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Strong enhancing effect of correlations of photon trajectories on laser beam scintillations
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To provide a detailed description of the dynamics of laser beam propagation in the atmosphere we use the
method of the photon distribution function in the phase space, which reduces the analysis to consideration of
photon trajectories and their correlations. The scintillation index σ 2 is calculated for the range of moderate and
strong turbulence, which is the most challenging for analytical consideration. The considerable growth of σ 2 (by
two to three times) found for moderate turbulence is shown to be due to correlations between photon trajectories.
Our calculations demonstrate that the maximum of σ 2 can be considerably decreased by an increase of the source
aperture or the use of the fast phase diffuser.
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I. INTRODUCTION

The recent interest in beam propagation was awakened
by the development of quantum communication in the free
atmosphere [1,2]. Detailed studies of the effect of the
turbulence-induced losses on the quantum state of light in the
course of satellite-mediated communication and for realization
of the entanglement transfer in the atmosphere were reported
in Refs. [3,4]. Particularly, the range of moderate turbulence
where the signal-to-noise ratio (SNR) can be considerably
smaller than unity is of great interest. However, that range
is the most demanding for analytical consideration. Currently,
there are reliable analytical solutions only for the limiting cases
of weak and strong turbulence.

Fluctuations (or scintillations) of the laser radiation caused
by turbulence of the Earth’s atmosphere limit the perfor-
mance of light communication systems. Temperature inhomo-
geneities of the atmosphere generate turbulent eddies which
are accompanied by an inhomogeneous modulation of the air
density and the corresponding modulation of the refractive
index [5–7]. As a result, laser beams propagate in a medium
with a randomly distributed refractive index. In the course of
the eddies’ evolution, the random distribution of the refractive
index varies synchronously with eddies. Therefore, an initially
stationary laser beam has a time-varying intensity in the
detector plane. Although this qualitative picture of the intensity
fluctuations seems quite simple, it is a great challenge for an
adequate theoretical analysis.

Any theoretical model of the intensity fluctuations should
account for a very wide range of characteristic lengths of
inhomogeneities, index-of-refraction structure constant C2

n ,
etc. The characteristic lengths cover the interval from a
few millimeters (the inner radius l0 of eddies) to a hundred
meters (the outer radius L0). As a result, various scenarios of
beam behavior can be observed. The scattering by large-size
eddies results in random redirections of the beam as a whole.
This process is known in the literature as a “wandering” or
“dancing” of the beam [8,9]. On the other hand, the scattering
by small-size eddies causes spreading of the beam. For a
long-distance propagation or a strong turbulence, the beam
radius becomes greater than the characteristic sizes of the
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inhomogeneities. In this case the probability of the beam to
be redirected becomes small, and the relative value of the
wandering radius decreases [10].

The beam wandering and broadening can be considered
the specific manifestations of the scintillation effect. The
scintillations have a tendency of saturating for a long-distance
propagation [11,12] (the regime of a strong turbulence). This
is because in the course of propagation the radiation acquires
the properties of the Gaussian statistics, and the SNR tends
to unity. The asymptotic behavior of the scintillation index,
σ 2 → 1, was explained in Refs. [13–15]. Moreover, it was
shown quite generally that this property stays unchanged
for any refractive index distribution, provided the response
time of the recording instrument is short compared with the
source coherence time. This result was confirmed analytically
in [16].

At the same time, it was shown by different approaches
[17–20] that there is a possibility of significant suppression of
the scintillations by means of partially coherent laser beams
with the coherence time shorter than the detector integration
time (a slow detector). Recent theoretical and experimental
developments on the propagation of partially coherent beams
in a turbulent atmosphere were discussed in [21].

There are several analytical approaches explaining the
behavior of the scintillation index in the case of strong
turbulence [18,22,23]. Their analysis is based on the physical
picture where four waves, forming the second moment of
the intensity, conserve only pair correlations in the course of
long-distance propagation. Two different pairs of the photon
trajectories contribute to the square of the photon density at
the detector. Dashen used the Feynman path integrals to prove
that in a convincing manner [22].

The formalism of the photon distribution function (or the
photon density in the coordinate-momentum space [24]) was
applied to the problem of scintillations in [10,18,25,26]. Those
papers are based on a physical picture which is similar to
that described above. The method of the photon distribution
function (PDF) was used for the description of both classical
and quantum light including propagation of single-photon
pulses (see, for example, Refs. [25,27,28]). Fluctuations of
photon counts under conditions of strong and weak turbulence
were investigated in Ref. [25]. The results were expressed via
the scintillation index, which describes a stationary beam [see
Eqs. (23) and (25) therein].
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The solution of the kinetic equation for the operator of
photon density is based on the method of characteristics. The
assumption of weak disturbances of photon momenta by the
atmosphere (the paraxial approximation) reduces the problems
of scintillations to the problem of obtaining photon trajectories
and their correlations. A slowly varying fluctuating force,
deflecting photon trajectories from straight lines, describes
the effect of the atmospheric eddies on scintillations.

The challenging aim of this study is to develop an analytical
approach and perform numerical computer calculations for the
intensity fluctuations of the laser beam under moderate and
strong turbulence conditions. In particular, we are going to ex-
plain the physical nature of large scintillations of laser beams.
Analytical calculations using an iteration procedure within the
photon-distribution-function formalism are supplemented by
indispensable numerical computer many-fold integration to
calculate the scintillation index.

The rest of this paper is organized as follows. In Sec. II,
we review the model Hamiltonian of the system and our
theoretical approach based on the dynamics of PDF. Also,
the modification of the initial photon distribution caused by
the phase diffuser is analyzed. In Sec. III, we explain how
the correlations of photon trajectories can be accounted for by
the use of the iterative scheme. In Sec. IV, the results of the
calculations are analyzed. The physical nature of correlation
and supercorrelation mechanisms is explained. In Sec. V, the
results are briefly summarized. The Appendix provides the
criteria of the applicability of our approach.

II. PHOTON-DISTRIBUTION-FUNCTION APPROACH

The photon distribution function is defined by analogy with
distribution functions in solid-state physics. In particular, it is
similar to the phonon distribution function. Both of them are
defined as [24,29]

f (r,q,t) = 1

V

∑
k

e−ikrb
†
q+k/2bq−k/2, (1)

where b
†
q and bq are the bosonic creation and annihilation oper-

ators of photons or phonons with momenta q and V ≡ LxLyLz

is the normalizing volume. Polarization of the corresponding
modes is not specified in (1). In the paraxial approximation,
assumed here, the initial polarization of the beam remains
almost unchanged even for a long-distance propagation (see,
for example, Ref. [30]).

