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We address Berry phases that have been predicted to appear when a two-level system interacts with a quantized
field, including the vacuum state. The issue became controversial after it was argued that the appearance of
such Berry phases is an artifact of the rotating-wave approximation (RWA). As is widely believed, whenever the
RWA applies, one may replace the Rabi model of a two-level system interacting with a quantized field by the
analytically solvable Jaynes-Cummings model. Conflicting predictions of these two models under conditions that
validate the RWA would signal a serious inconsistency of this approximation. We show that this is not the case
and that claims to the contrary are inconsistent with analytical results concerning the Rabi model. We provide
also numerical evidence supporting our analytical approach. Furthermore, we argue that the appearance of Berry
phases in the addressed cases does not depend on adiabatic conditions nor on any particular Hamiltonian, but on
the underlying vector space. Thus, the appropriate framework is given by the kinematic approach to geometric

phases, which contains Berry’s phase as a special case.
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I. INTRODUCTION

The Jaynes-Cummings (JC) Hamiltonian has proved to be
a very useful analytically solvable approximation of the Rabi
Hamiltonian. The latter governs the dynamics of a two-level
atom interacting with a quantized one-mode electromagnetic
field. The two Hamiltonians are given, respectively, by

_ @ t t
Hyc = — 0 +wala+ g(ora+o_a") (1)

and

_ @0 t T
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in units of &4 = 1. Here, wy is the transition frequency between
the two atomic levels; w is the single-mode frequency of
the field that is described in terms of annihilation (a) and
creation (a') operators; and g is the atom-field dipole-coupling
constant. According to common wisdom, whenever o X @y
and g/w < 1, the rotating-wave approximation (RWA) applies
and Hr — Hjc. Recently, however, Larson made the striking
claim that there are instances for which the RWA breaks
down at all orders of g/w [1]. This is allegedly the case
when an instantaneous eigenstate of Hg performs an adiabatic
evolution. Such an evolution occurs, for instance, when
one applies the unitary transformation U (¢) = exp (—iga'a).
Larson claimed that there should be no Berry phase showing
up in this case. If we instead apply the RWA, thereby
approximating the eigenstates of Hg by those of Hjc, a
nonvanishing and nontrivial Berry phase appears even if the
field is in its vacuum state, as first predicted by Fuentes-Guridi
et al. [2]. Larson arrived at his conclusion by first addressing
the semiclassical case, i.e., a two-level atom interacting with
a classical field. In such a case, the JC model leads to
semiclassical energy surfaces in phase space, which contain a
so-called conical intersection (CI) [3,4]. Trajectories in phase
space that encircle the CI give rise to nonvanishing Berry
phases. Working with Rabi’s semiclassical Hamiltonian, the
energy surfaces do not contain a CI. Hence, no Berry phase
shows up. These semiclassical arguments suggest that the
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same state of affairs would arise in the fully quantized case.
By numerical diagonalization of the unitarily transformed
Rabi Hamiltonian, Hg(¢) = U(p)HrU (@), Larson finds that
Berry phases vanish for various low-lying eigenstates and for
different parameter choices, including those for which the
RWA should apply.

Larson’s findings have been disputed by several authors,
who presented both numerical and theoretical arguments
against them [5-7]. Wang et al. [5] object to the way
in which Larson performs the semiclassical approximation,
i.e., by replacing the operators a and a' in Hg(¢) by the
corresponding ¢ numbers « and «*. They argue that when the
correct semiclassical approximation is performed there is a
nonvanishing Berry phase also for the Rabi Hamiltonian. Such
a correct semiclassical approximation consists of applying
the variational method to the effective Hamiltonian H,(«) :=
(a|Hg|a), where |a) denotes a coherent state, i.e., one that
satisfies a|a) = o|a). In that case, a nonvanishing Berry phase
appears, both in the JC and in the Rabi case. This Berry phase
is given by

N d .
yn=i7§<wn|U'(¢)%U(¢)|w>d¢=2n<wn|a*a|wn>, 3)

with |¢,,) being the nth eigenstate of the considered Hamilto-
nian.

