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Narrowband biphoton generation in the group delay regime
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We study narrowband biphoton generation from spontaneous four-wave mixing with electromagnetically
induced transparency in a laser-cooled atomic ensemble. We compare two formalisms in the interaction and
Heisenberg pictures and find that they agree in the low-gain regime but disagree in the high-gain regime. We
extend both formalisms to account for the nonuniformity of the atomic density and the driving laser fields. We
find that for a fixed optical depth and a weak and far-detuned pump laser beam, the two-photon waveform is
independent of the atomic density distribution. However, the spatial profiles of the two driving laser beams have
significant effects on the biphoton temporal waveform. We predict that waveform shaping in the time domain
can be achieved by controlling the spatial profiles of the driving laser fields.
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I. INTRODUCTION

Entangled photon pairs, termed biphotons, have been stud-
ied extensively for a range of quantum applications, including
quantum information processing, quantum communication,
and quantum cryptography [1,2]. To improve its spectral
brightness, a lot of efforts have been made to generate
narrowband, long coherent biphotons using various methods,
e.g., cavity-assisted spontaneous parametric down conversion
(SPDC) in nonlinear crystals [3–7] and spontaneous four-
wave mixing (SFWM) in atomic systems [8–12]. These
biphotons can be used to produce narrow-band heralded single
photons, as the time origin is established by one of the
paired photons. With the long coherence time ranging from
several hundred nanoseconds to microseconds, the heralded
single-photon waveform can be shaped by an electro-optical
modulator [13]. Their ability to interact with atoms resonantly
has found applications in observing single-photon optical
precursors [14], improving the storage efficiency of optical
quantum memory [15], and coherently controlling absorption
and reemission of single photons in two-level atoms [16].
Other applications include single-photon differential-phase-
shift quantum key distribution [17]. However, external ampli-
tude modulation causes unavoidable loss to the single photons
and also introduces noise. The ideal way to create a desired
biphoton waveform is to start from biphoton generation,
i.e., to control the driving field and the medium. For the
broadband entangled photons generated by SPDC, Valencia
et al. [18] demonstrated shaping the joint spectrum by
controlling the spatial shape of the pump beam, which is the
first spatial-to-spectrum mapping of biphotons. For an SFWM
narrowband biphoton source with electromagnetically induced
transparency (EIT), the two-photon correlation function can be
shaped by periodically modulating the classical driving fields
in the time domain [19,20].

In the literature, there are two formalisms to model the
EIT-assisted SFWM process. One uses the perturbation theory
in the interaction picture, in which the interaction Hamiltonian
describes the four-wave mixing process and determines the
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evolution of the two-photon state vector [21–25]. This gives
a clear picture of the biphoton generation mechanism. The
other is developed in the Heisenberg picture [26–29] with the
evolution of field operators. In all these previous theoretical
models, the atomic density and driving field amplitude are
spatially uniform and thus the effect of their nonuniformity
has not been studied.

Unlike the rectangle-shaped biphoton waveform predicted
previously in the group delay regime [8,25,26], in our
recent experiment [12] we produced a Gaussian-like biphoton
waveform at a large atomic optical depth (OD). This shape
cannot be explained by current theoretical models, and this is
one of our motivations for extending the existing models.

In this paper, we explore the following points. (i) Compar-
ison of the two models: We compare the two formalisms in
the interaction and Heisenberg pictures and show that in the
low-parametric-gain regime they agree well. (ii) Nonunifor-
mity: We extend the existing theories by taking into account
the nonuniformity in the atom distribution, the pump, and
the coupling laser intensity distribution in the longitudinal
direction of the atomic cloud. We show that the profiles
of the pump and coupling laser intensities have significant
effects on the biphoton waveform. (iii) Waveform shaping: By
controlling the spatial profile of the driving field, we can shape
the biphoton waveform in the time domain. On the other hand,
the time-domain waveform of the photon pairs allows us to
retrieve information on the spatial profile of the pump and
coupling laser beams.

The paper is organized as follows: In Sec. II, we describe
the biphoton generation using two approaches: (i) state vector
theory in the interaction picture and (ii) coupled operator
equations in the Heisenberg picture. Section III gives the
numerical results of the models. We first analyze the photon
properties, then show that the two approaches are equivalent
in the low-parametric-gain regime. We then propose to shape
and engineer biphoton temporal waveforms with various
spatial profiles of the driving lasers in Sec. IV. We give our
conclusions in Sec. V.

II. THEORETICAL FRAMEWORK

In this paper, we study EIT-assisted SFWM biphoton
generation in both the interaction and the Heisenberg pictures.
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Extending from previous models, we take into account the
nonuniformity of the atomic density and the spatial profiles of
the driving fields. Although both pictures are equivalent, some
physics insights are clearer in one picture or the other. In the
interaction picture, using perturbation theory, the evolution
of the photon state describes more clearly how biphotons
are generated, but the system loss and gain cannot be fully
accounted for. On the other side, the Heisenberg formalism
provides a more accurate calculation of the experimental co-
incidence counts including multiphoton events and accidental
coincidences, but the two-photon state is not clearly resolved.
We compare the two models by exploring the scenario in
which the atomic density and the intensities of the pump and
coupling lasers are not uniform along the length of the atomic
cloud.

Figure 1 is a schematic of biphoton generation from a
four-level double-� cold atomic medium of length L. The
atoms are identical and prepared in the ground state |1〉. A
pump laser with frequency ωp excites the transition |1〉 → |4〉
with a detuning �p, and a coupling laser on resonance with the
transition |2〉 → |3〉 propagates in the opposite direction of the
pump laser. Phase-matched, counter-propagating Stokes (ωs)
and anti-Stokes (ωas) photon pairs are spontaneously generated
following the SFWM path. The coupling laser renders the EIT
window for the resonant anti-Stokes photons, which travel
at a slow group velocity [30,31]. The Stokes photons travel
in the atomic cloud nearly at the speed of light in vacuum
and with a negligible Raman gain. The counter-propagating
pump-coupling beams are aligned with a small angle θ

with respect to the biphoton generation longitudinal z axis.
Assuming that the pump laser is weak and far detuned from the
|1〉 → |4〉 transition, the majority of the atoms are in the ground
state |1〉.
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FIG. 1. Schematic of four-wave mixing to generate biphotons. (a)
Optical configuration. (b) Atomic energy level diagram. The pump
laser couples the transition |1〉 → |4〉 with a detuning �p , while
the coupling laser is on resonance with the transition |2〉 → |3〉.
Paired Stokes and anti-Stokes photons are spontaneously produced
following the SFWM path.

A. Interaction picture

Here we study biphoton generation in the interaction picture
with a focus on the evolution of the two-photon state. We
extend the previous theory of Du et al. [25] to take into account
the spatial nonuniformity of the nonlinear interaction. With
the z direction being the longitudinal direction of the biphoton
generation as shown in Fig. 1, the electric field in this direction
is given by E(z,t) = [E(+)(z,t) + E(−)(z,t)]/2, where E(±)

are positive and negative frequency parts. Assuming that
the counter-propagating pump and coupling laser beams are
undepleted in the atomic medium, their projections on the
longitudinal z axis are described as

E(+)
p (z,t) =Ep(z)ei(−kpz cos θ−ωpt),

E(+)
c (z,t) =Ec(z)ei(kcz cos θ−ωct),

(1)

where kp (kc) is the wave number of the pump (coupling)
laser field. We treat the single-transverse-mode Stokes and
anti-Stokes fields as quantized operators:

Ê(+)
s (z,t) =

√
2�ωs0

cε0A
âs(z,t)

= 1√
2π

√
2�ωs0

cε0A

∫
dωsâs(ωs)e

i[− ∫ z

0 ks (z′)dz′−ωs t],

(2)

Ê(+)
as (z,t) =

√
2�ωas0

cε0A
âas(z,t)

= 1√
2π

√
2�ωas0

cε0A

∫
dωasâas(ωas)e

i[
∫ z

0 kas(z′)dz′−ωast].

