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Power laws in the dynamic hysteresis of quantum nonlinear photonic resonators
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We explore theoretically the physics of dynamic hysteresis for driven-dissipative nonlinear photonic resonators.
In the regime where the semiclassical mean-field theory predicts bistability, the exact steady-state density matrix
is known to be unique, being a statistical mixture of two states; in particular, no static hysteresis cycle of the
excited population occurs as a function of the driving intensity. Here, we predict that in the quantum regime a
dynamic hysteresis with a rich phenomenology does appear when sweeping the driving amplitude in a finite time.
The hysteresis area as a function of the sweep time reveals a double power-law decay, with a behavior qualitatively
different from the mean-field predictions. The dynamic hysteresis power-law in the slow sweep limit defines a
characteristic time, which depends dramatically on the size of the nonlinearity and on the frequency detuning
between the driving and the resonator. In the strong nonlinearity regime, the characteristic time oscillates as a
function of the intrinsic system parameters due to multiphotonic resonances. We show that the dynamic hysteresis
for the considered class of driven-dissipative systems is due to a nonadiabatic response region with connections
to the Kibble-Zurek mechanism for quenched phase transitions. We also consider the case of two coupled
driven-dissipative nonlinear resonators, showing that dynamic hysteresis and power-law behavior occur also in
the presence of correlations between resonators. Our theoretical predictions can be explored in a broad variety
of physical systems, e.g., circuit QED superconducting resonators and semiconductor optical microcavities.
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I. INTRODUCTION

Since the first experimental realization [1], optical bista-
bility has been the subject of many investigations. One
of the major theoretical breakthroughs was accomplished
by Drummond and Walls, who provided an exact quantum
solution for the steady-state density matrix of a single-mode
driven-dissipative nonlinear optical resonator [2]. One of the
main conclusions is somewhat surprising at first sight since it
reveals a unique steady-state solution while the semiclassical
mean-field theory [3] predicts a bistable regime with two stable
branches. A large number of experimental studies in various
systems has shown optical hysteresis cycles (to give just a
few recent examples, see, e.g., Refs. [4–9]), which seems in
accordance with the semiclassical mean-field approach.

This apparent contradiction can be reconciled by realizing
that fluctuations (quantum or classical) induce switching
between the two branches, resulting in a unique stationary
mixed-state solution [10–13]. The switching is typically
quantified by the lifetimes of the system in the different
branches [14]. Without fluctuations, these lifetimes are infinite
and produce the bistability at mean-field level. Note that
the switching between the branches can be nicely visualized
by considering individual quantum trajectories of the system
[15,16]. A similar behavior is obtained if classical fluctuations
are considered, such as, for example, thermal fluctuations [17]
or a noisy drive [6,18]. In general, it is possible to define a
transition point where the lifetimes of the two branches are
equal. When the system is not at such a transition point, one
of the branches becomes increasingly more unstable than the
other. These lifetimes can, however, become extremely large
with respect to all other time scales, resulting in quasibistability
(the solutions are metastable) and explaining the success of the
mean-field theory to describe the hysteresis. In recent years,

photonic resonators with enhanced quantum nonlinearities
have been developed [19], in particular using superconducting
quantum circuits or semiconductor nanostructures as nonlinear
media, paving the way to the experimental study of optical
bistability in the quantum regime.

