by a laser beam (a) without WFR
(ξ = 0) and (b) using pulse parameters of Fig. 2. In both (a) and
(b), the peak intensity in the middle of the jet is 8.65 × 1014 W/cm2.
(c) Temporal intensity profile of the attosecond pulses obtained by
integrating the signal between the white lines in (a) and (b). The pulse
duration of individual attosecond pulses is 160 as (FWHM) without
WFR (dashed line) and 240 as with WFR (solid line).

by numerically back-propagating in vacuum the field at focus,
given by Eq. (2), up to the entrance of the numerical grid.
Note that we could in principle have used Eqs. (9)–(16) for
calculating the initial field out of focus, but we found it much
more convenient to propagate it numerically.

The results of a simulation of the attosecond lighthouse
effect with this code are presented in Fig. 3(b), which displays
the far-field space-time distributions of the attosecond pulses,
calculated when the laser field given in Fig. 2 is used for the
generation. It is compared to the results obtained in the same
conditions without any WFR for (ξ = 0), shown in Fig. 3(a).
In both cases, the peak intensity in the central part of the
gas medium is 8.65 × 1014 W/cm2. This value corresponds to
the saturation intensity, Isat, of neon, the gas used in all the
simulations reported hereafter. Working around the saturation
intensity of the gas of generation allows one to optimize the
HHG efficiency. The best focus is 200 μm (0.5 × zR) in front
of a 100-μm-long super-Gaussian jet, and the maximum gas
pressure in the jet is 10 mbar. The parameters used here define
the reference case for the attosecond lighthouse, with which
we will compare the results of the parametric study presented
in Sec. V. They closely match the ones of the experiment
reported in Ref. [18]. One can clearly see in Fig. 3(b) the
lighthouse effect, with the generation of individual attosecond
pulses propagating in different directions. Such an effect leads
to modulations in the time-integrated far-field angular intensity
profile, as we are going to see in detail in Sec. V. Note the very

033825-5



T. AUGUSTE, O. GOBERT, T. RUCHON, AND F. QUÉRÉ PHYSICAL REVIEW A 93, 033825 (2016)

significant reduction in divergence of the attosecond pulses
when WFR is applied, which is favorable for the attosecond
lighthouse effect [smaller θq in Eq. (7)]. This reduction is
partly due to the increase in the laser focal spot size associated
to the application of WFR.

Figure 3(c) depicts attosecond pulses obtained by spatially
integrating the signal between the white lines in Figs. 3(a)
and 3(b). The duration of the central attosecond pulse
generated with WFR (solid line) is 240 as (FWHM), against
160 as for the one generated without WFR (dashed line).
The generation efficiency with a regular spatial and temporal
Gaussian beam is a bit stronger than the one achieved with
a pulse experiencing WFR, but we observed that the ratio
generally hardly exceeds a factor of 2.

V. RESULTS AND DISCUSSION

A. Influence of HHG parameters on the lighthouse effect

As is well established now, HHG in gases is ruled by a
phase-matching relation between the laser and harmonic field
wave vectors, which is conveniently written as the sum of
four terms, accounting for the laser focusing, the single atom
response, the electron dispersion, and the atomic dispersion
and absorption. The first two terms in the sum, respectively
called geometric and dipole terms later on in the text, are
proportional to ∇φ(x,z) and ∇If (x,z) [29], respectively,
where φ(x,z) is the spatially dependent phase of the laser,
given by Eq. (20) with ξ = 0, and If (x,z), its intensity. When
ξ �= 0, φ(x,z) is replaced by �(x,t,z) [Eq. (17)], and If (x,z)
is modified due to the stretching of the waist [Eq. (10)]. One
thus expects significant changes of the geometric and dipole
contributions to the phase mismatch due to STC. The two last
terms in the sum can also be modified through a reduction
of the ionization yields due to the decrease of the peak laser
intensity induced by the stretching of the waist and of the
pulse duration [Eqs. (10) and (13)].