Here c is the speed of light in vacuum, ε0 is the vacuum
permittivity, A is the single-mode cross-sectional area, and
ωas0 (ωs0) is the central frequency of the anti-Stokes (Stokes)
photon. ks(z′) and kas(z′) are the wave vectors of the Stokes
and anti-Stokes fields inside the atomic medium, respectively.
âs(ωs) [âas(ωas)] annihilates a Stokes (anti-Stokes) photon of
frequency ωs (ωas), and it satisfies the commutation relation

[âs(ω),â†
s (ω′)] = [âas(ω),â†

as(ω
′)] = δ(ω − ω′). (3)

The interaction Hamiltonian that describes the SFWM
process is

ĤI = ε0A

4

∫ L
2

− L
2

dz χ (3)(z)[E(+)
p (z,t)E(+)

c (z,t)

× Ê(−)
as (z,t)Ê(−)

s (z,t)] + H.c., (4)

where χ (3)(z) is the third-order nonlinear susceptibility and
is given in Eq. (59) in Sec. III. E(−)

s (z,t) and E(−)
as (z,t)

are the Hermitian conjugates of the Stokes and anti-Stokes
fields [Eq. (2)], respectively. Substituting the electric fields in
Eqs. (1) and (2) into Eq. (4) gives

ĤI = �
√

ωs0ωas0

4πc

∫
dωsdwas

∫ L
2

− L
2

dz χ (3)(z)Ep(z)Ec(z)

×e−i
∫ z

0 �k(z′)dz′
â†

as(ωas)â
†
s (ωs)e

−i(ωp+ωc−ωs−ωas)t + H.c.,

(5)
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where

�k(z′) ≡ kas(z
′) − ks(z

′) − (kc − kp) cos θ (6)

is the phase-mismatching term in the atomic cloud. When
�k(z′) = 0, �kas + �ks = �kc + �kp, the phase-match condition
holds perfectly.

The two-photon state |
〉 can be computed in the first-order
perturbation theory as

|
〉 = − i

�

∫ ∞

−∞
ĤI |0〉 dt. (7)

Substituting Eq. (5) into Eq. (7) and integrating over t gives

|
〉 =
√

ωs0ωas0

2ic

∫
dωas

∫ L
2

− L
2

dz[χ (3)(z)Ep(z)Ec(z)

× e−i
∫ z

0 �k(z′)dz′
â†

as(ωas)â
†
s (ωp + ωc − ωas)|0〉]. (8)

Note that from Eq. (7) to Eq. (8), we have made use
of the time integral,

∫ ∞
−∞ e−i(ωp+ωc−ωs−ωas)t dt = 2πδ(ωp +

ωc − ωs − ωas), which expresses energy conservation of the

four-wave mixing process and leads to the frequency entan-
glement of the two-photon state.

In our setup in Fig. 1, we neglect the free space propagation
(which only causes time shift in measurements) and place the
Stokes photon detector Ds at z = −L/2 and the anti-Stokes
photon detector Das at z = L/2. The annihilation operators at
these two boundaries are

âs(t) = 1√
2π

∫
dωâs(ω)ei

∫ L
2

0 ks (−z′)dz′−iωt ,

âas(t) = 1√
2π

∫
dωâas(ω)ei

∫ L
2

0 kas(z′)dz′−iωt .

(9)

The two-photon Glauber correlation function can be com-
puted from

G(2)(ts,tas) = 〈
|â†
as(tas)â

†
s (ts)âs(ts)âas(tas)|
〉

= |〈0|âs(ts)âas(tas)|
〉|2
≡ |
(ts ,tas)|2, (10)

where 
(ts ,tas) is the Stokes–anti-Stokes biphoton amplitude.
Substituting Eqs. (8) and (9) into Eq. (10), the biphoton
amplitude becomes


(ts ,tas) =
√

ωs0ωas0

i4πc

∫
dωasdω′

sdω′
as

∫ L
2

− L
2

dz{χ (3)(z)Ep(z)Ec(z)e−i
∫ z

0 �k(z′)dz′
ei

∫ L
2

0 [ks (−z′)+kas(z′)]dz′
e−iω′

s ts−iω′
astas

×〈0|âs(ω
′
s)âas(ω

′
as)â

†
as(ωas)â

†
s (ωp + ωc − ωas)|0〉}. (11)

Using the commutation relation of Eq. (3), we have 〈0|âs(ω′
s)âas(ω′

as)â
†
as(ωas)â

†
s (ωp + ωc − ωas)|0〉 = δ(ω′

s − ωp − ωc +
ωas)δ(ω′

as − ωas). Integrating over dω′
s and dω′

as, the biphoton amplitude is now


(ts ,tas) =
√

ωs0ωas0

i4πc

∫
dωas

∫ L
2

− L
2

dz{χ (3)(z)Ep(z)Ec(z)e−i
∫ z

0 �k(z′)dz′
ei

∫ L
2

0 [ks (−z′)+kas(z′)]dz′
e−i(ωp+ωc)ts−iωasτ }, (12)

where τ ≡ tas − ts .
The wave numbers of the Stokes and anti-Stokes photons

can be described as

ks(z) =ωs0

c

√
1 + χs(z,ωs0 − � ),

kas(z) =ωas0

c

√
1 + χas(z,ωas0 + � ),

(13)

where ωs0 (ωas0) is the Stokes (anti-Stokes) photon central
frequency, and −� (� ) is the Stokes (anti-Stokes) fre-
quency detuning. χs(z,ωs0 − � ) and χas(z,ωas0 + � ), given
in Sec. III [Eqs. (56) and (57)], are the linear susceptibilities
of the Stokes and anti-Stokes fields, respectively. Note that ks

and kas are also functions of � through χs(z,ωs0 − � ) and
χas(z,ωas0 + � ). Making use of ωp + ωc = ωs0 + ωas0, we
can rewrite Eq. (12) as


(ts ,tas) = ψ(τ )e−i(ωas0tas+ωs0ts ), (14)

where the biphoton relative wave amplitude is given by

ψ(τ ) ≡
√

ωs0ωas0

i4πc

∫
d�F (� )Q(� )e−i�τ . (15)

Here

F (� ) ≡
∫ L

2

− L
2

dzχ (3)(z)Ep(z)Ec(z)e−i
∫ z

0 �k(z′)dz′
, (16)

Q(� ) = ei
∫ L

2
0 [ks (−z′)+kas(z′)]dz′

. (17)

1. No z dependence

If the atomic cloud is homogeneous, the pump and coupling
lasers have uniform electric fields in the atomic cloud, Eq. (16)
can be computed analytically, and the result is

F (� ) = Lχ (3)(� )EpEcsinc

(
�kL

2

)
, (18)

where �k = kas − ks − (kc − kp) cos θ is a function of �

only. The biphoton relative wave function ψ(τ ) is now

ψ(τ ) =
√

ωs0ωas0

i4πc
LEpEc

∫
d� χ (3)(� ) sinc

(
�kL

2

)
× ei(ks+kas)L/2e−i�τ . (19)

Here ks and kas are given by Eq. (13). As the first-order
susceptibilities χs and χas have no z dependence, ks and kas
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are functions of � only, independent of z. The expression of
the biphoton amplitude agrees with the previous work by Du
et al. [25].