The operator f (r,q,t) describes the photon density in the
phase (r,q) space. Usually, the characteristic sizes of spatial
inhomogeneities of the radiation field are much greater than
the wavelength. In this case the sum in Eq. (2) can be restricted
by small k. Henceforth, we consider that k < k0 � q0, where
q0 is the wave vector corresponding to the central frequency
of the radiation, ω0 = cq0. At the same time k0 should be
sufficiently large to provide the required accuracy of the beam
profile description.

The evolution of the Heisenberg operator f (r,q,t) is
determined by the commutator

∂tf (r,q,t) = 1

i�
[f (r,q,t),H ], (2)

where

H =
∑

q

�ωqb
†
qbq −

∑
q,k

�ωqnkb
†
qbq+k (3)

is the Hamiltonian of photons in a medium with a fluctuating
refractive index n(r) (nk is its Fourier transform) and �ωq =
�cq and cq = ∂ω

∂q are the vacuum values of the photon energy
and velocity, respectively.

Assuming the characteristic values of the photon momen-
tum are much greater than the wave vectors of turbulence, the
kinetic equation for the photon distribution function can be
written as

{∂t + cq∂r + F(r)∂q}f (r,q,t) = 0, (4)

where F(r) = ω0∂rn(r) is the random force originating from
the atmospheric turbulence. The general solution of Eq. (4) is
given by

f (r,q,t) = φ

{
r −

∫ t

0
dt ′

∂r(t ′)
∂t ′

; q −
∫ t

0
dt ′

∂q(t ′)
∂t ′

}
, (5)

where the function φ(r,q) is the “initial” value of f (r,q,t),
i.e.,

φ(r,q) = 1

V

∑
k

e−ik·r(b+
q+k/2bq−k/2)|t=0

≡
∑

k

e−ik·rφ(k,q). (6)

The derivatives ∂r(t ′)
∂t ′ and ∂p(t ′)

∂t ′ should satisfy the equations

∂r(t ′)
∂t ′

= c(q(t ′))

∂q(t ′)
∂t ′

= F(r(t ′)), (7)

completed with the boundary conditions r(t ′) = r and q(t ′) =
q for t = t ′. As we see, Eq. (7) coincide with the classical
(Newton’s) equations of motion of a point particle moving
with the velocity cq and affected by an external force F(r).
Formal solutions of Eq. (7) can be written as

q(t ′) = q +
∫ t ′

t

dt ′′F(r(q,t ′′)) (8)

and

r(q,t ′) = r−cq(t−t ′)− c

q0

∫ t ′

t

dt ′′(t ′′−t ′)F(r(q,t ′′)). (9)

Equations (8) and (9) can be interpreted as the photon
trajectories. To justify this terminology, two properties of the
operator f (r,q,t) should be mentioned. First of all, let us
consider the integration over r, which gives the total number of
photons with the momentum q:

∫
drf (r,q,t) = b

†
qbq. Second,

the value n̂(r) = ∑
q f (r,q,t) is the operator of the photon

density in the coordinate domain [31], which is similar to the
well-known Mandel coarse-grained photon density n̂M (see
[32], Chap. 12, and [33]).

The above-mentioned properties indicate that f (r,q,t) does
really describe the photon density in the phase space. The
formal solution (5) shows that the quantity f (r,q,t) does not
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vary if one moves along the trajectory given by Eqs. (8) and
(9). The distribution function at any set of variables (r,q,t) is
equal to its initial value at the beginning of the corresponding
trajectory (at t = 0). This can be seen if the integration over
t ′ in Eq. (5) is carried out. Equations (8) and (9) describe
displacements of “small elements” of the initial distribution.
The term “photon trajectories” is used here irrespective of
the number of photons and their statistics. The terms “photon
trajectories” and “photon paths” [34], which are not rigorous,
are widely used in the literature.

We should add that Eq. (4) was derived within the
assumption of k0 � q0. This situation can be expressed by
means of the increased thickness of the line (9): it should be
of the order of π/k0. In practice, it can be only larger than
several wavelengths of the light [32].

Equations (8) and (9) allow us to rewrite expression (5)
as

f (r,q,t) = φ

{
r − cqt + c

q0

∫ t

0
dt ′t ′F(r(q,t ′)); q

−
∫ t

0
dt ′F(r(q,t ′))

}
. (10)

If F(r) is a known function, an approximate value for f (r,q,t)
can be obtained by inserting the term r(q,t ′) ≈ r − cq(t − t ′)
into Eq. (10). In this case the argument of the fluctuating
force F(r(q,t ′)) is replaced by a straight line, which is correct
only in the absence of the turbulence. Improvement of the
theory can be achieved if the argument of F accounts for the
turbulence.

It follows from Eq. (10) that statistical properties of the
radiation depend not only on the turbulence but also on the
initial distribution function φ(r,q). This function is determined
by the source field. Its explicit form is determined in the
course of “sewing” of the near-aperture and atmospheric
fields [18] given by the amplitudes bq(b†q). We consider
light propagation in the z direction. The source field is
assumed to be described by the Gaussian function, �(r) =
(2/π )1/2 1

r0
exp(−r2

⊥/r2
0 ). Then the propagating amplitudes are

given by

bq⊥,q0 (t = 0) = b(2π/S)1/2r0 exp(−q2
⊥r0

2/4), (11)

where b is the near-aperture amplitude of the laser field, the
index ⊥ means perpendicular to the z-axis components, and
S = LxLy .

We take into account the effect of the phase diffuser by
multiplying the distribution �(r) by the phase factor e−iar⊥ ,
where the quantity a is a random variable. In this case
Eq. (11) should be modified by substituting in its right-hand
side q⊥ + a ≡ qa for q⊥. Such a simple modeling of the
phase diffuser is justified if (i) the detection time is much
longer than the characteristic time of the variation of a (slow
detector) and (ii) there is a large root-mean-square of the
phase fluctuations. (More detailed analysis is presented in
[26].) This case corresponds to the Gaussian distribution
of a:

P (ax,y) = λ

2π1/2
exp

(−a2
x,yλ

2
/

4
)
, (12)

with a covariance 〈a2
x,y〉 = λ−2, and the transverse correlation

function of the outgoing field (at t = 0) is given by

〈E(r⊥)E(r⊥ + 	)〉a

= E2
0 exp

{−[r2
⊥ + (r⊥ + 	)2]r−2

0

}
exp(−	2λ−2). (13)