In the fully quantized case it is necessary to resort to
numerical calculations, because a closed-form, analytical
diagonalization of the Rabi Hamiltonian has not been reached
to date. Now, while some authors have reported numerical
calculations yielding nonvanishing Berry phases, Larson has
reported conflicting results, also stemming from numerical
calculations [1,8]. According to Larson, these numerical
results confirm that y,, in Eq. (3) exactly vanishes to all orders
of g/w. Even though we are not in a position to say what
possibly went wrong in Larson’s numerical calculations, we
are confident that some flaw must be there, as Larson’s results
are in conflict with the following analytical argument showing
that there is a nonvanishing Berry phase in Rabi’s case. Indeed,
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we can generally write the eigenstates of Hy in the form

[Wa) =D Aple,m) + Bjilg,m), )

m=0

where {|e,m),|g,m)}>_, is a basis of the Hilbert space on
which Hy acts. Here, |e,m) = |e) @ |m) is the atom-field state
in which the atom is in its excited state |e) and the field is in
a Fock state |m) with m photons, and similarly for the ground
state |g) of the atom. Equation (3) yields then

va = 2n(Ylalaly,) =21 Y m[|AL [ +|BL]. ()

m=1

Hence, y, would vanish only if A} = 0 = B;,,Vm > 0, which
is clearly not the case. Our numerical results (see below) are
in agreement with the above equation and also with other
authors’ findings, but not with Larson’s. These numerical
results show that the values of the geometric phase are not
only nonvanishing but nontrivial as well. Moreover, very recent
semianalytical results [9] show that the energy landscape of
the full quantum Rabi model does contain conical intersection
points. Though geometric phases associated to trajectories
encircling these points have not been calculated, they are
expected to be nonvanishing [9].

Now, the issue at hand goes beyond the particular result
concerning a vanishing or nonvanishing Berry phase. What we
are dealing with here is not Berry’s but a geometric phase. We
recall that Berry’s phase is a particular instance of geometric
phases. For a long time, the geometric phase has been
“recognized to be the Hamiltonian-independent, nonintegrable
component of the total phase, depending exclusively on the
geometry in the ray space” [10]. Berry’s phase corresponds
to the special case in which an instantaneous eigenstate of
a time-dependent Hamiltonian adiabatically evolves along
a closed trajectory. Though Fuentes-Guridi et al. [2] first
and Larson [1] afterwards referred to an adiabatic evolution,
such a condition did not need to be invoked in their actual
calculations. On the other hand, the addressed Hamiltonians
play no other role than to be the providers of the quantum
(eigen)states being addressed. Once the state |y,) is chosen,
its associated geometric phase is fixed by the unitary operator
U(g) that rules its evolution [see Eq. (3)]. Hence, we could
have similarly chosen other states and some other unitary or
nonunitary evolution and in this way arrive at results that
would be largely independent of any possible Hamiltonian
to which those states might be related. Of course, the physical
realization of the chosen evolution may require the action of
some Hamiltonian, and this action might be only possible
under adiabatic conditions. But this does not mean that the
geometric phase thereby exhibited is essentially linked to the
Hamiltonian or to adiabaticity, as it is linked to the geometry
of ray space. The nature of this space, on the other hand, is
largely fixed by the family of states being addressed, i.e., by
the kind of evolutions being considered. It is thus worthwhile
to consider various possible evolutions and states submitted to
them, which is the actual issue of our concern here.
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II. KINEMATIC APPROACH TO THE GEOMETRIC PHASE

As we said before, Berry’s phase is a special instance of
geometric phases. Indeed, the conditions under which Berry’s
phase originally arose are as follows. One considers a system
that evolves under the action of a time-dependent Hamiltonian
H(R(t)) the instantaneous eigenstates of which are |E,,; R(1)).
Here, R = (R',R?, ..., RY) denotes the parameters through
which H depends on time. It is assumed that the initial
state is one of the eigenstates of H, say |E,,R(0)), and that
the evolution is slow enough for the system not to jump
into |E,,,R(t)), with m # n. As the eigenstates are generally
defined up to a phase factor, the adiabatic approximation that
is implied in the above assumption can be best expressed in
terms of projectors [3]:

[V (D) (W ()] ~ |En; R(1))(En; R(1)]. (6)

Unless |y (¢)) is a stationary state, condition (6) can hold
only as an approximation [3]. Under the above conditions,
and considering a cyclic process, R(T) = R(0), Berry’s phase
is defined as

r d
0 t

=i f{En;R(m%Wn;R(t))dR“ = fAZ(R)dR“,

)

where A"(R) :=i(E,; R|V|E,; R) is the Mead-Berry connec-
tion, and a sum over repeated indices is implied. Thus, whereas
Eq. (6) holds only under adiabatic conditions, y,, depends on
nothing but the geometry of the underlying vector space. What
Berry uncovered by addressing the adiabatic theorem of Born
and Fock was a particular manifestation of a more general
concept. The essential nature of this concept is a geometric one
[11]. This can be best exposed by following a more general
setting, which is known as the kinematic approach.

Within the kinematic approach [12], the geometric phase is
defined as

' d
y(C):arg<xlf(O)|1/f(s))+i/0 (W(S’)Iﬁll/f(S’))dS’- (®)

Here, C denotes the path that joins the initial state [y(0))
with the final state |1/(s)). This definition is independent of
the dynamics that governs the evolution of the state | (s")),
as long as this evolution fixes the path C:s’ € [0,5] —
|¥(s)). The geometric phase y(C) is the sum of a total
(Pancharatnam [13]) phase arg(y(0)|{(s)) and a dynamic
phase i fos (¥ (s))dy(s")). For closed paths—the ones we focus
on here—the total phase is trivial and y(C) reduces to the
dynamic part. The s dependence of |{(s)) can generally
arise when the parameters defining the state |V («,pf,...))
turn into functions of some parameter s: o(s),B(s),....
Typical examples of s are time and path length. An im-
portant feature of the geometric phase is that it is pa-
rameter independent, i.e., it is invariant under s — s =
s'(s). It is also invariant under local gauge transformations:
[ (s)) — |¥'(s)) = exp [ia(s)]|¥(s)). This property allows
us to nullify either of the two contributions. The dynamic
contribution can be nullified by gauge-transforming [ (s)) —
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[¥'(s)) so that (Y'(s)|d¥'(s)) = 0, which is known as the
parallel-transport condition [14]. Alternatively, we can nul-
lify the Pancharatnam contribution by gauge-transforming
[Y(s") — [¥'(s")) = exp[—i arg(y (0¥ (s (s)) [15], so
that arg(y¥'(0)|v¥'(s)) = 0. Using this gauge-transformed state
and reverting to unprimed notation, we see that y(C) in
Eq. (8) coincides with Eq. (7), whenever s’ = ¢, and |y (¢))
satisfies the (gauge-transformed) Schrodinger equation with
the initial condition [y (0)) = |E,; R(0)). If we further assume
that the adiabatic approximation (6) holds true, then we
can call y(C) a Berry phase, following common parlance.
To say that [y (z)) satisfies the Schrodinger equation with
said initial condition is equivalent to saying that |y (¢)) =
Uy ()| E,; R(0)), where Uy (¢) is the evolution operator, which
can be generally expressed as a Dyson series: Ug(t) =
T lexp (—i fOT H(R(t))dt)], with 7 meaning the time-ordering
operator.

