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Laser under ultrastrong light-matter interaction: Qualitative aspects and quantitative influences by
level and mode truncations
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We investigate theoretically the light amplification by stimulated emission of radiation (laser) in the ultrastrong
light-matter interaction regime under the two-level and single-mode approximations. The conventional picture of
the laser is broken under the ultrastrong interaction. Instead, we must explicitly discuss the dynamics of the electric
field and of the magnetic one distinctively, which make the “laser” qualitatively different from the conventional
laser. We found that the laser generally accompanies odd-order harmonics of the electromagnetic fields both
inside and outside the cavity and a synchronization with an oscillation of atomic population. A bistability is
also demonstrated. However, since our model is quite simplified, we got quantitatively different results from the
Hamiltonians in the velocity and length forms of the light-matter interaction, while the appearance of the multiple
harmonics and the bistability is qualitatively reliable.
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I. INTRODUCTION

The light and microwave amplifications by stimulated emis-
sion of radiation (laser and maser) were realized in 1960 [1] and
1958 [2], respectively. Although the fundamental theory for
them is established up to the quantum fluctuations of light and
microwave [3–6], the discussion is performed basically under
the rotating-wave approximation (RWA) to the interaction
between the electromagnetic fields and matter. Under the
RWA, the total number of photons and atomic excitations is
conserved during the interaction, and it has enabled the simple
picture based on the photons and excitations. However, the
RWA fails in the ultrastrong interaction regime, which shows
vacuum Rabi splitting comparable to transition frequency of
the atomic excitation [7] and can now be realized in a variety of
systems experimentally [8–18]. In this regime, we will see that
dynamics of the electric field and of the magnetic one should
be discussed distinctively due to the lack of the RWA, and we
can no longer describe the laser by the stimulated emission of
radiation without the distinction. Resulting from this additional
degree of freedom originating from the distinction, the “laser”
and “maser” in the ultrastrong regime are expected to show
essential differences from the conventional laser.

The additional degree of freedom appears in the equations
of the laser (including the meaning of maser in the followings),
and we will see that the laser solutions must have multiple
harmonics for satisfying them. Due to the complicated equa-
tions with the multiharmonic expansion, we can find a rich
variety of laser solutions that were hidden under the RWA
in the conventional laser theory. In other words, the recovery
of the original distinction of the electromagnetic fields in the
ultrastrong regime brings out the multiple harmonics and the
rich solutions. This is the conclusion of this paper, and we
will show, as a demonstration, that bistable laser solutions are
obtained even by a basic calculation.

In order to highlight the qualitative and essential aspects of
the laser in the ultrastrong regime, we suppose an ensemble of
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all identical two-level atoms interacting with a single mode in a
cavity of the electromagnetic fields, which has been considered
to catch the basic properties of the conventional laser [3–6].
This simple system keeps the generality of the conventional
laser theory, although it is known [11,19,20] that the finite-level
and finite-mode approximations (truncation of higher levels
and modes) in the ultrastrong regime are not suitable for
pursuing the quantitative reliability, which is obtained only
by specifying a particular system of interest. Instead, the
calculations in this paper are performed in two typical forms
of the light-matter interaction: the velocity and length forms
(sometimes called the Coulomb and electric dipole gauges
while both are in the Coulomb gauge in the sense of completely
transverse vector potential ∇ · A = 0) [21–24]. The qualitative
and general properties should be obtained independently of the
form choice, which, however, gives us quantitatively different
results.

In Sec. II, we show the equations for investigating the laser
in the ultrastrong light-matter interaction regime. Its qualitative
aspects (multiple harmonics and bistability) are discussed in
Sec. III. The quantitative influence by the two-level and single-
mode approximation is discussed in Sec. IV. The summary
is given in Sec. V. In Appendix A, we briefly explain the
framework of stochastic differential equations, by which the
laser equations are derived, and we also show the Hamiltonian
of system-environment couplings. The detailed calculations
of the oscillating steady states from the laser equations are
shown in Appendixes B and C for the velocity and length
forms, respectively.