Here E0 = E(r⊥ = 0,	 = 0,t = 0) and the notation 〈· · · 〉a
means averaging over distribution P (ax,y). The radiation,
whose correlation properties are described by function (13), is
referred to as the Gaussian Shell-model field. The parameter
λ in the exponential factor describes the decrease of the
transverse correlation length. It can also be said that this
parameter generates a new characteristic length, 1/r1, in the
momentum distribution (i.e., in the q domain). This is seen
from φ(k,q), which after averaging over the fluctuations of a
reduces to

〈φ(k,q)〉a = 2π
b†b

V S
r2

1 exp

(
−q2

⊥
r2

1

2
− k2

⊥
r2

0

8

)
, (14)

where r2
1 = r2

0 (1 + 2r2
0 λ−2)−1 and variables qz and kz are

omitted. It is seen from Eq. (14) that q⊥ is distributed in the
range of the order of

√
2/r1, which is greater than the one for

the coherent beam. In contrast, the characteristic value of k̃

depends only on the initial size of the beam (k̃ ∼ √
8/r0).

In the course of light propagation, the diffraction phenom-
ena and scattering by atmospheric inhomogeneities broaden
the beam; as a result, k̃ decreases. At the same time, the value
of q̃ increases with the distance because of the Brownian-like
motion of photons in the q⊥ domain (see Ref. [18]). Such
a simple physical picture, elucidating the evolution of the
beam geometry, is, however, not applicable to the description
of scintillations. The phenomenon of scintillations is more
complicated and can be described in terms of spatiotemporal
correlations of four waves.

III. SCINTILLATION INDEX

The photon distribution function is used here to obtain the
scintillation index σ 2. The definition of σ 2 is given by

σ 2 = 〈I 2(r)〉 − 〈I (r)〉2

〈I (r)〉2
. (15)

The photon density I (r,t) is expressed in terms of the
distribution function as

I (r,t) =
∑

q

f (r,q,t) = 2π
b†br2

0

SV

×
∑
q,k

exp

{
−ik ·

[
r−cqt + c

q0

∫ t

0
dt ′t ′F(r(q,t ′))

]}

× exp

(
−Q2

a
r2

0

2
− k2 r2

0

8

)
, (16)

where Qa ≡ Q + a = q + a − ∫ t

0 dt ′F(r(q,t ′)). The summa-
tion is taken over the q⊥ and k⊥ components, while qz and
kz are considered to be fixed: qz = q0 and kz = 0. The expo-
nential term originates from the solution (10) of the kinetic
equation (4).

033821-3



O. O. CHUMAK AND R. A. BASKOV PHYSICAL REVIEW A 93, 033821 (2016)

To obtain 〈I (r,t)〉, three independent averagings are re-
quired. One of them concerns the source variables. In the case
of a coherent state of the source |β〉, we have 〈b†b〉 = |β|2. The
second averaging over a random phase of the diffuser should
be carried out as explained by Eq. (14). The third averaging
deals with the fluctuating force F. These three actions can be
performed independently, which facilitates the analysis. Also,
the calculations are simplified if we use the identity

exp
(−Q2r2

0

/
2
) ≡

∫
dp

2πr2
0

exp
(
ip · Q − p2/2r2

0

)
. (17)

Because of Eq. (17), the term in the exponent of Eq. (16)
reduces to the linear in F form. Then, considering F as
a random Gaussian variable, the value of 〈I (r,t)〉 can be
easily obtained in the manner explained in Ref. [18]. To
calculate 〈I (r,t)〉, an explicit form of the refractive-index
correlation function, 〈n(r)n(r′)〉, is required. In a statistically

homogeneous atmosphere it can be written as

〈n(r)n(r′)〉 =
∫

dg exp[−ig · (r − r′)]ψ(g). (18)

The widely used von Kármán approximation for the spectrum
ψ(g) is given by

ψ(g) = 0.033C2
n

exp[−(gl0/2π )2][
g2 + L−2

0

]11/6 , |g| ≡ g, (19)

where the vector g is defined in the three-dimensional domain.
The “source” part of 〈I 2(r)〉, given by 〈b†bb†b〉, is ap-

proximately equal to 〈b†b†bb〉 = |β|4, when the condition
|β|4 � |β|2 is satisfied. This inequality implies that the initial
laser radiation is in a multiphoton coherent state. The averaging
over independent random quantities a and a′ can be used
instead of the time averaging of the diffuser state. Then we
have

〈I 2(r,t)〉 =
∣∣∣∣2πβ2r2

0

V S

∣∣∣∣
2 ∑

q,k,

q′,k′

〈
e
−ik · [r−cqt+ c

q0

∫ t

0 dt ′t ′F(r(q,t ′))]−ik′ · [r−cq′ t+ c
q0

∫ t

0 dt ′t ′F(r(q′,t ′))]

×
{
e−(Q2

a+Q2
a′+ k2+k′2

4 )
r2
0
2 + e−[(Qa+ k

2 )2+(Q′
a− k′

2 )2+(Qa′− k
2 )2+(Q′

a′+ k′
2 )2]

r2
0
4

}〉
. (20)

There are two terms in the braces in Eq. (20). They appear only if the initial four-wave correlation reduces to the pair correlation
[18]. Such a modification of the statistical properties of the radiation occurs when the waves propagate for a long time which
is sufficient for randomization of the transverse photon momentum. A more general case, which includes the regime of fast
detection, was analyzed in Ref. [26].

The averaging of Eq. (20) over a and a′ results in

〈I 2(r,t)〉 =
∣∣∣∣2πβ2r2

1

V S

∣∣∣∣
2 ∑

q,k,

q′,k′

〈
e
−i{k · [r−cqt]+k′ · [r−c′

qt]+ c
q0

∫ t

0 dt ′t ′[k · F(r(q,t ′))+k′ · F(r(q′,t ′))]}

× {
e−(Q2+Q′2)r2

1 /2−(k2+k′2)r2
0 /8 + e−[(Q−Q′)2+(k+k′)2/4]r2

0 /4−[(Q+Q′)2+(k−k′)2/4]r2
1 /4

}〉
. (21)

In the absence of a phase diffuser, r0 = r1, the summands in the last set of braces contribute equally to (21).