In this paper, we report the surprising behavior of the
hysteresis cycle in the quantum regime where the role played
by quantum fluctuations and correlations becomes crucial. To
explore such a physical problem, we have solved the time-
dependent master equation for driven-dissipative nonlinear
quantum resonators. By sweeping the drive amplitude in a
finite time, we show that a dynamic hysteresis is obtained, even
when the steady-state quantum solution is unique. Within a
time-dependent mean-field approach, the area of the hysteresis
cycle converges to the finite steady-state mean-field value for
infinitely slow sweep with a deviation tending to zero as a
power law, as it has been shown analytically and numerically
for various classical models [20–22]. Here we show that the
behavior of the hysteresis area in the quantum regime is
qualitatively different in two ways: (i) due to the uniqueness
of the quantum steady-state solution, the area goes to zero in
the limit of a very slow sweep, and (ii) the hysteresis area
decays with increasing sweep time following a power law
with an exponent that is different from the mean-field case
for the same system parameters. We determine a characteristic
time associated to the power-law decay and show its dramatic
dependence on the size of the nonlinearity and frequency
detuning of the driving. In the regime of strong photon
nonlinearity, an oscillating behavior of the characteristic time
as a function of the system parameters is shown to be due to the
quantization of the photon field. We show that the power-law
behavior of the dynamic hysteresis can be captured analytically
by determining a nonadiabatic response region. Concerning
the experimental implementations, the presented physics is
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expected to be applicable to a broad range of models of driven-
dissipative nonlinear photonic models that exhibit bistability
at the mean-field level. Examples are the driven-dissipative
Jaynes-Cummings model [23,24], an optomechanical cavity
[25–28], the driven-dissipative Dicke model [29,30], and the
micromaser [31]. Recently there has been a strong increase of
interest in coupled nonlinear photonic modes arranged in large
lattice structures for which the mean-field approach typically
predicts bistability [19,32–43]. A better understanding of the
role of quantum fluctuations is also crucial in the context of
high-speed optical switches of which the operation is based on
optical bistability [44–47].

II. THEORETICAL FRAMEWORK AND PHYSICAL
SYSTEMS

Let us start by considering the quantum Hamiltonian
(� = 1) for a single-mode boson field with boson-boson
interaction and coherent driving (treated within the rotating-
wave approximation):

Ĥ (t) = ωcâ
†â + U

2
â†â†ââ + F (t)e−iωpt â† + F ∗(t)eiωpt â.

(1)

This is also the Hamiltonian of a single-mode cavity field with a
dispersive (Kerr) optical nonlinearity. Here, the boson operator
â (â†) annihilates (creates) an excitation in the cavity, while ωc

is the photon mode frequency, U quantifies the photon-photon
interaction, F (t) is the time-dependent driving amplitude, and
ωp is the driving frequency.

The dynamics with dissipation is described by the Lindblad
master equation for the density matrix ρ̂(t):

∂ρ̂(t)

∂t
= i[ρ̂,Ĥ (t)] + γ

2
(1 + nth)(2âρ̂â† − â†âρ̂ − ρ̂â†â)

+ γ

2
nth(2â†ρ̂â − ââ†ρ̂ − ρ̂ââ†), (2)

where the term proportional to the commutator [ρ̂,Ĥ (t)]
describes the quantum dynamics due to the Hamiltonian. The
quantity γ is the dissipation rate due to the coupling to the
environment, nth the mean number of thermal excitations at
the resonator frequency ωc, namely nth = (eβωc − 1)−1

, with
β = (kBT )−1, T the bath temperature, and kB the Boltzmann
constant. From the density matrix the expectation value of
an observable Ô can be calculated as 〈Ô〉 = Tr[Ôρ̂], where
Tr denotes the trace. For the calculations, we work in the
frame rotating at the pump frequency for which the detuning
� = ωp − ωc is the relevant parameter. Notice that even in the
rotating frame the Hamiltonian remains time dependent due to
time dependence of the driving amplitude F (t).

For comparison, the mean-field equation for the coherent
field α(t) = 〈â〉 reads

i
∂α

∂t
=

(
ωc − i

γ

2
+ U |α|2

)
α + F (t)e−iωpt . (3)

In the following, we systematically compare the predictions of
the exact solutions of the master equation (2) to those obtained
within the mean-field approximation in Eq. (3).

The present theoretical model is rather general and can be
obtained, e.g., in a system consisting of a coherently driven

linear cavity coupled to an ensemble of two-level atoms in
the dispersive limit (large detuning between cavity and atom
resonance frequencies with respect to the coupling strength)
[48]. Novel quantum optical systems with large nonlinearities
such as superconducting quantum circuits and semiconductor
microcavities have emerged in recent years [19]. In semicon-
ductor pillars including quantum wells, a normalized U/γ

up to a few percent is within present capabilities. For these
systems, a temperature T = 4 K (liquid helium bath) together
with a cavity photon energy of 1.5 eV gives βωc ∼ 1 × 104

and a negligible number of thermal excitations: nth ≈ 0. In
the context of circuit QED where a Josephson junction is
used to introduce an effective nonlinearity [8,9,17,49], much
larger nonlinearities can be be achieved with the possibility
to reach the hard-core boson limit |U |/γ � 1 [50]. A typical
dilution fridge temperature of 50 mK and a resonator frequency
ωc/(2π ) = 5 GHz corresponds to βωc � 4.8 and nth � 0.008.
Hence, thermal effects are in general small, but not completely
negligible, in circuit QED.