In the study presented below, we vary the different target
and laser parameters one by one, except the CEP whose effect
was studied in Ref. [18], and compare the high-harmonic
far-field angular intensity profile obtained in these different
conditions to the one of our reference case. Considering the
far-field angular intensity profile is highly relevant because this
provides a direct measurement of the spatial encoding of the
attosecond pulse train, as demonstrated both numerically and
experimentally in Ref. [18]. These far-field intensity profiles
are obtained by a time integration of the harmonic field
obtained after propagation over the distance separating the exit
of the generating medium from the observation plane. The
propagation is achieved through a spatial Fourier transform
applied to the—spectrally filtered—radiated harmonic field.
The selected spectral bandwidth matches the plateau region of
the harmonic spectrum, which extends here from 30- to 140-eV
photon energy. The normalization of the profiles is performed
relative to our reference case. Negative θ values correspond
to early times in the laser pulse. Such a representation is
illustrated in Fig. 4 for our reference case, that compares
the temporal profile of the generated attosecond pulse train,
obtained by spatially integrating the harmonic signal in the
far-field (gray curve) and the time-integrated far-field angular
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FIG. 4. Comparison of the HH time-integrated far-field angular
intensity profile (black line), and the spatially integrated attosec-
ond pulse train temporal intensity profile (gray line). Negative θ

(upper scale) values correspond to early times in the pulse. The
correspondence between θ and t is given by θ = vmax

r t , with vmax
r =

3 × 10−3 rad/fs.

profile (black curve). A very good qualitative matching is
observed between these two curves, thus demonstrating the
time-to-space mapping induced by WFR.

In the spectral range of interest here, namely the plateau
region of the spectrum, the contributing trajectories are of
quite generic types for high harmonics, whatever the atom.
There are mainly two electron quantum paths contributing to
HHG, called short and long path (or trajectory), respectively.
The relative contribution of these two trajectories depends on
the focus position with respect to the gas target, through the
geometric and the dipole terms. When focusing in front of the
gas target, the short quantum path is favored, while the long
path, whose phase varies typically 25 times faster than that
of the short one with laser intensity, prevails when focusing
behind the target. Note that such a general trend could be
modified when using a beam with PFT, since new phase terms
are involved for the laser field. This point will require further
studies in the future.

We have reported in Fig. 5 the evolution of HH far-field
intensity profiles with focus position zf for values of zf /zR

ratio equal to −1.25 (a), −0.5 (reference case) (b), 0.0 (c), and
+0.5 (d). Negative zf values correspond to focus positions
in front of the gas target. The structures in far-field profiles,
characteristic of the attosecond lighthouse effect, survive for
values of |zf /zR| > 1 [Fig. 5(a)], but with a slight decrease of
the intensity of the peaks, which move and broaden, compared
to the reference case. This is most likely due to the reduction
of the WFR velocity of the driving field far from the focus. For
a focus position in the middle of the medium, the peaks are
well separated [Fig. 5(c)], like in the reference case [Fig. 5(b)].
By contrast, when focusing behind the target [Fig. 5(d)], at a
symmetric position to our reference case [Fig. 5(b)], the peaks
broaden again. However, in that case, the modifications in the
profile are due to the geometric and dipole contributions to the
phase mismatch. As previously stated, when focusing behind
the target, the long trajectory, whose divergence is much larger
than the short one, dominates the emission, and hence, the
condition given by Eq. (7) is no longer fulfilled.
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FIG. 5. Evolution of HH (relative) far-field intensity profile with
focus position for (a) zf /zR = −1.25, (b) −0.5, (c) 0.0, and (d) +0.5.
Negative values of zf /zR correspond to focus positions in front of the
gas target. Normalization is performed with respect to our reference
case, displayed in (b). See text for details.

For optimizing the harmonic signal, it may be beneficial to
increase the length of the medium. We observe that the far-field
profile then rapidly gets degraded when increasing the target
width beyond the Rayleigh range, as shown in Fig. 6, which
depicts HH far-field profiles calculated for values of Lmed/zR
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FIG. 6. Influence of the medium length on HH far-field intensity
profile for IL(x = z = 0) = Isat, τL = 5 fs, P = 10 mbar, and (a)
Lmed/zR = 0.25 (reference case), (b) 1.25, and (c) 2.5.
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FIG. 7. Evolution with focal length of HH far-field intensity
profile. IL(x = z = 0) = Isat, τL = 5 fs, and P = 10 mbar. Black
curve: f = 1 m (reference case). Gray curve: f = 2 m.

ratio ranging from 0.25 to 2.5. The peaks merge while their
intensity globally increases with target length.