Similar to Eq. (17), the factor exp [−(Q2 + Q′2) r2
1
2 ] in (21) can be expressed in the integral form as

exp

[
−(Q2 + Q′2)

r2
1

2

]
=

∫
dpdp′

(2πr2
1 )2

exp
[
ip · Q + ip′ · Q′ − (p2 + p′2)

/
2r2

1

]
. (22)

As we see, the exponent in the left-hand side is represented as a linear form of the force F. A similar transform is applicable to
the second term in the last set of braces in (21). As a result, the fluctuating force enters the right-hand side of (21) only via the
common multiplier M , given by

M = exp

{
−i

∫ t

0
dt ′

[(
p+kt ′

c

q0

)
· F(r(q,t ′))+

(
p′+k′t ′

c

q0

)
· F(r(q′,t ′))

]}
. (23)

The calculation of the average value of I 2 reduces to averaging M with many-fold integration. Assuming the exponent in (23) is
a Gaussian random variable, we can write

〈M〉 = exp

(
−1

2

〈{ ∫ t

0
dt ′

[(
p+kt ′

c

q0

)
· F(r(q,t ′))+

(
p′+k′t ′

c

q0

)
· F(r(q′,t ′))

]}2〉)

≡ exp

(
−1

2
(φPP + 2φPP ′ + φP ′P ′)

)
. (24)
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Two types of correlation functions determine 〈M〉:

φPP ′ =
∫ t

0

∫ t

0
dt ′dt ′′(p + kt ′c/q0)

· 〈F(r(q,t ′))F(r(q′,t ′′))〉 · (p′ + k′t ′′c/q0), (25)

φPP =
∫ t

0

∫ t

0
dt ′dt ′′(p + kt ′c/q0)

· 〈F(r(q,t ′))F(r(q,t ′′))〉 · (p + kt ′′c/q0), (26)

where P and P ′ denote sets of three vector variables, P =
{q,p,k} and P ′ = {q′,p′,k′}. The correlation functions of
the forces along different (q 
= q′) and coinciding (q = q′)
trajectories enter Eqs. (25) and (26), respectively. The former
can be rewritten as

〈Fα(r(q,t ′))Fβ(r(q′,t ′′))〉 = 〈Fα(r(q,t ′) − r(q′,t ′′))Fβ(0)〉,
(27)

where the notations α and β stand for the x and y components.
The expression for (26) follows from Eq. (27) by setting
q = q′.

The right-hand side of Eq. (27) is assumed to be a function
of the coordinate difference, r(q,t ′) − r(q′,t ′′). It is so if the
atmosphere is statistically homogeneous. In the course of
averaging, the dependence of the coordinate difference on
the fluctuating force should also be taken into account. This
dependence is given by the relation

r(q,t ′) − r(q′,t ′′)

= (ezc + cq′)(t ′ − t ′′) − cq−q′ (t − t ′)

+ c

q0

∫ t ′′

t ′
dt1(t ′ − t1)F(r(q′,t1))

+ c

q0

∫ t ′

t

dt1(t ′ − t1){F(r(q,t1)) − F(r(q′,t1))}, (28)

which follows from Eq. (9). The distance |r(q,t ′) − r(q′,t ′′)|
should be of the order of or less than the outer radius L0 of
the turbulence for nonzero correlation of fluctuating forces.
Considering that c � |cq−q′ |,|cq′ |, we infer that |t ′ − t ′′| �
L0/c. This means that on the right-hand side of Eq. (28) we
can set cq′ = 0 and omit the third term, which is proportional
to (t ′ − t ′′)2. Then Eq. (28) reduces to

r(q,t ′) − r(q′,t ′′) = ezc(t ′ − t ′′) − cq−q′ (t − t ′) + c

q0

∫ t ′

t

dt1(t ′ − t1){F(r(q,t1)) − F(r(q′,t1))}. (29)

The second and the third terms in Eq. (29) describe the displacement of two photons from each other because of the difference in
their initial velocities. The term −cq−q′ (t − t ′) describes the divergence of two straight-line trajectories. The last term accounts
for the different impact of the atmosphere on particles moving in different spatial regions.

Averaging in Eq. (27) seems to be challenging because r(q,t ′) and r(q′,t ′′) themselves depend on fluctuating force F.
Nevertheless, the analysis simplifies if we neglect the specific correlations between the forces Fα or Fβ and the forces entering
r(q,t ′) or r(q′,t ′′). This simplification can be justified by the following reasoning. The explicit value of the α force is given by

Fα(r(q,t ′)) = Fα

(
r − cq(t − t ′) − c

qo

∫ t ′

t

dt1(t1 − t ′)F(r(q,t1))

)

= Fα

(
r⊥ − cq⊥(t − t ′) + cezt

′ − c

qo

∫ t ′

t

dt1(t1 − t ′)F(r(q,t1))

)
, (30)

where the relation z = ct is used.
If the above-mentioned specific correlation exists, the distance |r(q,t1) − r(q,t ′)| can be estimated by the value c(t1 − t ′) � L0.

Then the integral in Eq. (30) is of the order of (L0/c)2F(r(q,t1)) and is negligible as the quantity quadratic in L0. This estimate
means that the relative value of the last term in Eq. (30) is given by 	q/q0 � 1, where 	q0 is the photon momentum gained due
to fluctuating force during the time L0/c.

As we see, the correlation between Fα(r(q,t ′)) and F(r(q,t1)) is small. Hence the averaging 〈FαFβ〉 can be performed in two
steps. First, we obtain 〈FαFβ〉 considering the arguments of Fα and Fβ to be fixed. Only after that should the averaging of the
forces, entering the arguments, be performed. Following this rule, the term (25) can be written as

φPP ′ = ω2
0

∫ t

0

∫ t

0
dt ′dt ′′

∫
dg ψ(g)g ·

(
p + kt ′

c

q0

)
g ·

(
p′ + k′t ′′

c

q0

)
〈exp{−ig · [r(q,t ′)−r(q′,t ′′)]}〉, (31)

where the expression for fluctuating force, F(r) = ω0∂rn(r),
and the Fourier transform (18) of the correlation func-
tion 〈n(r)n(r′)〉 were used. If P = P ′, the last factor in
Eq. (31) reduces to exp[−ig · ezc(t ′ − t ′′)], which follows from
Eq. (29).

The first-step averaging results in the appearance
of the spectral density ψ(g) in (31). The second-
step averaging results in the appearance of the last

multiplier in Eq. (31), which describes the effect of photon
correlations.

Our previous analysis mostly followed Ref. [18]. The most
important contribution of the present paper is accounting for
the correlation influence [described by the last term in Eq. (31)]
on ϕPP ′ and the scintillation index.