As previously said, Fuentes-Guridi ef al. [2] and Larson [1]
considered a transformation of the form |v,(¢)) = U(@)|¥n),
with U(g) = exp(—ipa'a). Here, |,) is an eigenstate of
either Hjc [see Eq. (1)] or Hg [see Eq. (2)]. Fuentes-Guridi
et al. [2] assume that “Berry’s phase” is given by Eq. (3), i.e.,
Yn = lf(llfn(fﬂﬂdlﬁn(fﬂ)) = 27T<wn|aTa|wn)' They argue that
the “phase shift operator” U(¢), when “applied adiabatically
to the Hamiltonian of the system, is capable of changing
the state of the field” [2]. This is because U(¢)H;cU' () =
w0, /2 + wa'a + g(o ae’? +o_a'e™'%). We notice that the
term “Berry’s phase” is not properly used here. Indeed, to
begin with, Hjc is time independent, so that it generates
an evolution having no geometric (Berry’s) phase factor
attached to it. If the initial state is [y,), it accumulates
only a trivial phase factor: |y, (¢)) = exp(—iHjct)|¥,) =
exp(—i E, t)|¥,). As we are dealing with a strictly stationary
case, |V, () (Vn(®)| = |¥n) (Wn], there is no Berry’s phase. The
unitary transformation Hyc — U(¢)HjcU T(go) is assumed to
be applied “adiabatically” [1,2]. For this to make sense, i.e.,
for ¢ to vary “slowly” [1], ¢ must be time dependent and
so thus U(g). If we submit the system to the time-dependent
unitary transformation U (¢(t)), then the Schrodinger equation

for |y = U|y) reads
Ay’ . AU
i% = <UHJCU' +i¥U*)|1/f’) =H®OW). )

A properly defined Berry’s phase must be related to the
evolution operator that is associated with H'(¢). Any phase
that is defined in terms of U(¢) = exp (—iga'a) [1,2] is not a
Berry’s phase.

A geometric phase can be properly defined through Eq. (8),
by setting s' = ¢, |¥(¢)) = U(p)|¥,), and considering a
closed trajectory or else a gauge for which arg(y¥ (0)|y (s =
2m)) = 0. The evolution of the state vector is in this case not
assumed to be ruled by the Hamiltonian Hjc (or Hg) and for
this reason any accumulated phase cannot be dubbed a Berry
phase. Furthermore, the Hamiltonian is thereby limited to be
just a provider of initial (eigen)states. This is the formulation
we adopt here.

The parameters R* no longer define the Hamiltonian,
but just the states being addressed, i.e., |¢¥) = |[¥(R)).
Thus, whenever R* = R*(s), we have that (w(s)hﬁ(s)) =
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(¢|3MW)RM(S), where |y/(s)) stands for d |y (s)) /ds and
0, = d/dR". It follows that, for a closed trajectory or for
a gauge that nullifies Pancharatnam’s phase,

fA— /f (10)

where A = A,dR", with A, = (¥]9,V), while F = dA =
(Fuv/2)dR* A dRY and S is a surface the boundary of which
is the closed path C. We can also write [11,16]

Fuv =

v =i f(lP(S)W(S) ds =

—Fop = 2Im(0, ¥ [0,9). an

When the parameters R* come from a unitary U(R), i.e.,
Y (R)) = U(R)|¥(0)), we can alternatively write

Fov = 2Im(y|(3,U) 8, U|y). (12)

It is instructive to address some concrete examples for
which the previous results can be applied. We do this
next.

A. Schwinger’s approach to angular momentum: I

Let us consider a Hilbert space Hr = H, ® H, ® Hy,
i.e., one which is the direct product of three Hilbert spaces
the orthonormal bases of which are, respectively, {|+),|—)},
{In)a}2,, and {|n'),}5_,, the two last ones being Fock bases
associated to two different modes. We consider further the
unitary transformation

U(0,9) = exp(—ipJ;) exp(—if J,), 13)

where the angular momentum operators are defined in terms
of the annihilation and creation operators of modes a and b,
according to Schwinger’s approach:

Jx

1 , 1
—(@@'b+abh, J,=—(@a'b—abh),
2 ; 21

1
J. E(aTa —b'bh). (14)

We will apply U (6,¢)—which implicitly contains the identity
operator of H,—to the states

W) = —=[H)n)e £ 1=)n+ D] @ [n')s

-

= —[I+ n) & |=n+ D). 15)

S

The only nonvanishing components of F,,, [see Eq. (12)] are
Fop = —Fps- Onaccountof 0U /90 = —iU J, and dU /0¢p =
—iJ,U, Eq. (12) reads in this case