One can overcome this problem by increasing the Rayleigh
range of the focused beam. The most straightforward way for
doing so is to increase the focal length of the focusing optics.
This of course slows down the WFR velocity, whose maximum
value scales as f −1. But this simultaneously decreases the
laser beam divergence θL, and hence the harmonic divergence
θq (assuming a constant ration θq/θL when the focal length
is changed). This is why the separation criterion given by
Eq. (7) does not depend on the focal length parameter—this
parameter is thus not expected to affect the quality of the
angular separation of the beamlets produced by attosecond
lighthouse effect. To confirm this prediction, Fig. 7 shows
HH far-field intensity profiles calculated for f = 1 m and
f = 2 m optics. Due to the smaller rotation velocity, the
overall divergence of the collection of beamlets is divided by a
factor of 2 when doubling the focal length. But the divergence
of individual beamlets is also reduced by a factor of about
2, so that the individual peaks are still well separated. As
expected, we observed that with a 2-m focal length optics,
the attosecond lighthouse effect is less sensitive to a change
of focus position or/and to an increase of medium length, as
compared to the case when a 1-m focal length optics is used.
The robustness of attosecond lighthouses against variations of
focus position and/or target length can thus be significantly
improved by increasing the Rayleigh range of the beam, hence
favoring WFR on PFT. As in usual HHG experiments, the limit
on the beam Rayleigh length is only imposed by the energy of
the driving laser pulse, which has to be high enough to reach
the intensities required for efficient HHG.

When varying the laser intensity, one affects the degree of
ionization of the medium. This impacts the phase matching at
different levels. By changing the electron density, one modifies
the electron and atomic dispersions of the medium, as well as
the number of emitters inside the interaction volume. This
could also disturb, both spatially and spectrally, the driving
laser field, resulting in modifications of the geometric and
dipole terms in the phase-matching relation. For intensities
well below the saturation intensity of the gas [Fig. 8(a)],
the electron dispersion is negligible, and the attosecond pulse
emissions occur near the maximum of the laser pulse. When
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FIG. 8. HH far-field intensity profile calculated for P = 10 mbar,
τL = 5 fs, and (a) IL(x = z = 0) = 0.6 × Isat, (b) Isat (reference
case), (c) 2 × Isat, and (d) 4 × Isat. The arrow indicates the time
direction. Panels (e) and (f) display the spatiotemporal intensity
distributions of the attosecond pulses in the middle of the gas medium
(in z = 0) for IL(x = z = 0) = Isat [case of panel (b)] and 2 × Isat

[case of panel (c)], respectively.

increasing the laser intensity to Isat, and beyond, the emission
moves towards the leading front of the pulse. For laser
intensities exceeding the saturation intensity of the gas, a
single bright peak emerges whose position shifts towards large
negative angles (corresponding to early times in the laser
pulse) with increasing intensity [see Figs. 8(c) and 8(d)]. This
indicates that harmonics are efficiently emitted earlier and
earlier in the pulse with increasing intensity, before the gas
target is fully ionized.

This peak is followed by a slightly weaker quasicontinuous
signal, which one might attribute to a loss of the attosecond
temporal structure of the emission. This is however not
the case, as illustrated in Figs. 8(e) and 8(f). These two
panels compare the spatiotemporal intensity distribution of the
harmonic field in the middle of the gas medium (in z = 0) for
IL(x = z = 0) = Isat and 2 × Isat. Due to the spatiotemporal
dependence of the ionization, for IL = 2 × Isat (f), harmonics
are first emitted on the leading front of the pulse, resulting in
the initial bright peak in Fig. 8(c) and, later in the laser pulse,
are only generated in the spatial wings of the beam. This more
localized spatial distribution of the source implies a much
larger divergence for these subsequent attosecond pulses. As
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FIG. 9. Evolution with pressure of HH far-field intensity profile.
IL(x = z = 0) = Isat and τL = 5 fs. (a) P = 10 mbar (reference
case). (b) P = 20 mbar. (c) P = 80 mbar.

a result, the separation criterion Eq. (7) is no longer satisfied
for these pulses, and the simple time-to-angle mapping of the
attosecond lighthouse effect is lost in this time range. In this
regime, the angular profile of the harmonic beam no longer
provides reliable information on the temporal structure of the
emission after the rising edge of the pulse. Note that we verified
that in this parameter range, the spatial and temporal shapes
of the laser (not shown here) remain unchanged whatever the
intensity used: it is only the harmonic field that is affected by
the ionization of the medium, not the driving field.