II. LASER EQUATIONS

Under the two-level, single-mode, and long-wavelength
approximations, the system Hamiltonians are obtained in the
velocity and length forms, respectively, as [24,25]
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N∑

λ=1

σ̂ x
λ

+ g2
�ωc

N

N∑
λ=1

N∑
λ′=1

σ̂ x
λ σ̂ x

λ′ . (2)

Here, ωc is the frequency of the cavity mode, and ωa is the
atomic transition frequency. â is the annihilation operator of
a photon in the cavity mode and satisfies [â,â†] = 1, while
the photon does not provide a good picture in the ultrastrong
regime. N is the number of atoms, and σ̂

x,y,z

λ is the Pauli matrix
representing the λth atom. g is a nondimensional interaction
strength:

g =
√

ρ|d|2
2ε0�ωc

, g′ = g

√
ωc

ωa
=

√
ρ|d|2

2ε0�ωa
, (3)

where d is the transition dipole moment of the atomic
transition, ε0 is the vacuum permittivity, and ρ is the density
of atoms. In this paper, we define the ultrastrong regime as
g′ � 1, which is determined only by the atomic parameters.

Under the RWA, the counterrotating terms âσ̂λ and â†σ̂ †
λ are

neglected in the interaction Hamiltonians [σ̂λ = (σ̂ x
λ − iσ̂

y

λ )/2
is lowering operator of λth atom], and the total number of
photons and atomic excitations is conserved in the remaining
terms â†σ̂λ and σ̂

†
λ â. Thanks to this simplification, in the

conventional laser theory, we need to consider only the follow-
ing three variables: the light amplitude 〈â〉/√N , the atomic
one

∑
λ〈σ̂λ〉/N , and the atomic population Z = ∑

λ〈σ̂ z
λ 〉/2N

[3–6]. However, in the ultrastrong regime, this simple picture
is no longer appropriate (â and σ̂λ no longer correspond to
positive-frequency components or lowering operators of the
system) due to the lack of the RWA. Instead, we need to
consider the following five variables distinctively: the nondi-
mensional vector potential A = 〈â + â†〉/√N , electric field
(or displacement) Π = i〈â − â†〉/√N , atomic polarization
X = ∑

λ〈σ̂ x
λ 〉/2N , current Y = ∑

λ〈σ̂ y

λ 〉/2N , and population
Z. Thanks to this distinction, or the additional degrees of
freedom, we can find unconventional solutions of complicated
laser equations in the ultrastrong regime.

The inverted population is inevitable for the laser in our
system even in the ultrastrong regime, and it corresponds to
Z > 0, while |Z| � 1/2. Here, we introduce heat baths for
pumping the atoms incoherently and also a bath for dissipation
of the electromagnetic fields, whose couplings are mediated by
σ̂ x

λ and (â + â†), respectively, for suppressing the dependence
on the form choice [26,27]. Without the electromagnetic
interaction with matter, each atom is incoherently pumped to
Zp with a rate γ‖ [6], and the electromagnetic fields decay with
a rate κ . We also consider baths for pure dephasing of atomic
amplitudes X and Y (including the influence of broadening of
atomic transition frequencies), and they are mediated by σ̂ z

λ

with a rate γpure. These dissipation rates are supposed to be
frequency independent for simplicity.

In the presence of these system-environment couplings,
we derived quantum stochastic differential equations [6,26]
based on the positive and negative frequency components
[26,28] (see also Appendix A). For large enough N � 1

[6], macroscopic laser equations factorized by the above
five variables are obtained in the velocity and length forms,
respectively, as

(∂/∂t)Ā = −ωcΠ̄, (4a)

(∂/∂t)Π̄ = (ωc + 4g2ωa)Ā − iκ[Ā(+) − Ā(−)]

+4gωaȲ , (4b)

(∂/∂t)X̄ = −γxX̄ − ωaȲ + 2gωaĀZ̄, (4c)

(∂/∂t)Ȳ = ωaX̄ − γyȲ , (4d)

(∂/∂t)Z̄ = −γz(Z̄ − Zp) − 2gωaĀX̄, (4e)

(∂/∂t)Ã = −ωcΠ̃ + 4gωcX̃, (5a)

(∂/∂t)Π̃ = ωcÃ − iκ[Ã(+) − Ã(−)], (5b)

(∂/∂t)X̃ = −γxX̃ − ωaỸ , (5c)

(∂/∂t)Ỹ = (ωa − 8g2ωcZ̃)X̃ − γyỸ + 2gωcΠ̃Z̃, (5d)

(∂/∂t)Z̃ = −γz(Z̃ − Zp) − 2gωcΠ̃Ỹ + 8g2ωcX̃Ỹ . (5e)

Here, the variables in the velocity form are distinguished by
an overbar, for example, Ā, and those in the length form are
distinguished by a tilde, for example, Ã. The superscript (±)
means the positive and negative frequency components of the
variables, based on which we get asymmetric dissipation rates:
κ only for Π , γx = γpure, γy = γ‖ + γpure, and γz = γ‖ [29].