Note that here for simplicity we do not consider systems
with absorptive optical nonlinearity and bistability (i.e., a
cavity photon mode resonant with an electronic excitation like
in the celebrated Jaynes-Cummings model) where quantum
fluctuations also induce switching between the semiclassical
branches [23,24].

In order to solve numerically the master equation (2),
we have expressed the time-dependent density matrix in the
basis of Fock number states |n〉, namely ρn,m(t) = 〈n|ρ̂(t)|m〉.
Convergence of the results has been carefully checked by
increasing the cutoff number of photons. With this numerically
exact integration method, we can typically explore regimes
with a number of photons up to a few tens.

III. NUMERICAL RESULTS

In order to study dynamical hysteresis phenomena, we
consider a triangular modulation of the drive amplitude,
namely consisting of one sweep from F0 to F0 + �F and
one from F0 + �F back to F0:

F (t) = F0 + t

ts
�Fθ (ts − t) − t − 2ts

ts
�Fθ (t − ts), (4)

where θ (t) is the Heaviside step function and the time
parameter ts is the sweep time. In practice the parameters
F0 and �F are always chosen such that the sweep covers the
full range of the hysteresis. The master equation is solved in
the time interval from t = 0 to t = 2ts with the steady-state
solution at the pump intensity F0 as an initial condition. Note
that the presented results are in the zero-temperature limit
(βωc → +∞ and nth → 0) unless explicitly stated otherwise.

A. One resonator

In Fig. 1(a), we consider results for the excited population
n = 〈â†â〉 using parameters for which the steady-state semi-
classical mean-field (MF) solution exhibits the well-known
bistability of the coherent population |α|2 as a function of
the driving amplitude (three branches with the middle one
unstable). In stark contrast, the steady-state (SS) solution [2] of
the master equation shows no hysteresis cycle for n. However,
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FIG. 1. (a) The photon population n and (b) the g(2) second-order
correlation function versus the driving amplitude F (units of γ ) for a
single-mode driven-dissipative quantum resonator with a nonlinearity
U = 0.1γ and detuning � = 2γ . In (a), the steady-state mean-field
(MF) result and the quantum steady-state (SS) solution from Ref. [2]
are presented. The other two curves are dynamic hysteresis cycles
predicted by the time-dependent quantum master equation obtained
by using two different sweep times ts (ts/�F = 10/γ 2 for the curve
with the largest hysteresis cycle and ts/�F = 20/γ 2 for the smaller
one). In (b) the steady-state solution is shown together with the result
for a time-dependent sweep with ts/�F = 10/γ 2 (the arrows indicate
the direction of the sweep).

if we consider a time-dependent solution of the master equation
with finite sweep time ts , a clear dynamic hysteresis is found for
n(F (t)). The area of the dynamic hysteresis loop obtained with
the solution of the master equation decreases for increasing
ts (slower sweep). In the adiabatic limit of an infinitely
slow sweep (ts → +∞) the hysteresis disappears and the
steady-state density-matrix solution of the master equation is
recovered. In Fig. 1(b) the normalized second-order correlation
function g(2) = 〈â†â†ââ〉/n2 is presented as a function of
the driving amplitude together with the steady-state result
from Ref. [2]. At a transition point, a sharp peak with g(2)

significantly larger than 1 occurs, a feature that cannot be
captured by mean-field theory for which g(2) = 1. For the
time-dependent solution of the master equation, we find that
this peak is shifted with respect to the steady-state solution to
the region where the transition is seen in the density and it is
more (less) pronounced for decreasing (increasing) F .