Increasing the gas pressure from 10 to 80 mbar also leads
to strong distortions of the HH far-field intensity profile, as
shown in Fig. 9. However, in this case, the decrease of the
signal after the initial bright peak at the leading front of the
pulse rather comes from the wave vector mismatch due to
the free electrons, whose density, and hence dispersion, scale
linearly with pressure. Here, the electron dispersion is not
compensated by the atomic dispersion; the latter remains low
in the conditions of generation we consider (short medium),
even for the highest gas pressure.

One can control and optimize the lighthouse effect through
variations of the STC parameter. As discussed in Sec. II,
this changes the maximum WFR velocity of the driving
laser field as well as its variation along the propagation axis,
thus modifying the phase-matching relation. We now test the
influence of small variations of vr around vmax

r on attosecond
lighthouses. The results are reported in Fig. 10. Figure 10(a)
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FIG. 10. Dependence of HH far-field intensity profile on STC
parameter. IL(x = z = 0) = Isat and P = 10 mbar. (a) ξ = 2

3 × ξmax.
(b) ξ = ξmax (reference case). (c) ξ = 3

2 × ξmax.

corresponds to the case ξ = 2
3 × ξmax, whereas the curve in

Fig. 10(c) was obtained for ξ = 3
2 × ξmax. Both are compared

to the reference case ξ = ξmax [Fig. 10(b)]. A significant
change is observed in the far-field profiles between the two
cases ξ = 2

3 × ξmax and 3
2 × ξmax, although the WFR velocity

at focus is 90% of vmax
r (see Fig. 1) in both cases. A significantly

stronger signal is in particular observed for ξ = 3
2 × ξmax. This

can be attributed to the increase of the effective Rayleigh range
with ξ [Eq. (12)]. This shows that attosecond lighthouses in
gases should preferentially be driven with ξ � ξmax, provided
the associated reduction in peak intensity can be compensated
with a higher input energy of the laser pulse.

So far, we considered extremely short laser pulses, that
are typically obtained using postcompression techniques.
However, it would be interesting to generalize the previous
results to longer pulses, so as to make attosecond lighthouses
accessible to a broader community. The main problem is that
increasing the laser pulse duration reduces the WFR velocity.
An increase by a factor of 2 of the pulse duration divides the
maximum WFR velocity by a factor of 2, thus doubling the
number of attosecond pulses in a given angle range, as shown
on the gray curve in Fig. 11. The angular separation of the
peaks is thus degraded. The decrease in HH intensity observed
for τL = 10 fs is due to the increase of the gas ionization with
pulse duration at the leading edge of the pulse.

Finally, we studied the influence of the spatial intensity
profile of the laser beam prior to focusing. Indeed, in all
analytical calculations, this profile is assumed to be Gaussian,
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FIG. 11. HH far-field intensity profiles calculated for τL = 5 fs,
ξ = 0.17 fs/mm (black line, reference case), and τL = 10 fs, ξ =
0.34 fs/mm (gray line). IL(x = z = 0) = Isat and P = 10 mbar.

while it is typically closer to a top-hat beam in experiments. We
thus chose a flat-top spatial profile, and compared the results
to our Gaussian reference case. The comparison, displayed in
Fig. 12, shows little difference between flat-top and Gaussian
initial spatial beam profiles.