Foo =2Im(W; U LU ¥, ). (16)
A straightforward calculation yields

1
(Ut UT,) = TsinO(JZ), (17)
l

LIWE ) = 2—%[@ — ) +on)

t(m+1—n)—n+ 1], (18)
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so that ZIm(\P,fn/|UTJZUJy|\II,fn,) = —sinf[(n —n')/2 +

1/2]/2. Inserting this expression in Eq. (10) we get

Vrm/z_/}_z—/:/ .7:¢9d9d¢

S Q
_ ! : in0dod
_§|:(n—n)+§:|//gsm ¢

_ , 1182 19
—I:(n_n)+5i|3, (19)

where €2 is the solid angle subtended by the closed path C. This
result has been previously obtained by Fuentes-Guridi ef al.
[2], who interpreted it in terms of a Hamiltonian H, 2”, which
is made of Hjc at resonance [see Eq. (1)], plus an additional
term whb'h that is related to a second field mode, i.e., Hozq =
Hic(wy = @) + wbtb. Mode b does not interact with the two-
level atom at this point. The interaction comes about when
instead of Hozq one considers the transformed Hamiltonian

U(9,¢)H02" UT(0,¢) [2,17]. Now, as we have seen, neither the
Hamiltonian nor the adiabatic condition have been invoked to
obtain the geometric phase y,, of Eq. (19). This phase reflects
the geometry of the underlying ray space alone. Reference to
the Hamiltonian can sometimes obscure rather than enlighten
the physical interpretation of different features that show up in
geometric phases. In Ref. [2], for instance, the nonvanishing
geometric phase
2 20
Yo= 7 (20)
that arises when the field is in a vacuum state, is interpreted
as a feature that has “no semiclassical correspondence” [2].
However, as we shall see next, Eq. (20) and other features
of the geometric phase can be understood in terms of the
underlying ray space, regardless of the quantum or classical
nature of the involved phenomena.

B. Schwinger’s approach to angular momentum: II

Let us recall how Schwinger’s approach connects to
standard angular momentum algebra. The standard basis
{lj,m),j =0,1/2,1,...;m = —j,...,j} consists of com-
mon eigenvectors of the commuting operators J? and J,, i.e.,
J?|j,m) = j(j + 1)|j,m) and J.|j,m) = m|j,m). There is a
one-to-one correspondence between Schwinger’s states |n,n’)
and the standard ones, |j,m), which is given by n = j + m,
n’ = j —m. The Hilbert space Hy = H, ® H, ® H,, that
we considered before can also be defined as (is isomorph
to) Hr = Hr ® H;, where H, = Span{|+),|—)} and H; =
Span{|j,m)}. In short, Hy = Span{| &, j,m)}. The initial
states that we have previously addressed [see (15)] have the
salient feature of being entangled states:

WE,) = =
n,n ﬁ

_ \%[|+,j,m> L1 2m 12 @)

Written more explicitly, the transformation U(6,¢)
[see Eq. (13)] reads 1, ® U(6,¢), so that it does not affect

[|+»n7n/) + |_$n + ]3n/>]
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the states |+) € H,. It is thus understandable that only those
features that are exclusively related to the angular momentum
subspace can show up in the geometric phase that arises when
we submit |\I!,fn,) to the action of U(0,¢). We can therefore
get rid of H, and work with just H ;. That is, for our present
purposes we can consider instead of the entangled states (21)
the following superposition states |Wi,l,):

L
V2

) or |me), we get

WE,) = —=[ljm) £ 1j+1/2m +1/2)].  (22)

+

n,n’

Using either |¥
(J7)we =m+%. (23)

On account of Egs. (17) and (10), we can write Eq. (19) in the
form

Ym = (m+ 1)Q. (24)

The particular case yp = 2/4 is not related here to the
quantum vacuum nor to any quantum feature having no clas-
sical counterpart. The phase y,, reflects angular momentum
properties, which may be exhibited within both a classical
and a quantum-mechanical framework. Indeed, a case in point
would be the phase accumulated by the states

1
W) = —=l[lj.m) £ |j+ 1Lm+1)]. (25)
j. «/5 J J
This phase is given by
ym = (m+1)Q. (26)

Choosing the j integer, it is possible to generate states such
as those given by Eq. (25) with the help of, say, classical light
beams carrying orbital angular momentum. We could submit
these states to unitary transformations like U(6,¢). Nothing
needs to have a quantum nature in this physical realization and
the “vacuum” geometric phase yy = €2/2 would be exhibited
within a purely classical framework.