In this connection, it should be noted that in Ref. [18]
the multiplicative approximation for this term [see Eq. (44)
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therein]

〈exp{−g · [r(q,t ′) − r(q′,t ′′)]}〉
≈ 〈exp[−ig · r(q,t ′)]〉〈exp[ig · r(q′,t ′′)]〉 (32)

was used, where the correlation of photon trajectories, r(q,t ′)
and r(q′,t ′′), was completely neglected. This can be a good
approximation if one considers long-distance propagation of
beams. In this case, photons move away from each other and
lose mutual correlations even for a small divergence of the
trajectories.

In what follows, we account for the correlation effect. It is
of great importance at moderate distances, where photons are
still close to each other and are affected by the same turbulent
eddies. The correlated forces induce correlations within the
photon system, resulting in the growth of scintillations. This
has stimulated constant interest in the problem of scintillations
at moderate turbulence.

Further analysis is simplified after integration in Eq. (31)
over the time difference t ′ − t ′′. The presence of the quantity
ezc(t ′ − t ′′) in r(q,t ′) − r(q′,t ′′) [see Eq. (29)] provides this

favorable possibility. Integration of the fast oscillating function
exp[iezgc(t ′ − t ′′)] results in∫ ∞

−∞
d(t ′ − t ′′) exp[iez · gc(t ′ − t ′′)] = 2π

c
δ(gz), (33)

where the lower and upper limits of the integral are replaced
by ∓∞. This approximation is valid for the case of long
propagation time, t � L0/c. Besides that, the substitution
t ′′ = t ′ is used in the slowly varying factor, (p′ + k′t ′′c/q0).

Relation (33) means that only the gx,y components enter
Eq. (31). In particular, the Fourier transform ψ(g) should be
considered as a function of the two-dimensional vector g⊥:

ψ(g) = ψ(
√

g2
x + g2

y). This observation corresponds to the

known Markov approximation [5], where it is assumed that
the index-of-refraction fluctuations are δ-function correlated
in the direction of propagation. In fact, our derivation, based on
the paraxial approximation, supports the validity of the Markov
approach, which, at first glance, may seem to be doubtful.

Using Eqs. (29) and (33), expression (31) is simplified to

φPP ′ = 2πω2
0

c

∫ t

0
dt ′

∫
dgψ(g) g ·

(
p + kt ′

c

q0

)
g ·

(
p′ + k′t ′

c

q0

)
eig · cq−q′ (t−t ′)

×
〈
exp

(
−ig · c

q0

∫ t

t ′
dt1(t1 − t ′){F(r(q,t1)) − F(r(q′,t1))}

)〉
, (34)

where all the vectors have only the x and y components. As we see from Eq. (34), to obtain φPP ′ one needs to calculate the
average value of the exponential function, which is similar to the function in (23). Following the same procedure, this average
can be rewritten as 〈

exp

(
−ig · c

q0

∫ t

t ′
dt1(t1 − t ′){F(r(q,t1)) − F(r(q′,t1))}

)〉

= exp

(
−2πc3

∫ t

t ′
dt1(t1−t ′)2

∫
dg′ψ(g′)(g·g′)2[1−〈e−ig′ ·[r(q,t1)−r(q′,t1)]〉]

)
. (35)

Again, the same function appears in the exponent of the right-hand side of Eq. (35) after substitution of the trajectories (28).
Similar steps can be undertaken many times. In this way, the time hierarchy, 0 < t ′ � t1 · · · � ti � t , is generated. If the
photon-turbulence interaction time, t − ti , is short, the disturbance of the trajectory is small and vanishes when ti → t . In this
case both values, r(q,ti) and r(q′,ti), approach their initial value, r, irrespective of the initial momenta q and q′ [see the conditions
after Eq. (7)]. Therefore we substitute the quantity

1
2 〈{g′ · [r(q,t1) − r(q′,t1)]}2〉 (36)

instead of

1 − 〈exp{−ig′ · [r(q,t1) − r(q′,t1)]}〉, (37)

assuming the exponent in Eq. (37) is small. The linear in g′ term in the expansion of the exponential factor is ignored because of
its zero-value contribution to the integral over g′ in Eq. (35). Then the term (37) reduces to

1

2
〈{g′ · [r(q,t1) − r(q′,t1)]}2〉 ≈ (t − t1)2

2
(cq−q′ · g′)2 + πc3

30
(t − t1)5

∫
dg′′ψ(g′′)(cq−q′ · g′′)2(g′ · g′′)2. (38)

To obtain Eq. (38), the approximate relation,

Fα(r(q,t2)) − Fα(r(q′,t2)) ≈ cq−q′ (t2 − t)∂rFα(r + cq(t2 − t)), (39)

where t1 � t2 � t , was used. This approximation is in the spirit of the previous step, where the turbulence effect was assumed
to be a small perturbation if t2 − t is small. Substitution of Eq. (38) into the right-hand side of Eq. (35) and integration over
variables g′, g′′, and t1 result in

exp

{
− 2.52 × 10−3C2

nl
′
0
−7/3

c3c2
q − q′(t − t ′)5g2

[
1 + C2

nl
′
0
−7/3

c3(t − t ′)3

560
+ cos 2θ

2

(
1 + C2

nl
′
0
−7/3

c3(t − t ′)3

2 × 560

)]}
, (40)
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FIG. 1. Scintillation index of coherent and partially coherent
beams in the atmosphere versus propagation distance z. Dashed
curves correspond to the multiplicative approximation (32) for the
photon correlations; solid curves are obtained within the present pa-
per’s approach [see Eqs. (35)–(40)]. C2

n = 10−13 m−2/3, r0 = 0.01 m,
l0
2π

= 10−3 m, and q0 = 107 m−1. The upper two curves correspond
to the coherent beam.

where l′0 = l0/2π and θ is the angle between the two-
dimensional vectors g and q − q′.

After substitution of (40) into (35), (35) into (34), and
(34) into (25), we calculate 〈I 2(r,t)〉. Many-fold integrations
over the variables q,q′,p,p′,k,k′,θ, and t ′ are performed both
analytically and, employing a computer cluster, numerically.
In the course of integration, we have used the Tatarskii
modification of the refractive index spectrum, which is derived
from the von Kármán form (19) by setting L−1

0 = 0. The results
for σ 2 are shown in Figs. 1–3.

FIG. 2. The same as Fig. 1, but for a weaker turbulence strength:
C2

n = 2.5 × 10−14 m−2/3.

FIG. 3. Scintillation index versus propagation distance z for
different initial radii of the beam: r0 = 0.01, 0.03, 0.05 m. The rest
of the parameters are the same as in Fig. 1.