B. Lighthouse effect with midinfrared and two-color pulses

In order to relax the requirement on pulse duration for pro-
ducing attosecond lighthouses in gases, we studied different
schemes using midinfrared (MIR) and/or a combination of
two-color laser pulses, in the same spirit as the two-color
gating [30,31], and further derived schemes, like double-
optical gating (DOG) [13] and generalized-double-optical
gating (GDOG) [14]. The key idea in a two-color experiment is
to increase the time separation between successive attosecond
pulses in the train produced with multicycles lasers, in order
to facilitate the isolation of a single pulse. To this end, one
generally uses a combination of ωL and 2ωL frequency fields.
The high-frequency field is used as a dressing field to the
low-frequency driving field for controlling electron trajectories
on a subcycle time scale. Depending on the relative phase
between the two fields, one can thus select electron trajectories
in order to obtain a single emission per cycle. On the other
hand, the idea of using MIR pulses is actually very simple:
for a given pulse duration, the number of optical cycles

-10 -5 0 5 10
0.0

0.5

1.0

R
el

at
iv

e 
in

te
ns

ity

θ (mrad)

FIG. 12. Influence of spatial laser beam shape on HH far-field
intensity profile. IL(x = z = 0) = Isat and P = 10 mbar. Black line:
Gaussian (reference case). Gray line: flat-top.
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FIG. 13. Comparison between the HH intensity far-field profile
obtained by mixing 400 and 800-nm wavelength fields of 10-fs
duration (ξ = 0.34 fs/mm) (gray line) and our reference case (black
line). IL(λL = 800 nm) = Isat and IL(λL = 400 nm) = 0.1 × Isat in
x = z = 0.

decreases with increasing wavelength. Thus, one expects to
obtain approximately the same result with, e.g., a 5-fs pulse
duration, 800-nm wavelength laser on the one hand, and a
10-fs duration, 1600-nm wavelength laser, on the other hand.
Using drivers in the MIR wavelength range is also attractive
for generating very broadband harmonic spectra, extending up
to the water window, and consequently very short attosecond
pulses. It was however predicted that the harmonic yield would
scale as λ

−(5–6)
L [32], at constant driving laser intensity, and the

dipole phase as λ3
L [33], making HHG with long-wavelength

drivers very challenging. In the gas jet generation configuration
relevant for the attosecond lighthouse scheme, this trend has
been confirmed experimentally [34].

We first report results on a configuration using 400 and
800-nm wavelength copropagating pulses of 10-fs initial du-
ration. The dressing ultraviolet (UV) pulse is purely Gaussian
(ξ = 0) whereas the near-infrared (NIR) one has WFR, with
optimum ξ = 0.34 fs/mm. Note that such a configuration has
already been successfully explored in lighthouse experiments
in gases [35], but with 5-fs initial duration NIR pulses. The
intensity of the UV beam is 10% that of the NIR (IL = Isat

in the middle of the gas jet). The relative phase between
the two pulses has been set to zero. Other conditions are the
same as for our reference case. The resulting far-field intensity
profile is reported in Fig. 13 (gray line) and is compared to
our 5-fs duration reference case (black line). The modulation
has the same periodicity with the 10-fs duration bichromatic
field as with the 5-fs duration NIR field alone. The factor
of 2 on the pulse duration is compensated by the blocking
of one of the two electron quantum paths per cycle of the
NIR. The use of an additional 2ωL frequency field thus allows
us to relax the constraint on the pulse duration of the NIR
driving field by a factor of 2, despite the fact that only the
NIR pulse has WFR. The worsening of contrast and the global
increase of HH intensity could be explained by the absence of
WFR on the UV dressing pulse: the UV pulse alone produces
a strong background in the 30 –90-eV photon energy range.
This background could certainly be reduced by decreasing
the intensity in the UV pulse and/or by varying the relative
phase between the NIR and UV pulses. Finally, note that
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FIG. 14. HH intensity far-field profiles calculated for a τL =
5-fs, λL = 800-nm laser field (a) (f = 2m), (b) a τL = 10-fs,
λL = 1600-nm field (ξ = 0.34 fs/mm), and (c) a 20-fs duration
bichromatic field obtained by mixing 800 and 1600-nm wavelength
(ξ = 0.68 fs/mm). In the first two cases, IL = Isat in x = z = 0, while
in the latter one, IL(λL = 800 nm) = 0.1 × Isat.

the background could be overestimated because the dipole
is calculated in the strong-field approximation, which is
marginally valid for 400-nm driving wavelength.