III. QUALITATIVE ASPECTS OF THE LASER

In the conventional laser, the electromagnetic and atomic
amplitudes (A,Π,X, and Y ) oscillate with a frequency Ω

(determined for satisfying the laser equations), and the atomic
population Z is constant in time. In contrast, in the ultrastrong
regime, since the RWA cannot be applied to 2gωaĀ(t)X̄(t) in
Eq. (4e) and also to 2gωcΠ̃(t)Ỹ (t) in Eq. (5e), the atomic popu-
lations Z̄(t) and Z̃(t) are driven not only by the time-constant
components but also by the 2Ω ones, when the amplitudes
oscillate with a fundamental frequency Ω . Further, X̄ and Ỹ are
driven by 3Ω components through 2gωaĀ(t)Z̄(t) in Eq. (4c)
and 2gωcΠ̃(t)Z̃(t) in Eq. (5d), respectively. Therefore, the
electromagnetic and atomic amplitudes in general oscillate
with odd-order harmonics Ω , 3Ω , 5Ω , ..., and the atomic
population oscillates with even-order harmonics 0Ω , 2Ω ,
4Ω , .... Since the cavity loss is mediated by A, the dynamics of
the frequency components A(±)(t) reflect those of the output
from the cavity through the input-output relation [6,26,28,30].
Then, the output also oscillates with the odd-order harmonics.
These multiple harmonics and synchronization with the atomic
population are obtained in general. They are a part of the
qualitative differences from the conventional laser and are
obtained independently of the choice of the light-matter
interaction form.

For simplicity, we consider only up to the third-
order harmonic, which is sufficient for finding bistable
laser solutions. The electromagnetic and atomic amplitudes
are expanded as A(t) = α1e

−iΩt + α3e
−i3Ωt + c.c., Π (t) =

p1e
−iΩt + p3e

−i3Ωt + c.c. (and similarly for X and Y ), and the
atomic population is expanded as Z(t) = Z0 + (z2e

−i2Ωt +
c.c.). Neglecting highly oscillating terms (RWA in the oscilla-
tion basis), nontrivial oscillating steady states are obtained

033811-2



LASER UNDER ULTRASTRONG LIGHT-MATTER . . . PHYSICAL REVIEW A 93, 033811 (2016)

Atomic pump ZpAtomic pump Zp

(a)

(b)

(c)

(d)

(e)

(|α3|2)1/3×103
|α1|2

|α1|2

Z0×10

(|z2|2)1/2×10

Z0

(f)

(Ω - ωc)/ωc

(|α3|2)1/3×50

(|z2|2)1/2×5

Zth Zth

 ωc = ωa  ωc = 0.25 ωa

(Ω - ωc)/ωc

FIG. 1. Laser solutions are calculated by increasing and decreas-
ing the atomic pump Zp in the velocity form. The bare cavity
frequencies are (a)–(c) ωc = ωa and (d)–(f) ωc = 0.25ωa. (a) and (d)
Intensities of fundamental component α1 and the 3Ω one α3 of the
nondimensional vector potentialA = 〈â + â†〉/√N , (b) and (e) time-
constant component Z0 and the 2Ω one z2 of the atomic population,
and (c) and (f) (Ω − ωc)/ωc for fundamental oscillation frequency
Ω are plotted. Below threshold Zp < Zth, we get Z0 = Zp and zero
oscillating components. Above threshold, we get a linear increase
of |α1|2, |z2| ∝ |α1|2, and |α3| = |α1|3 for ωc = ωa. A bistability
appears for ωc = 0.25ωa. The arrows represent the solutions with
increasing and decreasing Zp. Parameters: g′ = 0.15, γ‖ = 0.05ωa,
γpure = 0.1ωa, and κ = 0.01ωa.

from Eqs. (4) and (5), and they correspond to the laser
states. The detailed calculation is shown in Appendix B
for the velocity form and in Appendix C for the length
form.

In Fig. 1, we plot the laser solutions in the velocity form
versus the atomic pump Zp. The interaction strength is
assumed to be g′ = 0.15, which is relevant to the values
reported for the organic molecules [15]. We suppose the atomic
dissipation rates to be γ‖ = 0.05ωa and γpure = 0.1ωa by
considering currently available samples. The supposed cavity
loss rate κ = 0.01ωa is lower than the one in Ref. [15], but a
much lower rate is available from distributed Bragg reflectors
[31–33]. In Figs. 1(a)–1(c), the bare cavity frequency is equal
to the atomic one, ωc = ωa. Below the threshold Zth = 1.56 ×
10−2, the atomic population simply increases with obeying
Z = Z0 = Zp, and the oscillation components are zero. Above
the threshold, the intensity of the fundamental oscillation
component increases linearly as |α1|2 ∝ (Zp − Zth), as seen
in Fig. 1(a), and the time-constant component Z0 of the
atomic population is almost unchanged after the threshold as
in Fig. 1(b). These are similar to the characteristics of the
conventional laser.