For a weak pump laser that is far detuned, χs ≈ 0 and
�k depends on the group velocity of anti-Stokes photons Vg

as �k ≈ �/Vg . In this case, Eq. (19) is proportional to the
rectangular function �(τ ; 0,L/Vg), which ranges from τ =
0 to L/Vg [25]. Physically, this rectangular waveform can
be explained as follows [25,32]: the Stokes and anti-Stokes
photons are always produced in pairs by the same atom in
the atomic cloud. In our experimental setup as illustrated in
Fig. 1, when the photon pairs are produced at the surface
z = L/2, an anti-Stokes photon does not need to go through
the atomic medium to arrive at the anti-Stokes detector Das.
For a Stokes photon, χs ≈ 0 and ks is approximately the wave
vector in vacuum. Therefore, the Stokes photon travels in the
atomic medium at nearly the same velocity as in vacuum. As
the length of the atomic medium is very short, the travel time
to reach detector Ds is negligible. As such, both Stokes and
anti-Stokes detectors register a photon almost simultaneously.
When the photon pairs are produced at the other surface, z =
−L/2, an anti-Stokes photon has to go through the medium at
group velocity Vg to reach detector Das, while a Stokes photon
does not have to travel through the medium in order to reach
detector Ds . After Ds registers the Stokes photon, a delay
τg = L/Vg later, the anti-Stokes photon reaches detector Das.
When photon pairs are produced between −L/2 and L/2, the
delay time is between 0 and τg . As every atom in the cloud has
the same third-order susceptibility and experiences the same
pump and coupling laser fields, the probability of producing
the photon pairs at every point in the atomic medium is the
same. This results in a rectangular waveform.

2. The atomic density is not uniform

Let us consider the case where the atoms are not distributed
uniformly along the longitudinal direction. Here we limit the
discussion to cases where the atomic density varies with the
constraint that the OD is fixed. Once an experimental setup is
complete, the OD is a fixed number and the atomic density can
be inferred through the OD. We are also particularly interested
in the low-parametric-gain regime where the pump laser is
weak and far detuned as illustrated in Fig. 1.

The atomic density is described as N (z) = N0fN (z), where
N0 is the mean atomic density and fN (z) is the atomic density
profile function (

∫ L/2
−L/2 fN (z)dz = L). The optical depth is

given as OD = ∫ L/2
−L/2 N (z)σ13dz = N0σ13L, where σ13 is the

on-resonance absorption cross section at the anti-Stokes
transition. The profile function fN (z) appears in both the linear
and the third-order nonlinear susceptibilities [Eqs. (56)–(59)].
Write χas(z) = χ̄asfN (z) and χ (3)(z) = χ̄ (3)fN (z), with χ̄as and
χ̄ (3) being the parts that are independent of z; from Eq. (16)
we have

F (� ) = χ̄ (3)EpEc

∫ L
2

− L
2

dzfN (z)e−i
∫ z

0 �k(z′)dz′
. (20)

When the pump laser is weak and far detuned, the Stokes
field is weak and χs ≈ 0, the phase-matching term �k(z′) ≈
�̄kfN (z′), with �̄k defined as �̄k ≡ ωas0/(2c) χ̄as, which does

not vary with z. Equation (20) becomes

F (� ) = χ̄ (3)EpEc

∫ L
2

− L
2

dzG′(z)e−i�̄kG(z), (21)

where

G(z) ≡
∫ z

0
fN (z′)dz′ (22)

and G′(z) is its derivative. After performing the integration
on z in Eq. (21), taking into account that the OD is fixed
(or

∫ L/2
−L/2 fN (z)dz = L), and ignoring the vacuum phase-

mismatching term [(�k)vacuum ≈ 0], we have

F (� ) =χ̄ (3)EpEcL sinc

(
�̄kL

2

)
ei�̄k(L/2−β),

Q(� ) =ei(ks0+kas0)L/2ei�̄kβ,

(23)

where β ≡ ∫ L/2
0 fN (z′)dz′. Note that by substituting Eq. (23)

into Eq. (15), we recover Eq. (19), which describes the case
when the atomic density is uniform.

Let us try to understand intuitively why the biphoton
waveform is independent of the atomic distribution. The
biphoton waveform depends on two factors: (i) the probability
of biphoton generation by atoms in the atomic cloud and (ii) the
time required for the photons to propagate through the atomic
cloud to the detector. When the atomic distribution changes
from uniform to nonuniform with a distribution, the probability
of emitting photon pairs should follow this distribution. That
is, in space where there are more atoms, the probability of
emitting photons pairs increases. At the same time, the group
velocity in this densely populated space decreases and thus
photons need more time to travel through this space to reach
the detector. As the coincidence counting rate is in fact the
probability of generating photon pairs divided by the time for
the photons to reach the detector, the effect of longer travel
time washes out that of the higher probability density. As a
result, the biphoton waveform is not sensitive to the atomic
density distribution profile.

Note that the above discussion is valid only when (i) the
atomic density varies in the longitudinal direction with the
constraint that the OD is fixed, and (ii) the pump laser is
weak and far detuned. Both conditions are of interest for
our ongoing experiments. If (i) is not satisfied but (ii) is,
our numerical analysis shows that the waveform will still
be rectangle-like as in the case of a uniform atomic density.
But the group delay time is changed, as it is determined by
τg = (2γ13/|�2

c)OD [25].

3. The pump laser has a z profile

If the pump laser has a nonuniform z profile, namely,
Ep(z) = Epfp(z), the coupling laser has a uniform profile,
and the atomic cloud is homogeneous, Eq. (16) becomes

F (� ) = EpEcχ
(3)(� )

∫ L
2

− L
2

dzfp(z)e−i
∫ z

0 �k(z′)dz′
. (24)

Here χ (3)(� ) does not depend on the pump profile [see
Eq. (59)]. When the pump laser is weak and far detuned, the
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linear susceptibility of the Stokes field χs ≈ 0, and

�k(z′) ≈ �

Vg

, (25)

where Vg is the group velocity of the anti-Stokes photons. Now
Eq. (17) can be approximated as

Q(� ) ≈ ei(ks0+kas0) L
2 ei�L/(2Vg ), (26)

where ks0 = ωs0/c is the central wave number of the Stokes
photons and kas0 = ωas0/c is the central wave number of the
anti-Stokes photons. Equation (24), at the same time, can be
approximated by

F (� ) ≈ χ (3)EpEc

∫ L
2

− L
2

dzfp(z)e−i�z/Vg . (27)

Substituting Eqs. (26) and (27) into Eq. (12) results in

ψ(τ ) ≈
√

ωs0ωas0

i4πc
EpEce

i(ks0+kas0) L
2

×
∫ L

2

− L
2

dzfp(z)χ̃ (3)

(
τ + z

Vg

− L

2Vg

)
. (28)

Here

χ̃ (3)

(
τ + z

Vg

− L

2Vg

)
≡

∫
d� χ (3)(� )e−i� (τ+ z

Vg
− L

2Vg
)
.

(29)
With the change of integration variable from z to t as t = τ +
z/Vg − L/(2Vg), integration in the space domain in Eq. (28)
changes to integration in the time domain:

ψ(τ ) =
√

ωs0ωas0

i4πc
EpEcVge

i(ks0+kas0) L
2

×
∫ τ

τ− L
Vg

dtfp

(
L

2
+ Vg(t − τ )

)
χ̃ (3)(t). (30)

This is a convolution of the pump laser profile in the space
domain fp(z) and the third-order susceptibility in the time
domain. In the group delay regime where the EIT window is
much narrower than the χ (3) spectrum, we can approximate
χ (3)(� ) � χ (3)(0) in the integral, (29). Then Eq. (30) reduces
to

ψ(τ ) =
√

ωs0ωas0

i2c
EpEcχ

(3)(0)Vge
i(ks0+kas0) L

2 fp

(
L

2
− Vgτ

)
.

(31)

The argument in function fp(L
2 − Vgτ ) suggests that the space-

domain function fp(z) is mapped to the time-domain function
ψ(τ ) scaled with the anti-Stokes group delay. Note that if the
space-domain function fp(z) is a rectangular function, that is,
when the pump power is uniform, we will have a time-domain
rectangular ψ(τ ).

The assumption that �k can be approximated by Eq. (25)
is valid when the loss in the medium is negligible. To account
for the loss, we have to include an imaginary part α to the
anti-Stokes wave number as kas ≈ kas0 + �/Vg + iα. This
imaginary part will then appear in Q(� ) as an exponential
decay factor, exp (−αL/2).

4. The coupling laser has a z profile

If the coupling laser has a nonuniform profile in the z

direction, the Rabi frequency, �c(z) ∝ Ec(z), depends on z.
As a result, the linear and third-order responses of the atomic
cloud depend on z [see Eqs. (56)–(59)], as well as the wave
vectors. The analytical solution is too complicated. We discuss
the numerical results in Sec. III.