Finally, we should stress that the geometric phase is not
exclusively related to closed paths [18]. We can apply the
general definition, Eq. (8), to the case at hand. The calculation
of the dynamic contribution requires the evaluation of the
quantities A, = (¥, |U1(0.4)3,U(6.4)|V7,,):

J.m
(U U) s = —i(Jy)us =0, 27)

(UT3yU ) ge = —i(J,cos0 — J,sinf) g = —i cosO(J,)y=
= —i(m + }) cos 6. (28)

Hence, the dynamic contribution to the geometric phase reads
9 . 0 L
i / (Y (@)Y (0)do" =i / (U'9sU)y+d0’
0 0

= —<m + %) sin 6. 29)
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As for the Pancharatnam part, it is given by

arg(V5, |U0,4)IV7,)

Jj.m

= arg(W}, le e WE)

Jjom
1, . - . ;
_ - —i(m+1/2)¢ 7j+1/2
= arg [5(6 medy , + et ¢dm+l/2,m+1/2)i|

(30)

e*im¢ ) » 1
[ i)

where d,ilm = (j,m’|e”%’|j,m) € R are Wigner’s coeffi-
cients [19]. This yields
arg(W, |U0.9)|¥7,)
i+1/2 .
d;;l//z sing /2

i1 e
dj, + d,flill//zz cos¢/ 2)

= —m¢ — arctan <

Finally, we obtain

d) 5 sing/2 )
dj + d,jnill//zz cos¢/2

1
— — ) siné.
<m+4) sin

Here, ¢ = ¢(0), as we have assumed 6 to be the parameter
in terms of which the curve C is described. This was
possible because y(C) is parameter-invariant. It is also in-
variant under local gauge transformations |y (s)) — [¥'(s)) =
exp (ia(s))|¥(s)). Thus, the geometric phase cannot keep track
of such local phase changes, something it would be instructive
to explore by using an approach such as the present one. Such
an endeavor goes, however, beyond our present scope and is
deferred to future work.

Vjm = —m¢ — arctan (

(32)

III. NUMERICAL RESULTS

Even though Eq. (5) unescapably leads to the conclusion
that y,, # 0, Larson has reported numerical results to the
contrary. This motivated us to look for a possible explanation
of such a discrepancy. We have thus committed ourselves to
find out whether some subtleties of the employed numerical
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techniques could possible yield a result such as y, =0
in special cases. None of our results explain how y, =0
could have been obtained. On the contrary, we could only
obtain results that are in accordance with those of other
authors who got y, # 0, by either diagonalizing the Rabi
Hamiltonian [see Eq. (2)] or the unitarily transformed one,
Hg(p) = U(p)HrU'(p). Moreover, we diagonalized both
versions of Hg, the one written in terms of a and a and
the one written in terms of the quadrature operators x and
p. In neither case could we reproduce Larson’s results. As
way of example, we show in Fig. 1 the geometric phase
for four eigenvectors of the Rabi Hamiltonian being evolved
with U(gp) = exp (—iga'a). That is, Eq. (3) was evaluated
numerically for four eigenvectors and varying g /w € [0,1] for
three relative detunings A’ = (wy — w)/w. As can be seen, for
large enough values of g/w the geometric phase is definitely
nonvanishing, no matter which case we address, the resonant
case or the nonresonant (blueshifted or redshifted) one. We
made sure that our calculations of the geometric phase were
accurate to 99.9%, in the following sense: we used an N x N
matrix representation of the Rabi Hamiltonian and fixed N
so that the results obtained by increasing N to N + 1 do not
change by more than 0.1%. To reach such an accuracy in
the calculation of the geometric phase, we required a rather
small 20 x 20 matrix. Furthermore, our numerical results show
good agreement with the analytically approximated solutions
provided by both Liu et al. [6] and Deng and Li [7] (see Fig. 1).
Liuet al. [6] give a detailed discussion about how the geometric
phases obtained with Rabi eigenvectors converge to those
obtained with JC eigenvectors. Their conclusions apply in our
case as well, including those referring to the vacuum-induced
Berry’s phase. In order to further exhibit the accuracy of
our numerical results, we show in Fig. 2 the numerically
calculated eigenvalues of the Rabi Hamiltonian and compare
them with the analytically approximated solutions given by
Irish [20] (left panel) and by Zhang et al. [21] (right panel).
Our numerical calculations are accurate to 99.9% in this
case as well. A 22 x 22 matrix was required to reach such
an accuracy, because in this case we calculated a larger
number of eigenvalues than in the geometric phase calculation.
We are confident that our results are representative of the
general case and that the geometric phase does not vanish, in
accordance with the analytical argument given in connection
to Eq. (5).