The difference is the appearance of the multiple harmonics
(z2 and α3), which are generally obtained even though higher
cavity modes with 2ωc,3ωc, . . . are not considered [34]. As
seen in Figs. 1(a) and 1(b), the multiple harmonics increase
as |z2|2 ∝ (Zp − Zth)2 and |α3|2 ∝ (Zp − Zth)3 which are

Atomic pump Zp
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 ω
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(a) Velocity form (b) Length form

Atomic pump Zp

Zth

Zth

|α1|2

FIG. 2. Maps of laser solutions in (a) velocity form and (b) the
length one. The intensity |α1|2 of the fundamental component is
calculated by increasing Zp for a fixed ωc, which is also changed
in the vertical axis. The thick curves indicate the threshold Zth.
Unconventional solutions appear for low cavity frequency ωc <

0.29ωa in the velocity form. Although we find only the conventional
solutions in the length form under the current parameters, the
unconventional solutions appear for larger g′ or lower κ in Figs. 3
and 4. This quantitative difference is caused by the two-level and
single-mode approximations used in the calculation. Parameters:
g′ = 0.15, γ‖ = 0.05ωa, γpure = 0.1ωa, and κ = 0.01ωa.

similar to the characteristics of the third-order nonlinear effect
(perturbation) with respect to the fundamental component α1.

In contrast, in Figs. 1(d)–1(f), where the cavity frequency is
far below the atomic resonance as ωc = 0.25ωa, we can find a
bistable behavior above the threshold Zth = 9.62 × 10−2 [35].
In Fig. 2(a), we plot the intensity |α1|2 of the fundamental
component calculated in the velocity form by increasing Zp

for a fixed ωc, which is also changed in the vertical axis.
When ωc is around the atomic frequency ωa, the threshold Zth

is minimized, and |α1|2 is locally maximized. The bistability
appears for low cavity frequency 0.15ωa < ωc < 0.29ωa. For
ωc < 0.15ωa, we do not find a clear jump, and the solutions
change continuously (but drastically) with the increase of
Zp.

The appearance of the bistability can be understood simply
by the fact that the third harmonic gets close to the atomic
resonance [3Ω ∼ 1.2ωa in Figs. 1(d)–1(f)]. Comparing with
Fig. 1(a) (3Ω ∼ 3.1ωa), the 3Ω component α3 is significantly
enhanced in Fig. 1(d), while the fundamental one α1 is of
the same order. Thanks to the relatively large amplitudes of
the multiple harmonics, we can find unconventional solutions
for the complicated nonlinear equations (4) and (5) with the
five variables (or more in the multiharmonic expansion). This
is the reason why the bistability appears for the low cavity
frequency in Fig. 2(a). To increase the ωc range showing the
laser down to such a low frequency, strong g′, low κ , and
high γtotal = γ‖ + γpure are desired (for κ < γtotal), as expected
from the conventional laser theory [3–6]. Further, a low pure-
dephasing ratio γpure/γtotal (= 2/3 in the present calculation)
is advantageous to enhancing the multiharmonic amplitudes,
and then the bistability appears more clearly. This tendency
will be checked numerically in the next section.

The signature of the electromagnetic distinction appears
particularly in the bistable region. In the resonant case
(ωc = ωa), the interaction is suppressed effectively through
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FIG. 3. Maps of laser solutions calculated in the length form for g′ = 0.4 and κ = 0.01ωa. The atomic dissipation rates are shown above
the plots. The unconventional solutions appear for strong enough interaction g′ and low enough cavity loss κ even in the length form, while
they disappear by increasing the ratio γpure/γtotal while keeping the total dissipation rate γtotal = γ‖ + γpure.

2gωaĀZ̄ in Eq. (4c) and 2gωcΠ̃Z̃ in Eq. (5d) via the
negligible atomic population Z ∼ 0.01 shown in Fig. 1(b).
Then, the laser is reduced approximately to the conventional
one, and the multiple harmonics appear perturbatively. In this
sense, the bistability in Figs. 1(d)–1(f) is correlated strongly
to the electromagnetic distinction because the interaction is not
significantly suppressed by the atomic population Z ∼ 0.1, as
seen in Fig. 1(e). The signature of the distinction is also found
in Figs. 1(c) and 1(f), showing (Ω − ωc)/ωc = |p1/α1| − 1,
i.e., the amplitude difference between the nondimensional
vector potential and the electric field [this relation is obtained
from Eq. (4a) in the velocity form]. The negligible difference
|p1/α1| − 1 
 1 in Fig. 1(c) corresponds approximately to
the conventional laser, in which the photons are well de-
fined as |α1| = |p1|. In contrast, in the bistable case, the
relatively large |p1/α1| − 1 in Fig. 1(f) indicates that the
electric field Π and the magnetic one (or vector potential
A) show clearly distinct dynamics including the multiple
harmonics. This is certainly what we initially expected in
the ultrastrong regime, and the bistability originates from this
distinction [36].