B. Heisenberg picture

Now we turn to the Heisenberg picture where the vacuum-
state vector is time invariant and the system is described by
the evolution of the Stokes and anti-Stokes field operators.
The coupling of the Stokes and anti-Stokes fields to the
environment is included through Langevin force operators.
In this picture, the space- and time-dependent Stokes and
anti-Stokes field operators can be expressed as

E(+)
s (z,t) =

√
2�ωs0

cε0A
âs(z,t)e

i(−ks0z−ωs0t),

E(+)
as (z,t) =

√
2�ωas0

cε0A
âas(z,t)e

i(kas0z−ωas0t).

(32)

The slowly varying envelope field operators âs(z,t) and
âas(z,t) in the time domain are related to the frequency-
domain operators âs(z, − � ) and âas(z,� ) through a Fourier
transform,

âs(z,t) = 1√
2π

∫
d� âs(z,� )e−i� t ,

âas(z,t) = 1√
2π

∫
d� âas(z,� )e−i� t ,

(33)

which is governed by the coupled Heisenberg-Langevin
equations under the slowly varying envelope approximation,

∂âas(z,� )

∂z
+

(
αas − i

�k0

2

)
âas(z,� ) − κasâ

†
s (z, − � ) = F̂as,

∂â
†
s (z,−� )

∂z
+

(
gs + i

�k0

2

)
â†

s (z,−� ) − κsâas(z,� ) = F̂ †
s .

(34)

Here

αas(z,� ) = − iωas

2c
χas(z,ωas0 + � ),

gs(z,� ) = − iωs

2c
χ∗

s (z,ωs0 − � ),

κas(z,� ) = iωas

2c
χ (3)

as (z,ωas0 + � )Ep(z)Ec(z),

κs(z,� ) = iωs

2c
χ (3)∗

s (z,ωs0 − � )E∗
p(z)E∗

c (z),

(35)

and Fas and F
†
s are the contributions from the Langevin noises.

They are given by

F̂as = βas
21f̂σ

†
21

+ βas
24f̂σ

†
24

+ βas
31f̂σ

†
31

+ βas
34f̂σ

†
34
,

F̂ †
s = βs

21f̂σ
†
21

+ βs
24f̂σ

†
24

+ βs
31f̂σ

†
31

+ βs
34f̂σ

†
34
.

(36)
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Here f̂
α
†
i

are Langevin force operators, and βas
αi

and βs
αi

(αi =
21,24,31,34) are the noise coefficients. Detailed expressions
for the noise coefficients are given in the Appendix.

�k0 ≡ kas0 − ks0 − (kc − kp) cos θ is the phase-
mismatching term in vacuum. The expressions
for susceptibilities χas(z,ωas0 + � ), χs(z,ωs0 − � ),
χ (3)

as (z,ωas0 + � ), and χ (3)
s (z,ωs0 − � ) are given in Sec. III

[Eqs. (56) to (59)]. Defining l ≡ L/2, we have the following
boundary conditions (vacuum at z = ±l) for the coupled
differential equations (34):

[âs(l,� ),â†
s (l,� ′)] = [âas(−l,� ),â†

as(−l,� ′)]

= δ(� − � ′), (37)

〈â†
s (l,� )âs(l,� )〉 = 〈â†

as(−l,� )âas(−l,� )〉 = 0. (38)

As shown in the Appendix, the general solution to Eqs. (34)
at the output surface can be written as(

âas(l,� )

â
†
s (−l, − � )

)
=

(
A(� ) B(� )

C(� ) D(� )

)(
âas(−l,� )

â
†
s (l, − � )

)

+
∑
αi

∫ l

−l

dz

(
Pαi

Qαi

)
f̂

α
†
i
. (39)

Pαi
and Qαi

(αi = 21, 24, 31, 34) are functions of z and � and
contain contributions from Langevin noises (see the Appendix
for their expressions).

The Glauber correlation function can be calculated from

G(2)
s,as(τ ) ≡ 〈â†

as(l,ts + τ )â†
s (−l,ts)âs(−l,ts)âas(l,ts + τ )〉

= |ψ(τ )|2 + RasRs. (40)

Here the Stokes and anti-Stokes two-photon relative wave
amplitude on the output surface (z = ±l) is

ψ(τ ≡ tas − ts)

≡ 〈âs(−l,ts)âas(l,tas)〉

=
∫

d�

2π
e−i�τ

⎡⎣B(� )D∗(� ) +
∑
αi ,αj

∫ l

−l

dzQ∗
αi

D
αi,α

†
j
Pαj

⎤⎦,

(41)

where D
αi,α

†
j

are diffusion coefficients (see the Appendix for

details). The generation rates of the Stokes photons and anti-
Stokes photons are given by

Rs ≡ 〈â†
s (−l,ts)âs(−l,ts)〉

=
∫

d�

2π

⎛⎝|C(� )|2 +
∑
αi ,αj

∫ l

−l

dz Qαi
D

α
†
i ,αj

Q∗
αj

⎞⎠,

(42)
Ras ≡ 〈â†

as(l,tas)âas(l,tas)〉

=
∫

d�

2π

⎛⎝|B(� )|2 +
∑
αi ,αj

∫ l

−l

dz P ∗
αi

D
αi,α

†
j
Pαj

⎞⎠,

respectively. The RasRs term in Eq. (40) results from accidental
coincidence between uncorrelated photons because the photon
pairs are produced stochastically and the time separation be-
tween different pairs is unpredictable. The detailed derivation
is given in the Appendix.

The photon pair generation rate can be computed as

R =
∫

|ψ(τ )|2dτ

=
∫

d�

2π

∣∣∣∣∣∣B(� )D∗(� ) +
∑
αi ,αj

∫ l

−l

dz Q∗
αi

D
αi,α

†
j
Pαj

∣∣∣∣∣∣
2

.

(43)

This is the area under the Stokes–anti-Stokes correlation
function minus the uncorrelated background.

Note that we can also define anti-Stokes and Stokes
biphoton amplitude as

ψ(τ )

≡ 〈âas(l,tas)âs(−l,ts)〉

=
∫

d�

2π
e−i�τ

⎡⎣A(� )C∗(� ) +
∑
αi ,αj

∫ l

−l

dzPαi
D

α
†
i ,αj

Q∗
αj

⎤⎦.

(44)

With the contribution from Langevin noise, Eqs (41) and (44)
should give the same results numerically. This has been
verified by our numerical calculations for a wide range of
parameters. Note that when the pump is weak and far detuned,
the majority of the atomic population is in the ground state.
The diffusion coefficients D

αi,α
†
j
, which appear in Eq. (41), are

very small, as they only depend on the excited-state population
(see the Appendix for details). This makes the contribution
to Eq. (41) from Langevin noise negligible. However, the
diffusion coefficients D

α
†
i ,αj

, which appear in Eq. (44), are
large, as they also depend on the ground-state population. As
a result, the contribution from Langevin noise to Eq. (44) is
large. Therefore in the following discussion, for convenience,
we take the following approximation to analyze the bphoton
temporal wave function:

ψ(τ ) �
∫

d�

2π
B(� )D∗(� )e−i�τ . (45)

The normalized cross-correlation function of Stokes–anti-
Stokes photons is

g(2)
s,as(τ ) ≡ 〈â†

as(l,ts + τ )â†
s (−l,ts)âs(−l,ts)âas(l,ts + τ )〉

〈â†
as(l,ts + τ )âas(l,ts + τ )〉〈â†

s (−l,ts)âs(−l,ts)〉

= G(2)
s,as(τ )