In order to study quantitatively the properties of dynamical
hysteresis, we evaluate the area A of the hysteresis loop for a
sweep with population n↑(F ) obtained for increasing driving
amplitude F and population n↓(F ) achieved for decreasing F :

A =
∫ F0+�F

F0

dF |n↓(F ) − n↑(F )|. (5)
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FIG. 2. (a) The area A of the hysteresis loop as a function of
the sweep time ts (units of �F/γ 2) for different temperatures (from
bottom to top the thermal population nth is 0.2, 0.1, 0.05, and 0,
corresponding respectively to βωc � 1.8, 2.4, 3, and +∞), together
with the result from the mean-field (MF) approximation for U = γ /2
and � = 2γ . The solid lines are power-law fits to the different limiting
regimes for which two separate power laws are observed. For large
ts we find the behavior A ∝ t−1

s while for small values of ts we find
A ∝ t−b

s with a coefficient b that depends on the system parameters.
For the mean-field result we find an overall good agreement with (A −
A0) ∝ t−2/3

s with A0 > 0 the static hysteresis area. The characteristic
time scale τ , as determined from the behavior A = (ts/(τ�F ))−1 for
large ts , is shown (b) as a function of the nonlinearity U (units of
γ ) for different values of the detuning � and (c) as a function of the
detuning � (units of γ ) for different values of the nonlinearity U .
Note the oscillating behavior with minima satisfying the n-photon
resonance conditions: Un(n − 1)/2 = n�. The characteristic time
scale τ in (a) is 115/γ .

In Fig. 2(a) the area A is plotted as a function of the
sweep time ts for different temperatures together with the
result predicted by the mean-field equation (3). Our results
show that for relatively fast sweeps (small ts) a reasonable
agreement is found between the exact solution and the
time-dependent mean-field result while for slower sweeps
qualitatively different scaling laws are observed [the solid
lines in Fig. 2(a) are power-law fitting curves]. In the regime
where the mean-field steady-state solutions exhibit bistability
(� >

√
3/2γ ), the time-dependent mean-field equation (3)

predicts a dynamic hysteresis area which can be well fitted
by the expression (A − A0)/γ ∝ t

−2/3
s , with A0 the hysteresis
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area in the adiabatic limit (ts → +∞). This is in agreement
with the analytic result from Ref. [20] for a similar mean-field
equation. In stark contrast, we find that the exact solution
of the master equation has a double power-law behavior:
for large ts the area scales as A ∝ t−1

s . In Sec. IV, we
report an analytical derivation of the power law based on
the determination of a nonadiabatic region. In the Appendix,
we present additional numerical results using a quasiadiabatic
approximation. In the regime where mean field predicts no
bistability (� <

√
3/2γ ) the dynamic mean-field result also

exhibits the power law A ∝ t−1
s for slow sweeps. Therefore, in

contrast to the exact quantum solutions, we emphasize that the
mean-field approach predicts different scaling laws depending
on the frequency detuning, a result in agreement with Refs.
[21,22] treating mean-field models. Furthermore, we point
out that our time-dependent quantum result exhibits another
power law at small values of ts with a coefficient that depends
on the system parameters [see Fig. 2(a)]. Note that this kind
of double scaling law for the hysteresis area has also been
observed in the context of dynamic transitions with magnetic
materials [51,52]. Moreover, we see that the presence of a
moderate thermal population (typical values of circuit QED
experiments) gives the same power-law behavior and just a
moderate decrease of the hysteresis area as the temperature
is increased. This is expected since thermal fluctuations also
contribute to switching between the two branches.

The power-law behavior allows us to determine a character-
istic time scale τ on which the hysteresis size will change sig-
nificantly, namely through the expression A = (ts/(τ�F ))−1,
in the regime of large ts [see Fig. 2(a)]. For a sweep with
tsγ /�F ∼ τ the quantum fluctuations are expected to induce
a significant deviation from the mean-field result [as can also
be seen in Fig. 2(a) where τγ = 115]. The characteristic
time scale τ is presented as a function of the nonlinearity
for different values of the detuning in Fig. 2(b) and as a
function of the detuning for different values of the nonlinearity
in Fig. 2(c). We point out that the characteristic time τ can be
orders of magnitude larger than the resonator lifetime 1/γ for
small nonlinearities and/or large detuning. As a function of the
detuning, an overall exponential increase of the characteristic
hysteresis time is observed. Note that the dynamic hysteresis
survives in the hard-core limit (U → ∞) with τ converging
to a finite value. Furthermore, a superimposed oscillating
behavior of the characteristic time is predicted, which becomes
more pronounced as the detuning or nonlinearity is increased.
The minima correspond to system parameters satisfying the
resonance condition Un(n − 1)/2 = n�, with n a positive
integer (giving the sequence U = 2�,�,2/3�, . . .). These
are the n-photon resonances [38], obtained when the energy of
n pump photons is equal to the energy of n interacting photons
in the resonator.