IV. DISCUSSION

Figures 1–3 can be used to illustrate the importance of
the correlations of different trajectories. To simplify our
argumentations, we consider a coherent laser beam, i.e., the
case with r0 = r1. Two terms in the last set of braces in
Eq. (21) contribute equally to 〈I 2(r,t)〉. Moreover, if one
sets φPP ′ = 0 in Eq. (24), thus ignoring the correlations of
photons with different initial momenta, we obtain 〈I 2(r,t)〉 =
2〈I (r,t)〉2. The scintillation index σ 2 is equal to unity
here.

This physical picture is realized for a long-distance
propagation (t → ∞) when the oscillating factor eigcq−q′ (t−t ′)

confines the effective volume of the integration over g and
q − q′ to zero [see Eq. (34)]. For finite values of t , the
contribution of φPP ′ becomes quite sizable (see Figs. 1–3),
and the values of σ 2 become greater than unity.

There is a positive contribution of the φPP ′ term to the
last exponent in Eq. (24) when the vectors p,k and p′,k′ have
opposite signs and the difference |q − q′| is not too large. The
most favorable conditions are realized when

p = −p′, k = −k′, q = q′. (41)

In this case φPP + 2φPP ′ + φP ′P ′ = 0, and the value of M

is equal to unity and does not depend on the turbulence.
Equations (41) can be interpreted as the “supercorrelation”
conditions or synchronism of four waves under which
the product 〈b†q+k/2bq−k/2b

†
q−k/2bq+k/2〉 ∼ exp[i(ωq+k/2 −

ωq−k/2 + ωq−k/2 − ωq+k/2)t] = 1 does not depend on
time.

The dependence of σ 2 on the initial radius r0 can be
explained as follows. The characteristic value of the initial
momentum, q̃ ∼ √

2/r0, is greater for small r0. Hence the
volume of integration over q − q′ is also greater. At the
same time the corresponding increase of φPP ′ occurs only
for short distances z, where time intervals t are sufficiently
small and the oscillating factor in Eq. (34) is close to unity.
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Therefore, when r0 decreases, there is an increase of σ 2

accompanied by the displacement of the region with enhanced
fluctuations towards small z. This is clearly seen from
Fig. 3.

In a similar way we can explain the considerable difference
in σ 2 found for the plane-wave and spherical-wave models of
radiation in Ref. [35] (their Figs. 1 and 2). It follows from
the above reasoning that this effect arises due to very different
initial q volumes in the two models.

Also, the calculations of σ 2 in Ref. [17], in which a
simplified model of the turbulence was used (see Fig. 1 there),
should be mentioned. The results of Ref. [17] correlate well
with ours.

Comparing the results of the present paper and those based
on the approximation of uncorrelated trajectories (32) (solid
and dashed lines in Figs. 1 and 2, respectively), we see a
more pronounced growth of σ 2 at a moderate turbulence in
the former case. Figures 1–3 illustrate that this holds true for
distances of 1–3 km. We attribute the evident distinction of
the results to the better accuracy when accounting for the
correlations of the photon trajectories. At the same time,
both approaches provide the saturation effect known in the
literature: σ 2 → r2

1 /r2
0 when z → ∞.

The phase diffuser with a short characteristic time (a high-
frequency diffuser) does not change qualitatively the physical
picture described above. At the same time, both approaches
reveal an ability of the diffuser to suppress scintillations, which
is favorable for communication performances.

The effect of the phase diffuser is explained as follows.
The initial phase relief, introduced by the diffuser, varies
in time. The photon trajectories depend on the initial state
of the radiation and varies synchronously with the dif-
fuser state. A “slow” detector integrates the contribution of
these photons. Although the atmosphere stays almost frozen
during the integration time, the diffuser provides a better
averaging of the propagating radiation over the refractive-
index relief. Therefore the fluctuations of the detected signal
decrease.

This is not a unique way to suppress fluctuations. For
example, the authors of Ref. [36] proposed to use asymmetric
optical vortices. The range of weak and moderate turbulence
was studied. Numerical simulations of the beam propagation
showed promising results. It should be emphasized that in this
case the experimental setup does not require a high-frequency
phase diffuser.

V. CONCLUSION

For a long time, specific statistical properties of light
under conditions of moderate turbulence have attracted great
interest from scientists and engineers. As an example, in
the Conclusion of his widely cited paper [22], Dashen
has formulated “the remaining problems” in the physics
of scintillation phenomena. One of these problems is as
follows: “What is the detailed behavior of E (i.e., wave
field) at the boundaries between the unsaturable and sat-
urable regimes and between the fully and partially saturated
regimes?”

Up to now, this problem is still unsolved. The present paper
illustrates our progress towards its solution. The method of the

photon distribution function in the phase space is applied for
the description of laser beam propagation through the turbulent
atmosphere. Whereas the existing reliable analytical solutions
are known only for the limiting cases of weak and strong
turbulence, we present analytical and numerical computer
calculations performed for the most challenging range of the
intermediate turbulence conditions. The scintillation index
σ 2 for such conditions is obtained. It is revealed that the
considerable growth of σ 2 (by two to three times) for moderate
turbulence is due to correlations between photon trajectories. It
is shown that the scintillation index can be essentially reduced
by increasing the source aperture or using a fast phase diffuser.
The applicability of the distribution-function approach for
short distances is analyzed in the Appendix.
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APPENDIX A: APPLICABILITY OF PDF APPROACH
FOR SHORT DISTANCES

Our analysis is based on Eq. (21) obtained within the con-
cept of photon trajectories. To consider photons as particles,
whose density in the (r,q) domain is defined by the distribution
function f (r,q,t), the uncertainty of the momentum q should
be small. The value of the uncertainty can be estimated from
the definition of the distribution function (1) as k̃/2. It follows
from Eq. (14) that close to the source and in the absence of the

diffuser the ratio q̃

k̃/2
∼ 〈q2〉1/2

〈k2/4〉1/2 = (2/r2
0 )1/2

(2/r2
0 )1/2 = 1. Hence in the

vicinity of the source, our calculations of σ 2 are not applicable
if the light is in a coherent state.