RasRs

= 1 + |ψ(τ )|2
RasRs

. (46)
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The normalized autocorrelation function of the anti-Stokes photons is

g(2)
as,as(τ ) = 〈â†

as(l,0)â†
as(l,τ )âas(l,τ )âas(l,0)〉

〈â†
as(l,0)âas(l,0)〉〈â†

as(l,τ )âas(l,τ )〉

=
∣∣ ∫ d�

2π
e−i�τ

(|B(� )|2 + ∑
αi ,αj

∫ l

−l
dzP ∗

αi
D

αi,α
†
j
Pαj

)∣∣2[ ∫
d�
2π

(|B(� )|2 + ∑
αi ,αj

∫ l

−l
dzP ∗

αi
D

αi,α
†
j
Pαj

)]2 + 1, (47)

and that of the Stokes photons is

g(2)
s,s (τ ) = 〈â†

s (l,0)â†
s (l,τ )âs(l,τ )âs(l,0)〉

〈â†
s (l,0)âs(l,0)〉〈â†

s (l,τ )âs(l,τ )〉

=
∣∣ ∫ d�

2π
e−i�τ

(|C(� )|2 + ∑
αi ,αj

∫ l

−l
dzQαi

D
α
†
i ,αj

Q∗
αj

)∣∣2[ ∫
d�
2π

(|C(� )|2 + ∑
αi ,αj

∫ l

−l
dzQαi

D
α
†
i ,αj

Q∗
αj

)]2 + 1. (48)

It is clear that Eqs. (47) and (48) are the autocorrelation
functions for multimode chaotic light sources with g(2)

as,as(0) =
g(2)

s,s (0) = 2. For classical light, there is the Cauchy-Schwarz

inequality [g(2)
s,as(τ )]

2
/[g(2)

s,s (0)g(2)
as,as(0)] � 1 [33]. Therefore vi-

olation of the Cauchy-Schwarz inequality is a measure of the
nonclassical property of the biphoton source, which requires
[g(2)

s,as(τ )]max > 2.

No z dependence

When the atomic cloud is homogeneous, the pump and
coupling laser beams have uniform intensities in the atomic
cloud; i.e., when N (z) = N0, Ep(z) = Ep, and Ec(z) = Ec,
there will be no z dependence for αas, gs , κas, or κs as well in
Eq. (34). In this case the coupled equation, (34), can be solved
analytically. The result is

B(� ) = 2κas

q + Q coth(lQ)
, (49)

D(� ) = Q exp[(gs + αas)l]

q sinh(lQ) + Q cosh(lQ)
. (50)

Here q ≡ αas − gs − i�k0, which depends on the linear
response of the medium, and Q ≡

√
q2 + 4κsκas. Note that

αas, gs , κas, and κs are still functions of � . Here we did not
include the contribution from the Langevin operators. The
reason is that we limit our discussion to a weak and far-detuned
pumping and therefore the majority of the atomic population is
in the ground state. In this case the contribution from Langevin
noise operators to B(� ) and D(� ) is very small. This is
confirmed by our numerical analysis. Please see the Appendix
for a detailed discussion.

In the limit of low parametric gain where 4κsκas � q2,
Eqs. (49) and (50) reduce to

B(� ) = 2κas

q[1 + coth(ql)]
(51)

and

D(� ) = e(2gs+i�k0)l , (52)

respectively. To make comparisons with the result in the
interaction picture, we need to write q and gs in terms of

the Stokes and anti-Stokes wave numbers in the medium (ks

and kas). The anti-Stokes wave number in the medium is kas ≈
ωas0/c (1 + χas/2) = kas0 + �kas, with �kas ≡ ωas0χas/(2c),
and the Stokes wave number in the medium is ks ≈
ωs/c (1 + χs/2) = ks0 + �ks , with �ks ≡ ωs0χs/(2c). Then
q ≈ −i(�kas − �k∗

s + �k0) and

B(� )D∗(� ) = Lκassinc[(�kas − �k∗
s + �k0)l]

× ei(�kas−�k∗
s +2�ks )l . (53)

If the imaginary part of �ks is small, or the Raman gain is
small, �k∗

s ≈ �ks . The product B(� )D∗(� ) becomes

B(� )D∗(� ) = Lκassinc((�kas − �ks + �k0)l)

× ei(�kas+�ks )l . (54)

The argument inside the “sinc” function can be rewritten as
�kas − �ks + �k0 ≡ �k. The biphoton wave function is now

ψ(τ ) = − ωas0

i4πc
EpEcLe−i(kas0+ks0)L/2

×
∫

d�χ (3)
as (� )sinc(�kL/2)ei(kas+ks )L/2e−i�τ ,

(55)

which is consistent with the biphoton relative wave function
in Eq. (19) in the interaction picture.

III. NUMERICAL RESULTS

We take the 85Rb cold-atomic ensemble for numerical
simulations. The relevant atomic energy levels involved are
|1〉 = |5S1/2,F = 2〉, |2〉 = |5S1/2,F = 3〉, |3〉 = |5P1/2,F =
3〉, and |4〉 = |5P3/2,F = 3〉. The pump laser is detuned by
�p = 2π × 150 MHz. The atomic medium has a length
L = 2 cm.

We work in the ground-state approximation where the field
of the pump laser is weak and far detuned from the |1〉 → |4〉
transition so that most of the atomic population is in the ground
state. The linear and third-order susceptibilities of the Stokes
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and anti-Stokes fields are [21,28,29]

χs(z,ωs0 − � )

= N (z)|μ24|2|�p(z)|2(� − iγ13)/(ε0�)

(�2
p + γ 2

14)[|�c(z)|2 − 4(� − iγ12)(� − iγ13)]
,

(56)

χas(z,ωas0 + � ) = 4N (z)|μ13|2(� + iγ12)/(ε0�)

|�c(z)|2 − 4(� + iγ12)(� + iγ13)
,

(57)

χ (3)
s (z,ωs0 − � )

= N (z)μ13μ24μ
∗
14μ

∗
23/(ε0�

3)

(�p + iγ14)[|�c(z)|2 − 4(� − iγ12)(� − iγ13)]
,

(58)

χ (3)
as (z,ωas0 + � )

= N (z)μ13μ24μ
∗
14μ

∗
23/(ε0�

3)

(�p + iγ14)[|�c(z)|2 − 4(� + iγ12)(� + iγ13)]
.

(59)

Here, N (z) = N0fN (z) is the MOT atomic density, μij is
the dipole moment for the |i〉 to |j 〉 transition, �p(z) =
�pfp(z) = μ41Ep(z)/� is the Rabi frequency of the pump
laser field, and �c(z) = �cfc(z) = μ32Ec(z)/� is the Rabi
frequency of the coupling laser field. γij is the dephasing
rate between |i〉 and |j 〉. As the natural linewidth of 85Rb
atoms is � = 2π × 6 MHz, we have γ13 = γ14 = γ23 = �/2.
For simulation, we take the ground-state dephasing rate
γ12 = 0.01γ13. Other parameters are OD = N0σ13L = 150,
�p = 2π × 1.2 MHz, and �c = 2π × 12 MHz, unless they
are specified.

Note that in calculating the Stokes–anti-Stokes biphoton
wave function in the interaction picture, we take χ (3)(� ) =
χ (3)

as (ωas0 + � ) = χ (3)
s (ωs0 + � ).

A. Photon properties

In Sec. II B, we proved that both the interaction and the
Heisenberg pictures give the same biphoton waveform, char-
acterized by ψ(τ ) when there is no z dependence of the atomic
density and the driving laser fields. The biphoton waveform
is determined by two parts, F (� ) and Q(� ). F (� ) involves
the nonlinear response χ (3) and the phase-mismatching effect,
while Q(� ) implies the linear propagation effect in the atomic
medium. In the expression of χ (3), the term [|�c(z)|2 −
4(� + iγ12)(� + iγ13)] in the denominator can be rewrit-
ten as (−1/4)[(� − �e/2 + iγe)(� + �e/2 + iγe)], where
�e ≡

√
|�c|2 − (γ13 − γ12)2 is the effective Rabi frequency,

and γe ≡ (γ12 + γ13)/2 is the effective dephasing rate. It can
be seen from the rewritten term that there are two resonances,
� = ±�e/2, with the linewidth determined by 2γe. Inside
F (� ), there is also the term sinc(�kL/2), and its bandwidth
is determined by the group delay time, τg , as �ωg ≡ (2π ×
0.88)/τg; here τg = L/Vg � (2γ13OD)/|�c|2 [25]. Using our
simulation parameters, τg = 970 ns. For Q(� ), which deter-
mines the EIT transmission, its bandwidth can be calculated
from Eqs. (56) and (57). The effective value is 1.62 MHz with
the same parameters. It gives �ωtr � |�c|2/(2γ13

√
OD).
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FIG. 2. |κas(� )L|2, Q(� ), and two-photon spectrum
|F (� )Q(� )|2 vs the varying component of the frequency of
the anti-Stokes field � . Note that |κas(� )L|2 is magnified 5 times
and |F (� )Q(� )|2 is magnified 50 times here.