We next consider the production of attosecond lighthouses
with a 10-fs duration, 1600-nm wavelength laser pulse of
IL(x = z = 0) = Isat, alone. Such a short pulse is at the frontier
of currently available systems operating in the MIR range [36].
Despite the above-mentioned difficulty for fulfilling the
phase-matching condition with long-wavelength drivers, in
the conditions of generation considered here, the intensity
of the brightest peak in the HH far-field profile obtained
with the MIR laser field alone [Fig. 14(b)] is only a factor
of 3 smaller than the one calculated with a NIR field of
same divergence [Fig. 14(a)]. The important point is that the
contrast of the peaks gets worse with laser wavelength. Only
two peaks can be observed on the profile corresponding to the
MIR pulse, with a peak-to-valley ratio of 1.5, against almost
four with the NIR field. This overlapping of adjacent beamlets
is likely due to the condition on the divergence angles, given
by Eq. (7), which is marginally fulfilled here. This is due
to the fact that for given harmonic photon energy and beam
aperture, the dipole phase—giving the wave-front curvature in
the far field—scales as λ3

L while the laser divergence scales
as λ−1

L . The ratio of harmonic and laser divergence thus tends
to increase with the driver wavelength, making it more and
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more difficult to separate the beamlets for larger wavelengths.
Note that one could force condition Eq. (7) by reducing the
bandwidth to low-order harmonics, since harmonic divergence
increases with order, but this would lead, in turn, to an increase
of attosecond pulse durations.

We finally use a combination of 800 and 1600-nm wave-
length beams, for improving the contrast of the modulations
and for increasing the pulse duration. As in the scheme using
a mixing of UV and NIR pulses, only the driving MIR beam
has WFR, with ξ = ξmax = 0.68 fs/mm. The dressing NIR
pulse intensity is 10% of the MIR one, the latter being
equal to Isat in the middle of the gas target. We assume
a zero relative phase between the dressing and the driving
fields. Both of them have 20-fs pulse duration. The resulting
HH far-field intensity profile is given in Fig. 14(c). We first
observe that attosecond lighthouse effect still exists with 20-fs
duration pulses, showing that it can be obtained with currently
available lasers without pulse postcompression. Second, we
note a significant improvement of the contrast, compared
to that obtained with the 10-fs duration MIR field alone.
We also observe a drastic drop of efficiency, indicating that
phase matching is difficult to achieve in this case. Further
investigations are thus required for optimizing the emission
while preserving the lighthouse effect. One could, for instance,
play on the ratio between NIR and MIR pulse intensities or/and
on the relative phase between the two pulses.

VI. SUMMARY

In summary, we have presented an extensive study on the
attosecond lighthouse effect in gases. We derived analytical

expressions describing the laser field with STC out of focus,
assuming linear propagation. These can be used to qualitatively
understand how the different laser and interaction parameters
(e.g., the PFT coefficient or the medium length) affect the
attosecond lighthouse effect in gases. We then performed
a parametric numerical study, which aimed at testing the
robustness of this effect against variations of high-harmonic
generation parameters on the one hand, and at relaxing the
requirement on the driving laser pulse duration on the other.
The optimal results (Figs. 3 and 4) were obtained for a thin,
100-μm-long, gas target (Lmed/zR = 0.25), thereby favoring
wave-front rotation on pulse front tilt, and a laser focus position
200 μm in front of the target (zf /zR = −0.5), thus promoting
the phase matching of the short electron quantum path in the
emission process. As in standard cases, higher signals can be
obtained using longer focal lengths (Fig. 7), provided the laser
intensity can be maintained. The attosecond lighthouse effect
is not sensitive to pressure variations in the 10–20-mbar range
nor to the incident laser beam spatial profile. By contrast, it
is quite sensitive to deviations from the optimum space-time
coupling parameter, and our study revealed that using a pulse
front tilt parameter slightly larger than the one that maximizes
the wave-front rotation velocity can be beneficial, due to the
increase in effective Rayleigh length. Of course, the shorter
the laser pulse duration, the better the separation of adjacent
beamlets. However, partial separation is still observed when
increasing the pulse duration from 5 to 10 fs. In the last part
of the paper, we demonstrated that it was even possible to
increase the pulse duration of the driving laser to 20 fs, by
mixing midinfrared and near-infrared fields, thus making the
use of the attosecond lighthouse effect accessible to a broad
community.
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