B. Two coupled resonators

Now, we consider the case of two identical resonators
coupled by the following hopping Hamiltonian:

Ĥhop = −J (â†
1â2 + H.c.), (6)

with J the hopping parameter. Note that this model is
currently experimentally realized, e.g., with semiconductor
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FIG. 3. Results for a system consisting of two coupled identical
resonators. (a) The inter-resonator correlation function g

(2)
12 as a

function of the pump amplitude F (in units of γ ) during a sweep of
the driving amplitude. Results are shown for the steady state (SS) and
for a dynamic hysteresis with ts/(�F )γ 2 = 30 (the arrows indicate
the direction of the sweep). (b) The hysteresis area A associated to
the photon population in one resonator as a function of the sweep
time together with the mean-field (MF) result. The solid lines are
fits obtained with the following scaling laws: A ∝ t−1

s for large ts
and (A − A0)/γ ∝ t−2/3

s for the mean-field result. The other system
parameters �, U , and J are specified in each panel.

microcavities [53,54] and with circuit QED resonators [55].
For this system, for the sake of simplicity, we have considered
the case when each resonator has the same driving term. Since
adding a second resonator squares the dimension of the Hilbert
space, in order to have exact results with arbitrary precision,
we are restricted to lower photon numbers with respect to the
single resonator case. A negative detuning � is considered
which is blue-detuned with respect to the linear resonance
corresponding to the “bonding” single-particle state (having
eigenfrequency ω = ωc − J ). As in the single-resonator case,
we find a dynamic transition around the regime where mean
field predicts bistability with the hysteresis cycle and a
peak in the local second-order correlation function at the
transition (qualitatively the same as observed for a single
cavity in Fig. 1). We also examined the intercavity normalized
second-order correlation function, g

(2)
12 = 〈â†

1â
†
2â2â1〉/(n1n2),

which is presented in Fig. 3(a) for a temporal sweep and for
the steady state. Also for this nonlocal correlation function
a peak is observed at the transition. In Fig. 3(b) we have
presented the hysteresis area, as defined in Eq. (5), where
the population of one resonator mode is used. (Due to the
symmetry the populations are equal in both resonators.) This
reveals qualitatively the same power laws as for a single cavity:
A ∝ t−1

s for large ts and (A − A0) ∝ t
−2/3
s for the dynamic

mean-field result. These results for two coupled cavities are
relevant considering the recent interest in strongly correlated
photonic phases in arrays of cavities (see, for example,
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Refs. [19,32–38,40–42]). It was shown that applying the
Gutzwiller mean-field approach to a lattice of nonlinear
driven-dissipative cavities predicts bistability [37,38]. Our
exact results for the two-resonator system show that while the
exact solution has no static hysteresis, a dynamic hysteresis
does emerge in the quantum regime. A natural next step
to be pursued in the future is a study of the dynamic
hysteresis for larger arrays of coupled resonators. In particular,
the dependence of the dynamic hysteresis on the inevitable
presence of disorder, the effect of multimode dynamics, and
the quasicontinuous spectrum of states is an open problem that
would be interesting to explore.

IV. ANALYTICAL SCALING BEHAVIOR AND
CONNECTION WITH KIBBLE-ZUREK MECHANISM

In the previous section, we presented a comprehensive set
of numerical solutions of the master equation showing the
rich properties of dynamic hysteresis for a driven-dissipative
nonlinear quantum resonator. In this section, we present an
analytical demonstration of the power-law behavior and of the
exponent. Qualitatively, we show that the dynamical hysteresis
is due to a nonadiabatic response of the considered system
when the driving field is swept around the bistability region.
Note that the approach presented here can be applied to a
generic driven-dissipative system.