When (�e,2γe) < (�ωg,�ωtr), the system is in the damped
Rabi oscillation regime. This happens when |�c| is large
and the OD is small. The biphoton waveform is determined
by the two resonances of the third-order response. When
the OD is large (typically OD � 4π2), we may have �e >

�ωtr > �ωg . Then the two resonances are suppressed by the
phase mismatching sinc(�kL/2) and the off-resonance EIT
absorption. In this case, the phase-mismatching term sets the
limit of the bandwidth of the biphotons and the group delay
time is related to the biphoton correlation time. This is the
group delay regime.

In Fig. 2, we plot |κas(� ) × L|2, |Q(� )|, and |F (� ) ×
Q(� )|2 as a function of � . The function |κas(� ) × L|2
has two peaks, which are far detuned from the central
frequency of |F (� ) × Q(� )|2 and |Q(� )|. Note that κas(� )
is given in Eq. (35) and is proportional to χ (3). Note also
that as the sinc(�kL/2) function has the same spectrum as
|F (� ) × Q(� )|2, it is not plotted in the figure. It is clear that
Fig. 2 lies in the group delay regime. In this paper, we limit
our discussion to the group delay regime.

When the parametric gain is small as in our case, the Stokes
and anti-Stokes are generated spontaneously in pairs. The
multimode chaotic nature is verified by their second-order
coherence, shown in Fig. 3 as the normalized autocorrela-
tion functions obtained in the Heisenberg picture: g(2)

s,s (0) =
g(2)

as,as(0) = 2, and 1 � g(2)
as,as(τ ) � 2 as well as 1 � g(2)

s,s (τ ) � 2.
The normalized cross-correlation g(2)

s,as(τ ) in Fig. 4 shows a
rectangular shape. The correlation time is nearly 1 μs, which
is determined by the bandwidth of the biphoton spectrum
|F (� ) × Q(� )|2 in Fig. 2.

To determine the properties of the generated bipho-
tons, we calculate the ratio of the normalized cross-
correlation function to the normalized autocorrelation function
[g(2)

s,as(τ )]2/[g(2)
s,s (0)g(2)

as,as(0)]. As shown in Fig. 5, the Cauchy-
Schwarz inequality is violated by a factor of about 4200 and
the biphoton nonclassical property is clearly confirmed.
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FIG. 3. Normalized autocorrelation functions g(2)
s,s (τ ) and g(2)

as,as(τ )
calculated in the Heisenberg picture. No z dependence of the atomic
density or the driving laser fields.

Next, as we increase the pump power to increase the photon
generation rate, the parametric gain increases, but the factor
of violation of the Cauchy-Schwarz inequality decreases, as
shown in Fig. 6.

Note that because the perturbation theory in the interaction
picture describes only the two-photon process, the single-
photon generation rates Rs and Ras in the interaction picture
cannot be described adequately by the biphoton state. As such,
we obtain the normalized cross- and autocorrelation functions
g(2)

s,as(τ ), g(2)
s,s (τ ), and g(2)

as,as(τ ) in the Heisenberg picture.

B. Comparison of the two formalisms

We compare the two models in the interaction and Heisen-
berg pictures by computing the second-order Glauber function
G(2)

s,as(τ ) numerically for cases with and without z dependence
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FIG. 4. Normalized cross-correlation function g(2)
s,as(τ ) calculated

in the Heisenberg picture. No z dependence of the atomic density or
the driving laser fields.
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FIG. 5. Ratio of the normalized cross-correlation function to
the normalized autocorrelation function (g(2)

s,as(τ ))2
/(g(2)

s,s (0)g(2)
as,as(0))

calculated in the Heisenberg picture. No z dependence of the atomic
density or the driving laser fields.

in the atomic density and the driving laser fields. We have
shown theoretically that when there is no z dependence in
the atomic density or the driving field intensities the two
models agree well when q2 � 4κsκas or when the linear
response is much larger than the third-order response in the
atomic medium. This is the low-parametric-gain regime. In the
subsequent figures, we show numerically that the two models
agree well in this regime when spatial dependence is absent or
present in the the atomic density and driving laser fields.

Figure 7 shows that with a uniformly distributed atomic
density and uniform pump and coupling field amplitudes in
the z direction, the two models agree well in predicting the
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FIG. 6. Ratio of the normalized cross-correlation function to the
normalized autocorrelation function (g(2)

s,as)
2

max
/(g(2)

s,s (0)g(2)
as,as(0)) vs the

photon pair emission rate R calculated in the Heisenberg picture as
the pump power is doubled. No z dependence of the atomic density
or the driving laser fields. The normalized cross-correlation function
g(2)

s,as is taken at its maximum value.
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FIG. 7. G(2)
s,as(τ ) in both the interaction and the Heisenberg

pictures for a uniform atomic medium and uniform pump and
coupling laser profiles in the z direction.

second-order Glauber function G(2)
s,as(τ ). The curves are

rectangle-like with an oscillatory optical precursor.
Next we look at the case where the atomic density is not

uniform in the z direction but is modulated in such a way that
the total OD is unchanged; i.e., the modulation function fN (z)
satisfies

∫ L/2
−L/2 fN (z)dz = L. Figure 8 shows that both models

produce the same numerical results.
In Fig. 9, we give a Gaussian profile to the pump or

coupling laser such that Ep(z) = Epfp(z) or Ec(z) = Ecfc(z),
with fp(z) = fc(z) = 1/0.65 exp(−z2/(L/2)2). Both models
produce the same G(2)

s,as(τ ). Note that the shape is very different
from those in Figs. 7 and 8. Here the waveform is not
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FIG. 8. G(2)
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pictures for uniform pump and coupling laser profiles in the z

direction; the atomic density is nonuniform with modulation function
fN (z) = 6(z + L/2)(L/2 − z)/L2.
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FIG. 9. G(2)
s,as(τ ) in both the interaction and the Heisenberg

pictures for a uniform atom density: (a) only the pump laser has
a Gaussian profile in the z direction; (b) only the coupling laser has a
Gaussian profile in the z direction. The Gaussian modulation function
is fp,c(z) = 1/0.65 exp(−z2/(L/2)2).

rectangle-like but Gaussian-like, with a huge bump in the
middle. This is a result of Eq. (30), where the space-domain
modulating function fp(z) determines the shape of the time-
domain waveform. As discussed in Fig. 2, in the group delay
regime, the third-order susceptibility is almost a constant in
the biphoton frequency detuning window. When the atomic
density (or OD) is high, the value of χ (3) is large, and the
effect of modulation caused by the driving field profile is more
significant. Therefore this Gaussian-like waveform was not
observed for small ODs. It is also demonstrated that the peak
of the waveform is higher in Fig. 9(a) than in Fig. 9(b). This
shows that the effect of the mapping from the space domain
to the time domain is more pronounced when the pump laser
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FIG. 10. (a) Probe laser EIT transmission spectrum. (b) Two-
photon coincidence counts collected over 3600 s as a function of the
relative time delay. Operating parameters are OD = 175, �c = 2π ×
5.82 MHz, and �p = 2π × 0.47 MHz. (c) Measured conditional
autocorrelation g(2)

c of heralded anti-Stokes photons as a function of
the coincidence window width �t .

has a z profile. This is because in the third-order susceptibility
[Eq. (59)], when the coupling laser has a z profile fc(z), it ap-
pears in the denominator of χ (3) through �c(z). Larger values
of fc(z) result in smaller χ (3) and, thus, smaller ψ(τ ) [Eq. (30)].