ylrt

glw

A'=0.5
5t /
4 [omm -
3 T Fromees ]
= s
2 [emnc—— .0. /—
13{) :‘::';;;_(
0 p—— ]
0.0 0.2 04 06 0.8 1.0
glw glw

FIG. 1. Geometric phase y (in units of m) associated to eigenvectors of the Rabi Hamiltonian, as a function of g/w. Numerical
diagonalization of the Rabi Hamiltonian shows that y # 0 can be obtained in the resonant [A" = (wy — w)/w = 0] and nonresonant [A" = 0]
cases. Dashed lines correspond to phases associated to eigenvectors of the JC Hamiltonian.
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(b)

0.0 0.2 0.4 0.6 0.8 1.0

g/lw

0.0 0.2 0.4 0.6 0.8 1.0
glw

FIG. 2. Eigenvalues (in units of w) of the Rabi Hamiltonian, as a function of g/w. Numerical diagonalization of the Rabi Hamiltonian is
compared with the analytical approximations provided by Irish [20] (left panel) and by Zhang et al. [21] (right panel). In the case of Irish we
consider the nonresonant case (A" = —0.5). Differences between analytical (dashed lines) and numerical results are negligible. In the case of
Zhang et al., we consider the resonant case (A’ = 0). Small differences can be observed for some values of g/w.

IV. SUMMARY AND CONCLUSIONS

The results we have presented provide evidence for a gen-
erally nonvanishing geometric phase that is related to the Rabi
Hamiltonian. These results should serve to settle an ongoing
controversy on this matter. We have provided analytical and
numerical evidence about nonvanishing geometric phases for
the case in which an eigenvector of the Rabi Hamiltonian
evolves under a unitary transformation of the form U(p) =
exp (—ipa'a). We have also addressed the case of an eigenvec-
tor of an extended Rabi Hamiltonian, which is submitted to the
transformation U(0,¢) = exp (—i¢J;)exp(—ifJ,). We have
shown that in these cases the geometric phase reflects specific
features of the underlying vector space. This space is explored
by a state that evolves under some unitary U. The evolution
does not need to be adiabatic and the Hamiltonian does not
play any essential role in the whole, except as a provider of
initial (eigen)vectors. Thus, the appropriate framework for

dealing with the geometric phase in these cases is given by
the kinematic approach of Mukunda and Simon [12]. This
approach brings to the fore the essential features on which
the geometric phase depends, thereby avoiding unwarranted
interpretations of its appearance. Finally, our results obtained
with the eigenvectors of the Rabi Hamiltonian do converge to
the corresponding ones obtained with the Jaynes-Cummings
Hamiltonian. Thus, the rotating-wave approximation consis-
tently applies when dealing with geometric phases, as it applies
in other cases as well.
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