The situation changes drastically for a remote detector.
With an increase in the propagation path z, the value of q̃

increases. The corresponding gain of the photon momentum
	q is generated by a random force F. Hence the average value
〈	q〉 is equal to zero, while the nonzero mean-square value is
given by [18]

〈	q2〉 = 0.066π2�(1/6)q2
0 l′0

−1/3
C2

nz. (A1)

In contrast to q̃, the value of k̃ decreases because of the
broadening of the beam. The mean square of the beam radius
is given by [8,18]

R2 = r2
0

2

[
1 + 4z2

q2
0 r2

0 r2
1

+ 8z3T

r2
0

]
, (A2)

where T = 0.558l
−1/3
0 C2

n . When the last term in the square
brackets dominates, the ratio q̃2/(k̃/2)2 can be estimated
as

〈	q2〉R2 ≈ 15q2
0 l

−2/3
0 C4

nz
4, (A3)

where 〈	q2〉 is assumed to be of the order of q̃2, thus ignoring
the square of the initial momentum 2/r2

0 .
Substituting z=103 m, q0 =107 m−1, and l0 =2π×10−3 m

into Eq. (A3), we obtain q̃

k̃/2
∼ 21, which provides the

adequacy of our approach for the whole range of z variations
shown in Figs. 1–3. This range concerns not only coherent but
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also partially coherent beams. For partially coherent beams,
the minimum z can be even smaller than for coherent beams.
This is because of an additional diffuser-caused growth of q̃2,

which is estimated by the value 	q̃2
diffuser ∼ 2/r2

1 , while the
initial value, k̃2/4 ∼ 2/r2

0 , does not depend on the diffuser
effect [see Eq. (14)].

[1] A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli1, R. Prevedel,
Th. Scheidl, F. Tiefenbacher, Th. Jennewein, and A. Zeilinger,
Nat. Phys. 5, 389 (2009).

[2] R. Hughes, J. Nordholt, D. Derkacs, and Ch. Peterson, New J.
Phys. 4, 43 (2002).

[3] J. Bourgoin, E. Meyer-Scott, B. L. Higgins, B. Helou, C. Erven,
H. Hubel, B. Kumar, D. Hudson, I. D’Souza, R. Girard, R.
Laflamme, and T. Jennewein, New J. Phys. 15, 023006 (2013).

[4] A. A. Semenov and W. Vogel, Phys. Rev. A 81, 023835 (2010);
D. Y. Vasylyev, A. Semenov, and W. Vogel, Phys. Rev. Lett.
108, 220501 (2012); V. Usenko, B. Heim, C. Peuntinger, C.
Wittmann, C. Marquardt, G. Leuchs, and R. Filip, New J. Phys.
14, 093048 (2012).

[5] V. I. Tatarskii, The Effects of the Turbulent Atmosphere on
Wave Propagation (National Technical Information Service, US
Department of Commerce, Springfield, VA, 1971).

[6] L. C. Andrews and R. L. Phillips, Laser Beam Propagation
through Random Media (SPIE Press, Bellingham, WA, 1998).

[7] L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam
Scintillation with Applications (SPIE Press, Bellingham, WA,
2001).

[8] R. L. Fante, Proc. IEEE 63, 1669 (1975).
[9] X. Liu, F. Wang, and Y. Cai, Opt. Lett. 39, 3336 (2014).

[10] G. P. Berman, A. A. Chumak, and V. N. Gorshkov, Phys. Rev.
E 76, 056606 (2007).

[11] M. E. Gracheva and A. S. Gurvich, Izv. Vyssh. Uchebn. Zaved.
Radiofiz. 8, 717 (1965); M. E. Gracheva, A. S. Gurvich, and
M. A. Kallistratova, Radiophys. Quantum Electron. (Engl.
Transl.) 13, 40 (1970).

[12] R. L. Fante, Proc. IEEE 68, 1424 (1980).
[13] S. Wang, M. Plonus, and C. Ouyang, Appl. Opt. 18, 1133

(1979).
[14] R. L. Fante, IEEE Trans. Antennas Propag. 25, 266 (1977).
[15] M. Lee, J. Holmes, and J. Kerr, J. Opt. Soc. Am. 67, 1279 (1977).
[16] V. A. Banakh and V. M. Buldakov, Opt. Spektrosk. 55, 707

(1983).
[17] V. A. Banakh, V. M. Buldakov, and V. L. Mironov,

Opt. Spektrosk. 54, 1054 (1983).

[18] G. P. Berman and A. A. Chumak, Phys. Rev. A 74, 013805
(2006).

[19] O. Korotkova, L. C. Andrews, and R. L Phillips, Proc. SPIE
4821, 98 (2002).

[20] O. Korotkova, L. C. Andrews, and R. L Phillips, Opt. Eng. 43,
330 (2004).

[21] F. Wang, X. Liu, and Y. Cai, Prog. Electromagn. Res. 150, 123
(2015).

[22] R. Dashen, J. Math. Phys. 20, 894 (1979).
[23] I. G. Yakushkin, Radiophys. Quantum Electron. (Engl. Transl.)

19, 270 (1976).
[24] A. I. Rarenko, A. A. Tarasenko, and A. A. Chumak, Ukr. Phys.

J. 37, 1577 (1992).
[25] G. P. Berman and A. A. Chumak, Proc. SPIE 6710, 67100M

(2007).
[26] G. P. Berman and A. A. Chumak, Phys. Rev. A 79, 063848

(2009).
[27] O. O. Chumak and E. V. Stolyarov, Phys. Rev. A 88, 013855

(2013).
[28] O. O. Chumak and E. V. Stolyarov, Phys. Rev. A 90, 063832

(2014).
[29] A. A. Tarasenko and A. A. Chumak, Sov. Phys. JETP 46, 327

(1977).
[30] J. Strohbehn and S. Clifford, IEEE Trans. Antennas Propag. 15,

416 (1967).
[31] O. Chumak and N. Sushkova, Ukr. Phys. J. 57, 30 (2012).
[32] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics

(Cambridge University Press, Cambridge, 1995).
[33] Any of the operators n̂ and n̂M affect the state of the field

similarly if the field does not contain constituents with large
wave vectors k (k � k0). In this case the Mandel procedure of
coarse graining is equivalent to our restriction imposed on the k

value.
[34] A. Ya. Polishchuk, M. Zevallos, F. Liu, and R. R. Alfano,

Phys. Rev. E 53, 5523 (1996).
[35] L. C. Andrews and R. L. Phillips, Proc. SPIE 3609, 90 (1999).
[36] G. P. Berman, V. N. Gorshkov, and S. V. Torous, J. Phys. B 44,

055402 (2011).