IV. QUANTITATIVE INFLUENCES BY LEVEL
AND MODE TRUNCATIONS

In Fig. 2(b), the laser solutions calculated in the length
form are plotted under the same parameters as in Fig. 2(a).
Although the bistability does not appear in Fig. 2(b), it is
just the quantitative difference caused by the two-level and
single-mode approximations, and we can obtain the bistability
even in the length form for different parameters, as seen in
Figs. 3 and 4. The maps of laser solutions in the length form
are plotted in Fig. 3(a) for stronger electromagnetic interaction
with matter g′ = 0.4 and in Fig. 4(a) for lower cavity loss
κ = 0.001ωa compared with the parameters in Fig. 2. Under
these conditions, the bistability appears even in the length
form.

In Figs. 3–5, the dependence on the pure-dephasing rate
γpure is also shown. Figures 3 and 4 are calculated in the length
form, and Figs. 5 is calculated in the velocity form [Fig. 5(a)
is equivalent to Fig. 2(a)]. The pure-dephasing ratio γpure/γtotal

is changed while keeping the total dissipation rates γtotal =
γ‖ + γpure = 0.15ωa. In the conventional laser theory [6], the
laser occurs under the following condition (determining the
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(a) γ|| = 0.05ωa, γpure = 0.10ωa (b) γ|| = 0.03ωa, γpure = 0.12ωa (c) γ|| = 0.01ωa, γpure = 0.14ωa

FIG. 4. Maps of laser solutions calculated in the length form for g′ = 0.15 and κ = 0.001ωa. The atomic dissipation rates are shown above
the plots. The unconventional solutions appear for strong enough interaction g′ and low enough cavity loss κ even in the length form, while
they disappear by increasing the ratio γpure/γtotal with keeping the total dissipation rate γtotal = γ‖ + γpure.
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FIG. 5. Maps of laser solutions calculated in the velocity form for g′ = 0.15 and κ = 0.01ωa. The atomic dissipation rates are shown above
the plots [(a) is equivalent to Fig. 2(a)].

threshold Zth):

2g2ω2
aZp

κγtotal − (ωc − Ω)(ωa − Ω)
> 1, (6)

where the oscillation frequency is obtained as

Ω = κωa + γtotalωc

κ + γtotal
. (7)

In this way, the ωc range showing the conventional laser does
not depend on the pure-dephasing ratio γpure/γtotal, and this
tendency basically survives even in Figs. 3–5. Equation (6) is
rewritten as

2g2ω2
aZp > κγtotal

[
1 +

(
ωa − ωc

γtotal + κ

)2]
. (8)

This relation basically determines the ωc range of the laser.
Since we suppose κ 
 γtotal, the ωc range is enlarged by
lowering κ and by heightening γtotal and g′.

In the calculations in Figs. 3–5, the bistable laser solutions
are obtained for ωc ∼ ωa/3, which is the requirement for the
bistability, as discussed in the previous section. However, by
increasing the pure-dephasing ratio γpure/γtotal, the uncon-
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FIG. 6. Maps of laser solutions in (a) velocity form and (b) the
length one. The color indicates the maximum |α1|2 found by changing
ωc. The larger value is chosen in the bistable case. The maximum |α1|2
is plotted versus the interaction strength g′ and the pure-dephasing
ratio γpure/γtotal with keeping Zp = 0.5, γtotal = 0.15ωa, and κ =
0.01ωa.

ventional solutions gradually disappear. This is because the
amplitudes of the electromagnetic fields are diminished, as
clearly seen in the figures. Especially, the third-harmonic
amplitudes are diminished more drastically (not shown in the
figures) because they appear to be similar to the nonlinear
optical effect. For much lower γpure/γtotal, the bistability
appears more clearly (not shown in the figures). Then, to obtain
the bistability, we should prepare low enough κ and γpure and
high enough γ‖ and g′.