When changing in time one parameter of a Hamiltonian
system, by definition the response becomes nonadiabatic
when the time scale of the change is much shorter than the
time scale of the system internal dynamics. Such a time is
proportional to the inverse of the energy gap between the
ground state and the excited state manyfold. In the case of
quantum phase transitions, the energy gap vanishes at the
critical point (softening of the excitation mode) leading to a
divergence of the corresponding internal dynamics time scale
(critical slowing down). Therefore, when crossing a critical
point, there is always a nonadiabatic response region around
the transition. This property is at the heart of the celebrated
Kibble-Zurek mechanism for the formation of topological
defects in quenched quantum phase transitions [56–58] (see,
for example, Ref. [59] for a review). Recently, the Kibble-
Zurek mechanism has been examined for the nondissipative
quantum Rabi model which consists of a zero-dimensional
photonic mode coupled to a single two-level system [60].

Since the class of systems we are studying in the present
paper is of the driven-dissipative kind, the gap of the Hamil-
tonian is not at all the relevant quantity. What is relevant here
is the spectrum of the Liouvillian superoperator L̂ associated
to the master equation ∂t ρ̂ = L̂ρ̂. We consider the eigenvalue
equation for the Liouvillian superoperator:

L̂ρ̂λ = λρ̂λ, (7)

where the eigenvalue λ is in general complex. The steady-state
density matrix corresponds to the eigenvalue λ = 0. Note that
the real part of λ represents the damping of the excitation
mode, while the imaginary part represents the oscillation
frequency with respect to the steady state. Here, we focus
on the eigenvalue with the smallest nonzero real part since it
is the least damped and determines the asymptotic relaxation
to the steady state. In Fig. 4 the real and imaginary parts
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FIG. 4. The (a) real and (b) imaginary parts of the Liouvillian
eigenvalue λ (in units of γ ), corresponding, respectively, to the
damping rate and the frequency of the excitation mode. In particular,
we consider the least damped mode (different from the steady state
corresponding to λ = 0) as a function of the drive amplitude F (in
units of γ ) for U = 0.1γ and � = 2γ . Around the transition point
(at Fc ≈ 3γ ) the damping rate (real part) is strongly suppressed,
while the imaginary part is exactly zero, indicating the presence of
a soft diffusive mode. Away from the transition region there are
two symmetric least-damped modes with equal damping rates but
opposite frequencies (the imaginary parts).

of this eigenvalue are presented as a function of the drive
amplitude for U = 0.1γ and � = 2γ . Note that the frequency
gap (imaginary part) is zero in a finite interval around the value
Fc where the damping (real part) is also strongly suppressed,
albeit reaching a finite minimum. This reveals that such a
mode is soft and diffusive, i.e., because it is degenerate in
frequency with the steady state and has a finite damping. This
kind of soft diffusive mode can appear in driven-dissipative
systems. (In the case of Bogoliubov excitations of driven-
dissipative systems, see Ref. [19].) Hence, for a sweep of
F around Fc the response of the system is expected to
have a nonadiabatic contribution because of such frequency
degeneracy. From this diffusive soft mode we determine
the relaxation time τR = −1/Re[λ]. Note that the so-called
tunneling time τT of bistability [10–14] corresponds to the
maximal value of τR , at the transition point.

For a time-dependent sweep of the drive amplitude, we
introduce the distance ε(t) from the value Fc, namely,

ε(t) = Fc − F (t). (8)

We consider now a sweep of F (t) linear in time from
Fc − �F/2 to Fc + �F/2 with total time duration ts . The
normalized sweep rate reads [59]

∣∣∣∣ ε̇(t)

ε(t)

∣∣∣∣ = �F

ts

1

|Fc − F (t)| = 1

τs

, (9)

which defines a sweep time scale τs(F ) = ts |Fc − F |/�F ,
which is plotted as a solid thin line in Fig. 5(a). Note that
an alternative derivation of this expression can be obtained
by equating the time from the transition point Fc to the
instantaneous relaxation time [57]. Note that the sweep time
scale τs differs from the duration ts , because it contains also
information on how much the driving amplitude is changed
with respect to the transition point.

033824-5
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FIG. 5. (a) The relaxation time τR (the curve peaked around Fc ≈
3γ ) is presented as a function of the drive amplitude together with
the sweep time scale τs for two sweeps with different speeds for U =
0.1γ and � = 2γ . The nonadiabatic region with width δF around Fc

is indicated for the fastest sweep. (b) The width of the sweep δF as a
function of the sweep time together with the two power laws. (c) The
tunneling time τT (solid line) and the characteristic time τ (dashed
line) versus the detuning � for nonlinearities U/γ = 4 (lower curves)
and U/γ = 1 (upper curves).