The Gaussian-like biphoton waveform was observed in
experiments for the first time by Zhao et al. [12] and was
fitted well by a Gaussian modulation to the pump field.
Following the experimental configuration described in [12],
we attempt to explore biphotons with a longer coherence time
and narrower bandwidth. Working in the group delay regime,
we have achieved a significant improvement in the generation
of narrowband biphotons with a long coherence time by
optimizing the OD (OD = 175) while keeping the low atomic
ground-state dephasing rate (γ12 = 2π × 30 KHz). The peak
values of the coupling and pump laser Rabi frequency are �c =
2π × 5.82 MHz and �p = 2π × 0.47 MHz. Here we use
a less modulated pump and coupling field [fp(z) = fc(z) =
1/0.9 exp(−z2/(L/2)2)]. As shown in Fig. 10(a), the green
circles are the biphoton coincidence counts collected in 3600 s,
and the red curve is the theoretical calculation ηG(2)

s,as(τ )�tbinT ,
where η = 0.5% includes the joint-detection efficiency (5%)
and the duty cycle (10%), �tbin = 10 ns is the time bin width,
and T is the collecting time. From Fig. 10(a), the biphoton
1/e correlation time is 3280 ns. To verify the quantum particle
nature of heralded single photons, we measure the conditional
second-order autocorrelation of anti-Stokes photons. We use
the Stokes photons as the gates, send the anti-Stokes photons
to a beam splitter, and measure the two outputs by two
SPCMs. The conditional autocorrelation is calculated by
g(2)

c = (NsNs12/Ns1Ns2), where Ns is the Stokes counts, Ns1

and Ns2 are the twofold coincidence counts, and Ns12 is the
threefold coincidence counts. We can use the value of g(2)

c to
characterize the photon property. Note that a coherent state,
two-photon Fock state, and single-photon state give g(2)

c = 1,
0.5, and 0, respectively [34]. Figure 10(b) shows the measured
g(2)

c of anti-Stokes photons, from which we can confirm the
heralded single-photon property of anti-Stokes photons.
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So far, we have shown that when there is no z dependence
of the atomic density or the driving laser field intensities the
two models agree well when q2 � 4κsκas, or when the linear
response is much larger than the third-order response in the
atomic medium. The numerical plots even for a nonuniform
atomic density and nonuniform driving laser profiles agree as
well. Now the questions are: What happens when q2 is no
longer much larger than 4κsκas, and In what region of the
parameter space do they differ? To answer these questions,
we plot the photon pair generation rate as a function of
|κas(� = 0) L| by varying the OD from 100 to 300. We
consider a homogeneous atomic cloud and uniform laser fields.
Figure 11 shows that in the small-parametric-gain regime
where |κas(� = 0) L| is small, both models predict the same
biphoton rate. However, in the large-parametric-gain regime
where |κas(� = 0) L| is large and q2 � 4κsκas no longer
holds, the biphoton rate is higher in the Heisenberg picture.

When the third-order response is small, the two-photon
process dominates. This can be described adequately by
the first-order perturbation approximation in the interaction
picture. For large |κas(� = 0) L|, apart from the two-photon
process, n-photon (n > 2) processes are present; this is
included in the Heisenberg formalism but not in the interaction
formalism. This is because the first-order perturbation approx-
imation describes only the biphoton process. Therefore, for
comparisons with experimental data in the large-parametric-
gain regime, the Heisenberg picture should be used. Note that
in Figs. 7, 8, and 9, |κas(� = 0) L| = 0.115. Therefore, we
can use either model where the biphoton process dominates
and the n-photon (n > 2) processes are negligible. Note also
that in the group delay regime, the biphoton joint spectrum
is determined by the phase-matching condition. As shown in
Fig. 2, the phase-matching spectrum function |F (� )Q(� )| is
much narrower than the nonlinear gain spectrum |κas(� ) L|.
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Therefore, we choose |κas(� = 0) L| as a (dimensionless)
parameter to compare the biphoton generation rate in Fig. 11.

IV. QUANTUM WAVEFORM SHAPING
AND ENGINEERING

In this section, we explore the possibilities of manipulating
the biphoton temporal waveform by tailoring the pump laser
spatial profiles. We keep the atomic density and the coupling
laser profile uniform in space. Figure 12(a) shows a pump
laser with three z profiles: (i) a full Gaussian function,
fp(z) = 1/0.65 exp(−z2/(L/2)2), and (ii, iii) a half-Gaussian
profile, with either the left or the right side of the beam covered
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FIG. 12. (a) The z profile of the pump laser varies from a full
Gaussian function, f (z) = 1/0.65 exp(−z2/(L/2)2), to two half-
Gaussian functions, fl(z) = 1/0.65 exp(−z2/(L/2)2) for 0 < z <

L/2 and 0 for L/2 < z < L, fr (z) = 0 for 0 < z < L/2 and fr (z) =
1/0.65 exp(−z2/(L/2)2) for L/2 < z < L. (b) G(2)

s,as(τ ) correspond-
ing to the pump laser profile as a full-Gaussian f (z), a half blocked
Gaussian fl(z), and another half-blocked Gaussian fr (z).

from the center of the Gaussian curve. This means that only
half of the atomic cloud is exposed to the pump laser. The
corresponding G(2)

s,as(τ ) is plotted in Fig. 12(b). It is expected
that when half of the laser beam is covered, G(2)

s,as(τ ) should
be lower than when the full beam is present. However, it is
interesting that when the MOT that lies in (0,L/2) is exposed
to the half-Gaussian beam, the nonzero part of G(2)

s,as(τ ) in the
space domain is shifted to the longer-delay part of the time
domain, and vice versa. This is explained in Sec. II A 3.

Next, we block the center part of the Gaussian beam; i.e., the
part of the atomic cloud that lies in (L/3,2L/3) is not subjected
to the pump laser beam [Fig. 13(a)]. G(2)

s,as(τ ) is shown in
Fig. 13(b). There are two bumps present, corresponding to
the two parts of the pump laser profile, as well as the biphoton
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FIG. 13. (a) The z profile of the pump laser varies from a center-
blocked Gaussian function, fp(z) = 1/0.65 exp(−z2/(L/2)2) for z <

L/3 and z > 2L/3, and 0 otherwise. (b) The corresponding G(2)
s,as(τ )

for the blocked and full Gaussian profiles.
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τ (ns)

(a)

FIG. 14. Shaping biphoton temporal waveform with double
peaks. (a) Pump laser spatial profile along z. (b) Coincidence counts
collected in 3000 s, and theoretical biphoton waveforms. (c) Measured
g(2)

c of heralded single anti-Stokes photons. Data are taken from [35].

optical precursor. For comparison, we also show the case where
the pump laser has a full Gaussian profile.

From Eq. (31), we can see that the spatial profile of the
pump laser is mapped to the temporal biphoton waveform;
meanwhile there is always a decay tail on the biphoton
waveform, which stems from the slowly propagating anti-
Stoke photons. To achieve a biphoton waveform with two
separate bumps, the two parts of the pump laser profile in the
longitudinal direction require a large separation as shown in
Fig. 13(a). Another way to get a waveform with two bumps
is to modulate the phase of the pump light [35]. In Fig. 14(a),
the solid red curve shows the pump laser spatial light along z,
with the first and second halves carrying opposite phases. The
experimental data on the corresponding biphoton coincidence
counts are represented by the green circles in Fig. 14(b).
The solid red curve in Fig. 14(b) shows the theoretical
calculation taking into account the phase of the pump laser. For
comparison, we also show the result for pumps with a uniform
phase curve in Figs. 14(a) and 14(b). Figure 14(c) shows the
measured conditional autocorrelation of heralded anti-Stokes
photons. The value is well below 0.5, which is clear evidence of
the quantum nature of heralded single photons for anti-Stokes
photons.