In Fig. 6, we plot the maximum |α1|2 found by changing
ωc in the two forms of the light-matter interaction. The
larger |α1|2 is chosen in the bistable case, and it is plotted
versus the interaction strength g′ and the pure-dephasing
ratio γpure/γtotal while keeping Zp = 0.5, γtotal = 0.15ωa, and
κ = 0.01ωa. The relatively large |α1|2 for strong enough g′

indicates the existence of the bistability. In both forms, whereas
the bistability is obtained clearly for low enough γpure/γtotal,
the visibility is lowered with the increase in γpure/γtotal.
This tendency indicates the disappearance of the bistability
demonstrated in Figs. 3–5. Whereas the bistability is obtained
even for the relatively high γpure/γtotal ∼ 0.8, as shown in
Figs. 3–5, strong enough g′ is required for the bistability, as
seen in Fig. 6. The bistable region is not largely enhanced
even in the limit of γpure/γtotal → 0. This is because the
pure-dephasing ratio γpure/γtotal basically does not change the
parameter region showing Ω ∼ ωa/3, which is determined by
Eq. (8).

In Fig. 7, the parameter regions showing the bistability
calculated in the two forms are plotted. We plot Z0 in the
steady state for the highest bare-cavity frequency that shows
the bistability for Zp = 0.5 [ωc = 0.29ωa in Fig. 2(a)] as
functions of g′ and κ . The bistability appears basically for
strong enough g′ and low enough κ/ωa, both of which are
necessary for obtaining the laser around 3Ω ∼ ωa, as discussed
above. The population Z0 is a measure of the electromagnetic
distinction. The bistability starts to appear with a large Z0,
which enhances the distinction of the electromagnetic fields,
and Z0 still keeps a certain value (∼0.06 at current parameters)
even when the bistability is easily found for large enough g′.

The quantitative difference for the appearance of the
bistability mathematically originates from the following fact.
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FIG. 7. The region of parameters g′ and κ/ωa showing the
bistability is plotted in (a) velocity form and (b) the length one.
The color indicates Z0 (a measure of electromagnetic distinction)
for the highest bare cavity frequency that shows the bistability at
Zp = 0.5. In both forms, the bistability appears for strong enough
interaction g′ and low enough cavity loss κ . Parameters: γ‖ = 0.05ωa

and γpure = 0.1ωa.

As seen in Eqs. (1) and (2), the interaction terms are
proportional to gωa and gωc in the velocity and length forms,
respectively. Since the coefficient gωa ∝ 1/

√
ωc is increased

with the decrease of ωc in the velocity form, the laser solution
is easily found for low ωc. As a result, the bistability is
easily found in the velocity form compared to the length one.
Although this quantitative form dependence is diminished if
we consider all the atomic levels and the cavity modes by
specifying particular systems of interest [19,20,37], the two-
level approximation is justified qualitatively if the two atomic
levels are well separated by more than gωa or gωc from the
other levels energetically [38]. Since the higher cavity modes
basically enhance the amplitudes of the multiple harmonics,
the bistability (or multistability) is also expected beyond
the single-mode approximations [39]. Whereas the present
calculation still has such quantitative problems, the bistability
is expected to appear as another qualitative difference from the
conventional laser.

V. SUMMARY

We conclude that, in the ultrastrong regime, the laser
generally accompanies odd-order harmonics of the electro-
magnetic fields both inside and outside the cavity and the
synchronization with the atomic population oscillating with
even-order harmonics. Whereas we found a bistability via
the calculation up to the third harmonic under the two-level
and single-mode approximations, a richer variety of the
laser solutions could be obtained thanks to the recovery of
the original distinction of the electromagnetic fields in the
ultrastrong regime, which exposes the additional degrees of
freedom hidden by the RWA. However, since we investigated
the laser dynamics under the two-level and single-mode
approximations, we got quantitatively different results in the
velocity and length forms of the light-matter interaction,
whereas the multiple harmonics and the bistability are reliable
qualitatively. In order to eliminate this quantitative problem of
the form choice, we must discuss which form is appropriate in
the finite-level and finite-mode approximation in the future.