By generalizing the criterion used for the Kibble-Zurek
mechanism in the context of equilibrium phase transitions, we
expect that our driven-dissipative system enters a nonadiabatic
regime when the sweep time scale τs becomes smaller than
the relaxation time τR . In Fig. 5(a), we plot the relaxation
time τR and the sweep time scale τs as a function of the
driving amplitude F for two different sweeps (tsγ 2/�F = 102

and 104). The corresponding nonadiabatic region of width
δF around Fc is indicated in Fig. 5(a) for the fastest sweep
(tsγ 2/�F = 102). In Fig. 5(b) the width δF of the nonadi-
abatic region is presented versus the sweep time duration ts ,
showing a double power law, as also found for the area of the
dynamic hysteresis. Furthermore, for slow sweeps the decay is
proportional to t−1

s , the same exponent as found before. In the
nonadiabatic region the system does not have the time to relax

to the steady state, resulting in a hysteretic behavior. The area
of the hysteresis loop is therefore linked to the width δF of the
nonadiabatic region, as confirmed by our numerical results.

For ts → +∞ (slow sweep limit), the nonadiabatic region
size δF → 0. Hence, in this slow sweep limit, τR → τT , the
maximum of the relaxation time. From Eq. (9) and imposing
τs = τR � τT , we get the asymptotic expression for δF ,
namely,

δF = 2τT (ts/�F )−1. (10)

This formula is in excellent agreement with the results in
Fig. 5(b). We also note that for smaller values of ts , this
approximation fails and so a different power law is expected,
depending on the shape of the relaxation time versus F . This
shows that the exponent −1 of the slow sweep power law
occurs because the real part of the Liouvillian eigenvalue
remains finite, but much smaller than all other characteristic
frequencies of the system. The power-law exponent is thus
expected to change when also the real part of the Liouvillian
eigenvalue vanishes, i.e., when τT → ∞, corresponding to
a dissipative phase transition [61]. This might occur in the
thermodynamic limit of a large lattice of coupled driven-
dissipative resonators. In Fig. 5(c) the tunneling time τT is
compared with the characteristic time τ (see previous section
and Fig. 2) as a function of the detuning � for two values of the
nonlinearity. This reveals qualitatively similar behavior with
an overall exponential increase as a function of the detuning
and oscillations due to the multiphotonic resonances.

For conservative systems with a finite energy gap the
Kibble-Zurek mechanism breaks down for slow sweeps
since the evolution becomes adiabatic [62,63]. In this case
an effective description is provided by the Landau-Zener
approximation for the evolution of a system through an
avoided energy crossing [64,65]. Applying the Kibble-Zurek
mechanism results in a good agreement with the Landau-Zener
result only for sufficiently fast sweeps [62,63]. Note that the
Landau-Zener formula for a dissipative excited state does not
depend on the decay rate [66] and its applicability is connected
to the existence of a finite gap for the frequency.

For the considered dissipative system, on the other hand,
we find that the scaling laws based on a Kibble-Zurek-like
approach for the nonadiabatic regime agree with the numerical
results for the hysteresis area, also in the slow sweep limit. This
shows that an adiabatic regime is never reached, no matter how
slow the sweep. At first sight this might seem in conflict with
the results for the Kibble-Zurek mechanism for conservative
systems since the real part of the Liouvillian gap remains finite.
However, for dissipative systems it is the imaginary part of the
Liouvillian eigenvalue that gives the excitation energy.