033821-9

http://dx.doi.org/10.1038/nphys1255
http://dx.doi.org/10.1038/nphys1255
http://dx.doi.org/10.1038/nphys1255
http://dx.doi.org/10.1038/nphys1255
http://dx.doi.org/10.1088/1367-2630/4/1/343
http://dx.doi.org/10.1088/1367-2630/4/1/343
http://dx.doi.org/10.1088/1367-2630/4/1/343
http://dx.doi.org/10.1088/1367-2630/4/1/343
http://dx.doi.org/10.1088/1367-2630/15/2/023006
http://dx.doi.org/10.1088/1367-2630/15/2/023006
http://dx.doi.org/10.1088/1367-2630/15/2/023006
http://dx.doi.org/10.1088/1367-2630/15/2/023006
http://dx.doi.org/10.1103/PhysRevA.81.023835
http://dx.doi.org/10.1103/PhysRevA.81.023835
http://dx.doi.org/10.1103/PhysRevA.81.023835
http://dx.doi.org/10.1103/PhysRevA.81.023835
http://dx.doi.org/10.1103/PhysRevLett.108.220501
http://dx.doi.org/10.1103/PhysRevLett.108.220501
http://dx.doi.org/10.1103/PhysRevLett.108.220501
http://dx.doi.org/10.1103/PhysRevLett.108.220501
http://dx.doi.org/10.1088/1367-2630/14/9/093048
http://dx.doi.org/10.1088/1367-2630/14/9/093048
http://dx.doi.org/10.1088/1367-2630/14/9/093048
http://dx.doi.org/10.1088/1367-2630/14/9/093048
http://dx.doi.org/10.1109/PROC.1975.10035
http://dx.doi.org/10.1109/PROC.1975.10035
http://dx.doi.org/10.1109/PROC.1975.10035
http://dx.doi.org/10.1109/PROC.1975.10035
http://dx.doi.org/10.1364/OL.39.003336
http://dx.doi.org/10.1364/OL.39.003336
http://dx.doi.org/10.1364/OL.39.003336
http://dx.doi.org/10.1364/OL.39.003336
http://dx.doi.org/10.1103/PhysRevE.76.056606
http://dx.doi.org/10.1103/PhysRevE.76.056606
http://dx.doi.org/10.1103/PhysRevE.76.056606
http://dx.doi.org/10.1103/PhysRevE.76.056606
http://dx.doi.org/10.1007/BF01031474
http://dx.doi.org/10.1007/BF01031474
http://dx.doi.org/10.1007/BF01031474
http://dx.doi.org/10.1007/BF01031474
http://dx.doi.org/10.1109/PROC.1980.11882
http://dx.doi.org/10.1109/PROC.1980.11882
http://dx.doi.org/10.1109/PROC.1980.11882
http://dx.doi.org/10.1109/PROC.1980.11882
http://dx.doi.org/10.1364/AO.18.001133
http://dx.doi.org/10.1364/AO.18.001133
http://dx.doi.org/10.1364/AO.18.001133
http://dx.doi.org/10.1364/AO.18.001133
http://dx.doi.org/10.1109/TAP.1977.1141563
http://dx.doi.org/10.1109/TAP.1977.1141563
http://dx.doi.org/10.1109/TAP.1977.1141563
http://dx.doi.org/10.1109/TAP.1977.1141563
http://dx.doi.org/10.1364/JOSA.67.001279
http://dx.doi.org/10.1364/JOSA.67.001279
http://dx.doi.org/10.1364/JOSA.67.001279
http://dx.doi.org/10.1364/JOSA.67.001279
http://dx.doi.org/10.1103/PhysRevA.74.013805
http://dx.doi.org/10.1103/PhysRevA.74.013805
http://dx.doi.org/10.1103/PhysRevA.74.013805
http://dx.doi.org/10.1103/PhysRevA.74.013805
http://dx.doi.org/10.1117/12.452054
http://dx.doi.org/10.1117/12.452054
http://dx.doi.org/10.1117/12.452054
http://dx.doi.org/10.1117/12.452054
http://dx.doi.org/10.1117/1.1636185
http://dx.doi.org/10.1117/1.1636185
http://dx.doi.org/10.1117/1.1636185
http://dx.doi.org/10.1117/1.1636185
http://dx.doi.org/10.2528/PIER15010802
http://dx.doi.org/10.2528/PIER15010802
http://dx.doi.org/10.2528/PIER15010802
http://dx.doi.org/10.2528/PIER15010802
http://dx.doi.org/10.1063/1.524138
http://dx.doi.org/10.1063/1.524138
http://dx.doi.org/10.1063/1.524138
http://dx.doi.org/10.1063/1.524138
http://dx.doi.org/10.1007/BF01034584
http://dx.doi.org/10.1007/BF01034584
http://dx.doi.org/10.1007/BF01034584
http://dx.doi.org/10.1007/BF01034584
http://dx.doi.org/10.1117/12.732641
http://dx.doi.org/10.1117/12.732641
http://dx.doi.org/10.1117/12.732641
http://dx.doi.org/10.1117/12.732641
http://dx.doi.org/10.1103/PhysRevA.79.063848
http://dx.doi.org/10.1103/PhysRevA.79.063848
http://dx.doi.org/10.1103/PhysRevA.79.063848
http://dx.doi.org/10.1103/PhysRevA.79.063848
http://dx.doi.org/10.1103/PhysRevA.88.013855
http://dx.doi.org/10.1103/PhysRevA.88.013855
http://dx.doi.org/10.1103/PhysRevA.88.013855
http://dx.doi.org/10.1103/PhysRevA.88.013855
http://dx.doi.org/10.1103/PhysRevA.90.063832
http://dx.doi.org/10.1103/PhysRevA.90.063832
http://dx.doi.org/10.1103/PhysRevA.90.063832
http://dx.doi.org/10.1103/PhysRevA.90.063832
http://dx.doi.org/10.1109/TAP.1967.1138937
http://dx.doi.org/10.1109/TAP.1967.1138937
http://dx.doi.org/10.1109/TAP.1967.1138937
http://dx.doi.org/10.1109/TAP.1967.1138937
http://dx.doi.org/10.1103/PhysRevE.53.5523
http://dx.doi.org/10.1103/PhysRevE.53.5523
http://dx.doi.org/10.1103/PhysRevE.53.5523
http://dx.doi.org/10.1103/PhysRevE.53.5523
http://dx.doi.org/10.1117/12.351046
http://dx.doi.org/10.1117/12.351046
http://dx.doi.org/10.1117/12.351046
http://dx.doi.org/10.1117/12.351046
http://dx.doi.org/10.1088/0953-4075/44/5/055402
http://dx.doi.org/10.1088/0953-4075/44/5/055402
http://dx.doi.org/10.1088/0953-4075/44/5/055402
http://dx.doi.org/10.1088/0953-4075/44/5/055402