The properties of this laser are not fully elucidated in this
paper, and those to be investigated spread as extensively as the
conventional laser has been studied from the viewpoints of
quantum optics, nonlinear physics, nonequilibrium physics,
synergetics, etc. For example, it is open to dispute whether
the laser output is in a simple coherent state like the
ideal conventional laser [3–6] or a nonclassical state can
be directly obtained thanks to the ultrastrong interaction,
especially in the bistable regions [40]. Experimentally,
the laser in the ultrastrong regime would be realized by
fabricating microcavities embedding organic (dye) molecules
[15] or superconducting circuits [43] with (a large number
of) artificial atoms. Quantum cascade lasers involving
intersubband transitions in semiconductor quantum wells
[8–11,16] are also promising, while the present calculation
does not exactly correspond to the quantum cascade lasers.
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APPENDIX A: STOCHASTIC DIFFERENTIAL EQUATIONS

As a general discussion, we consider system-environment
coupling expressed as

Ĥ
example
SEC =

∫ ∞

0
dω

{
�ωf̂ †(ω)f̂ (ω) + i�

√
Γ

2π
Ŝ[f̂ †(ω)

−f̂ (ω)]

}
. (A1)

Here, Ŝ is a Hermitian operator of the system of interest, and
f̂ (ω) is the annihilation operator of a boson with a frequency
ω in the environment. Γ corresponds to the bare dissipation
rate. Further, the distribution in the environment is supposed as

〈f̂ †(ω)f̂ (ω′)〉 = nδ(ω − ω′), (A2a)

〈f̂ (ω)f̂ †(ω′)〉 = (n + 1)δ(ω − ω′), (A2b)

where n is the expectation number of bosons in the envi-
ronment. From this Hamiltonian for frequency-independent
dissipation rate Γ and flat distribution n, without applying
the RWA to the system-environment coupling, the quantum
stochastic differential equation (QSDE) is obtained for system
operator Ô in Itoh’s form as [6,26]

dÔ = 1

i�
[Ô,Ĥ0]dt + Γ n

2
{Ŝ(+)[Ô,Ŝ] + [Ŝ,Ô]Ŝ(−)}dt

+ Γ (n + 1)

2
{Ŝ(−)[Ô,Ŝ] + [Ŝ,Ô]Ŝ(+)}dt

−
√

Γ {[Ô,Ŝ]dF̂ (t) + dF̂ †(t)[Ŝ,Ô]}, (A3)

where the fluctuation operator satisfies

dF̂ (t)2 = dF̂ †(t)2 = 0, (A4a)

dF̂ †(t)dF̂ (t) = ndt, (A4b)

dF̂ (t)dF̂ †(t) = (n + 1)dt. (A4c)
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When we replace Ŝ by Ŝ(+) or Ŝ(−), Eq. (A3) is certainly
reduced to the QSDE discussed in Ref. [6]. Since Eq. (A3)
only has the commutator between Ô and the original Hermitian
operator Ŝ, we do not need knowledge of the eigenstates of
Ĥ0, which is generally hard to calculate.

For the dissipation and incoherent pumping (by a heat
bath with a negative temperature [6]) of the laser system, we
consider the following system-environment couplings:

Ĥ x
SEC =

∫ ∞

0
dω

{
�ωf̂

†
A(ω)f̂A(ω) + �ω

N∑
λ=1

[f̂ †
X,λ(ω)f̂X,λ(ω)

+ f̂
†
Z,λ(ω)f̂Z,λ(ω)]

+ i�

√
κ

2π
(â + â†)[f̂ †

A(ω) − f̂A(ω)]

+ i�

√
γ‖|Zp|

π

N∑
λ=1

σ̂ x
λ [f̂ †

X,λ(ω) − f̂X,λ(ω)]

+i�

√
γpure

4π

N∑
λ=1

σ̂ z
λ [f̂ †

Z,λ(ω) − f̂Z,λ(ω)]

}
. (A5)

The fields f̂A(ω), f̂X,λ(ω), and f̂Z,λ(ω) in the environments are
not correlated with each other, and their self-correlations are
supposed as

〈f̂ †
A(ω)f̂A(ω′)〉 = 0, (A6a)

〈f̂A(ω)f̂ †
A(ω′)〉 = δ(ω − ω′), (A6b)

〈f̂ †
X,λ(ω)f̂X,λ′(ω′)〉 = 1/2 + Zp

2|Zp| δλ,λ′δ(ω − ω′), (A7a)

〈f̂X,λ(ω)f̂ †
X,λ′(ω′)〉 = 1/2 − Zp

2|Zp| δλ,λ′δ(ω − ω′), (A7b)

〈f̂ †
Z,λ(ω)f̂Z,λ′(ω′)〉 = 0, (A8a)

〈f̂Z,λ(ω)f̂ †
Z,λ′(ω′)〉 = δλ,λ′δ(ω − ω′). (A8b)

From these system-environment couplings, the equations of
motion of the c-number variables in the main text are derived
from Eq. (A3). For the derivation, we considered that the
following term is approximately zero:〈