V. CONCLUSIONS

We have investigated the time-dependent exact solutions of
the quantum master equation for driven-dissipative nonlinear
quantum resonators, thus including the role of quantum
fluctuations and correlations. In particular, we have focused on
the regime where the semiclassical mean-field approximation
predicts bistability and investigated temporal sweeps of the
drive amplitude revealing dynamic hysteresis loops. The
hysteresis behavior, typically attributed to the semiclassical
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mean-field approach, was found to survive in the regime of
small photon numbers and strong quantum fluctuations. The
time-dependent quantum solution, in contrast to predictions
of mean-field approaches, shows that the hysteresis area as a
function of the total sweep time has a double scaling law.
These results have been shown to be robust with respect
to thermal excitations for typical experimental temperatures.
We have determined a characteristic time associated to the
power-law decay of the dynamic hysteresis area, showing a
rich behavior as a function of the nonlinearity and of the
frequency detuning. We have also considered two coupled
driven-dissipative resonators, demonstrating that dynamic
hysteresis and power-law decay occur also in the presence
of intercavity correlations. Importantly, we have demonstrated
that the dynamic hysteresis is associated to a nonadiabatic
response region with connections to the Kibble-Zurek mech-
anism for quenched phase transitions. We have been able
to describe analytically the power-law behavior with scaling
arguments and have shown the role of a soft diffusive mode,
i.e., having zero excitation energy, but a finite damping. This
is a general picture, which is expected to apply to a broad
class of driven-dissipative quantum systems. These exciting
results can be a motivation to further investigate larger arrays
of cavities at the dynamic transition. Given the emergence
of several interesting systems with controllable quantum
optical nonlinearities, the present predictions should stimulate
exciting studies of dynamic hysteresis in the quantum regime.

ACKNOWLEDGMENTS

We gratefully acknowledge discussions with A. Amo, J.
Bloch, I. Carusotto, M. Hartmann, J. Lolli, S. Rodriguez, D.
Sels, and M. Wouters. We acknowledge support from ERC (via
the Consolidator Grant “CORPHO” No. 616233), from ANR
(Project QUANDYDE No. ANR-11-BS10-0001), and from
Institut Universitaire de France. A.L.B. also acknowledges
support from the SFB TRR/21 and the EU Integrating project
SIQS.

APPENDIX: QUASIADIABATIC APPROXIMATION

In this Appendix a quasiadiabatic approximation is applied
to study the dynamic hysteresis. From the Lindblad master
equation (2), the following equation of motion for the density
n can be derived:

∂n

∂t
= −γ n − i(F (t)〈â†〉 − F ∗(t)〈â〉). (A1)

As in the main text, we consider a linear sweep of the driving
amplitude F (t) [see Eq. (4)]. For an adiabatic sweep (ts → ∞),
the time derivative tends to zero and all expectation values
converge to the steady-state solution:

nts→∞ → nSS; (A2)

〈â〉ts→∞ → 〈â〉SS. (A3)

101 102 103
tsΓ2 F

10 2

10 1

100

A
Γ

quasi adiabatic

exact

2Γ
U

FIG. 6. The hysteresis area A as a function of the sweep time ts by
solving exactly the master equation (top curve) and by performing a
quasiadiabatic approximation (bottom curve) for U = γ and � = 2γ .
The solid lines are fits using the power law A ∝ t−1

s for large ts .

An analytical expression for the steady-state correlation func-
tions was derived in Ref. [2]. The result for the boson coherence
〈a〉 is (for the sake of clarity we write the dependence on the
driving amplitude F explicitly)

〈â〉SS(F ) = F

� + iγ /2

F
(
1 + c,c∗,8

∣∣ F
U

∣∣2)
F

(
1 + c,c∗,8

∣∣ F
U

∣∣2) , (A4)

with c = −2(� + iγ /2)/U and F(c,d,z) the hypergeometric
function:

F(c,d,z) =
∞∑

n=0

�(c)�(d)

�(c + n)�(d + n)

zn

n!
, (A5)

� being the gamma special function. If the sweep is performed
sufficiently slowly, it is interesting to see what are the
predictions of a quasiadiabatic approximation. This corre-
sponds to using the exact steady-state solution for 〈â〉: 〈â〉 →
〈â〉SS(F (t)), where the time-dependent driving amplitude F (t)
is used in Eq. (A4). By performing this substitution in the
equation of motion for the density (A1) and numerically
solving the differential equation, the dynamic hysteresis can
be examined within the quasiadiabatic approximation. In
Fig. 6 the resulting hysteresis area is compared to the exact
numerical result for a set of parameters. The results clearly
deviate, revealing that the quasiadiabatic approximation does
not capture the full dynamics. However, the same power-law
behavior A ∝ t−1

s is found for sufficiently slow sweeps.
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