Note that another method of biphoton waveform shaping
is via modulation of the temporal profiles of the driving
laser fields [19,20]. Compared to this method, the spatial
modulation method maintains a perfect frequency entangle-
ment (frequency anticorrelation) due to energy conservation

raised from the time translation symmetry, while the temporal
modulation reduces the frequency entanglement because of
the breakdown of the time translation symmetry. However,
the temporal-to-temporal shaping is much easier to implement
with a larger modulation bandwidth compared to the spatial-
to-temporal mapping. Therefore, when a perfect frequency
anticorrelation is more important to applications, the spatial
modulation technique should be the choice.

In general, if we can control the profile of the driving
laser fields spatially, we can produce interesting biphoton
waveforms temporally. These interesting waveforms might
open up more applications in quantum information technology.
For example, information on the spatial pattern of the driving
fields can be coded into the temporal pattern of the biphoton
waveform. On the other hand, a time-domain biphoton wave-
form allows us to deduce the information on the space-domain
profile of the driving lasers, so a desired time-domain pattern
can be obtained with corresponding modulations of the laser
profiles in the space domain.

V. CONCLUSIONS

We have generalized and compared the theoretical model-
ing of biphoton generation through the SFWM process. We
show that both approaches, in the interaction and Heisenberg
pictures, agree well in the low-parametric-gain regime. More-
over, when the pump and coupling lasers have a nonuniform
profile in the atomic medium, the second-order correlation
function of Stokes–anti-Stokes is no longer rectangle-like with
a modified exponential tail, but Gaussian-like with a peak in
the middle. This is confirmed by recent experimental data. We
also predict that one can control the shape of the time-domain
biphoton waveform by tailoring the space-domain profile of
the pump and coupling lasers, especially the pump profile, as
it dominates the effect from space-to-time mapping.
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APPENDIX: SOLUTION TO THE COUPLED EQUATIONS
IN THE HEISENBERG-LANGEVIN FORMALISM

As the susceptibilities are functions of � , αas, gs , κas, and
κs are also functions of � . The general solution to (34) at
z = l can be written as(

âas(l,� )

â
†
s (l, − � )

)
=

(
A1(� ) B1(� )

C1(� ) D1(� )

)(
âas(−l,� )

â
†
s (−l, − � )

)

+
∑
αi

∫ l

−l

dz eM(z−l)

(
βas

αi

βs
αi

)
f̂

α
†
i
. (A1)

where the transform matrix can be obtained by numerically
solving the coupled equation by setting the Langevin forces to
0. M is given by

M =
(

αas(z,� ) − i �k0
2 −κas(z,� )

−κs(z,� ) gs(z,� ) + i �k0
2

)
. (A2)
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Equation (A1) can be rewritten as Eq. (39), where

A(� ) = A1(� ) − B1(� )C1(� )

D1(� )
,

B(� ) = B1(� )

D1(� )
,

C(� ) = − C1(� )

D1(� )
,

D(� ) = 1

D1(� )
,

(A3)

and (
Pαi

Qαi

)
=

(
1 − B1(� )

D1(� )

0 − 1
D1(� )

)
eM(z−L)

(
βas

αi

βs
αi

)
. (A4)

The two-photon correlation Glauber function is given by

G(2)
s,as(t,t + τ ) = 〈â†

as(l,t + τ )â†
s (−l,t)âs(−l,t)âas(l,t + τ )〉

= 1

(2π )2

∫
d�1d�2d�3d�4e

i�1(t+τ )−i�2t+i�3t−i�4(t+τ )〈â†
as(l,�1)â†

s (−l, − �2)âs(−l, − �3)âas(l,�4)〉. (A5)

From Eq. (39) and the boundary condition [Eq. (38)], assuming the starting time t = 0, the Glauber function is then

G(2)
s,as(τ ) =

∣∣∣∣∣∣
∫

d�

2π
e−i�τ

⎡⎣B(� )D∗(� ) +
∑
αi ,αj

∫ l

−l

dzQ∗
αi

D
αi,α

†
j
Pαj

⎤⎦∣∣∣∣∣∣
2

+ RasRs. (A6)

The second term in (A6) is the product of the Stokes and anti-Stokes generation rates, Rs and Ras. This term describes a uniform
background.

The Langevin noise coefficients are given by

βas
21 = −

√
2 �c(z)

√
N (z)σ13γ13

G(� )
, (A7)

βas
24 =

(
�p(z)

�p

)
�c(z)

√
N (z)σ13γ13√

2 G(� )
, (A8)

βas
31 = 2

√
2 (� + iγ12)

√
N (z)σ13γ13

G(� )
, (A9)

βas
34 = −

(
�p(z)

�p

)√
2 (� + iγ12)

√
N (z)σ13γ13

G(� )
, (A10)

βs
21 = −

(
�p(z)

�p

)√
2 (� + iγ13)

√
N (z)σ24γ24

G(� )
, (A11)

βs
24 =

√
N (z)σ24γ24√

2 �p

, (A12)

βs
31 =

(
�p(z)

�p

)
�c(z)

√
N (z)σ24γ24√

2 G(� )
, (A13)

βs
34 = �c(z)

√
N (z)σ24γ24

2
√

2 �2
p

. (A14)

Here G(� ) ≡ |�c(z)|2 − 4(� + iγ12)(� + iγ13) and σij is the absorption cross section for the |j 〉 → |i〉 transition. γij is the
dephasing rate between |i〉 and |j 〉.
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The diffusion coefficients are given by

D
αi,α

†
j
=

⎛⎜⎜⎜⎝
2〈σ̃22〉γ12 + 2〈σ̃33〉γ23 + 2〈σ̃44〉γ24 0 〈σ̃23〉γ12 0

0 2〈σ̃22〉(γ14 + γ24) + 2〈σ̃33〉γ23 + 2〈σ̃44〉γ24 0 2〈σ̃23〉(γ14 + γ24)

〈σ̃32〉γ12 0 0 0

0 2〈σ̃32〉(γ14 + γ24) 0 2〈σ̃33〉(γ14 + γ24)

⎞⎟⎟⎟⎠,

(A15)

D
α
†
i ,αj

=

⎛⎜⎜⎜⎝
2〈σ̃11〉γ12 + 2〈σ̃33〉γ13 + 2〈σ̃44〉γ14 〈σ̃14〉γ12 0 0

〈σ̃41〉γ12 0 0 0

0 0 2〈σ̃11〉(γ13 + γ23) + 2〈σ33〉γ13 + 2〈σ̃44〉γ14 2〈σ̃14〉(γ13 + γ23)

0 0 2〈σ̃41〉(γ13 + γ23) 2〈σ̃44〉(γ13 + γ23)

⎞⎟⎟⎟⎠,

(A16)

with αi denoting 21, 24, 31, and 34 and α
†
i denoting 12, 42, 13, and 43. The expectation values of atomic operators in Eqs. (A15)

and (A16) are given by

〈σ̃11〉 = 2γ13|�c(z)|2[4(γ14 + γ24)2 + 4�2
p + |�p(z)|2]

T
, (A17)

〈σ̃22〉 = 2γ24[4(γ13 + γ23)2 + |�c(z)|2]|�p(z)|2
T

, (A18)

〈σ̃33〉 = 2γ24|�c(z)�p(z)|2
T

, (A19)

〈σ̃44〉 = 2γ13|�c(z)�p(z)|2
T

, (A20)

〈σ̃14〉 = −4γ13[�p − i(γ14 + γ24)]|�c(z)|2�p(z)

T
, (A21)

〈σ̃23〉 = i4(γ13 + γ23)γ24�c(z)|�p(z)|2
T

, (A22)

where

T = 4γ13[2(γ14 + γ24)2 + 2�2
p + �p(z)|2]|�c(z)|2 + 4γ24[2(γ13 + γ23)2 + |�c(z)|2]|�p(z)|2. (A23)

The diffusion matrix in Eq. (A15) contains only excited-state populations; it thus will be very small when the pump is weak and
far detuned. In this case, its contribution to the Glauber function will be small.
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