σ̂
x(+)
λ σ̂ z

λ + σ̂ z
λ σ̂

x(+)
λ

〉 − 〈
σ̂

x(−)
λ σ̂ z

λ + σ̂ z
λ σ̂

x(−)
λ

〉 
 0. (A9)

To derive this, from the relations σ̂ x
λ = σ̂

x(+)
λ + σ̂

x(−)
λ and

σ̂ z
λ σ̂ x

λ = iσ̂
y

λ , we get the following relation:〈
σ̂

x(+)
λ σ̂ z

λ + σ̂ z
λ σ̂

x(+)
λ

〉 = −〈
σ̂

x(−)
λ σ̂ z

λ + σ̂ z
λ σ̂

x(−)
λ

〉
. (A10)

The left- and right-hand sides oscillate mainly with posi-
tive and negative frequencies, respectively. Then, to satisfy
Eq. (A10), both brackets should be zero, and Eq. (A9) can be
neglected. Further, we used the following approximation:

−
N∑

λ=1

〈
σ̂

x(+)
λ σ̂

y

λ

〉 + 〈
σ̂

y

λ σ̂
x(+)
λ

〉
iN


 1. (A11)

The pumping level Zp is modulated by this factor in the
equations of motion in Eqs. (4) and (5). When the RWA can be
applied to the electromagnetic interaction with matter in the
photon-excitation basis, we get σ̂

x(+)
λ = σ̂λ and σ̂

y(+)
λ = iσ̂λ;

then we can get the above equality. In the ultrastrong regime,
the equality is generally violated. However, if we get |Z| 
 1,
the strength of the interaction is effectively suppressed, and
σ̂

x(+)
λ 
 σ̂λ and σ̂

y(+)
λ 
 iσ̂λ are also obtained approximately.

Even if |Z| is not negligible, the atomic pump Zp multiplied by
Eq. (A11) shows the even-order harmonics. Further, for large
enough N � 1, the deviation from unity can be neglected
like the products of the operators are factorized under the
mean-field approximation in the macroscopic laser equation.

APPENDIX B: OSCILLATING STEADY STATES IN THE
VELOCITY FORM

We decompose the five variables to frequency components
as A(t) = α1e

−iΩt + α3e
−i3Ωt + c.c. (Π to pn, X to xn, and

Y to yn), and Z(t) = Z0 + (z2e
−i2Ωt + c.c.). Then, neglecting

highly oscillating terms, the equations of the frequency
components are obtained in the velocity form as

(∂/∂t)ᾱn = inΩᾱn − ωcp̄n, (B1a)

(∂/∂t)p̄n = (ωc + 4g2ωa − iκ)ᾱn + inΩp̄n + 4gωaȳn,

(B1b)

(∂/∂t)x̄1 = (iΩ − γx)x̄1 − ωaȳ1

+ 2gωa(Z̄0ᾱ1 + z̄∗
2ᾱ3 + ᾱ∗

1 z̄2), (B1c)

(∂/∂t)x̄3 = (i3Ω − γx)x̄3 − ωaȳ3

+ 2gωa(Z̄0ᾱ3 + ᾱ1z̄2), (B1d)

(∂/∂t)ȳn = ωax̄n + (inΩ − γy)ȳn, (B1e)

(∂/∂t)Z̄0 = −γz

(
Z̄0 − Zp

) − 2gωa(ᾱ∗
1 x̄1 + ᾱ∗

3 x̄3 + c.c.),

(B1f)

(∂/∂t)z̄2 = (i2Ω − γz)z̄2 − 2gωa(ᾱ∗
1 x̄3 + ᾱ1x̄1 + x̄∗

1 ᾱ3).

(B1g)

In oscillating steady states, all of these derivatives should
be zero. Equations to be satisfied are finally reduced to

0 =
{

Δc,1Δa,1

8g2ωcω3
a

+ Zp

+ [C|1|21 + C|3|21|η|2 + C(−1)23η]|ᾱ1|2
}
ᾱ1, (B2a)

0 =
{

Δc,3Δa,3

8g2ωcω3
a

+ Zp

+ [C|1|23 + C|3|23|η|2 + C13η−1]|ᾱ1|2
}
ηᾱ1e

i2θ ,

(B2b)

where θ is the phase of ᾱ1 = |ᾱ1|eiθ . Unknown variables are
Ω , |ᾱ1| ∈ R, and a complex value

η = ᾱ3

ᾱ1
e−i2θ ∈ C. (B3)
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The other quantities in Eqs. (B2) are defined as follows:

Δc,n = ωc(ωc + 4g2ωa) − n2Ω2 − iκωc, (B4a)

Δa,n = ωa
2 + (inΩ − γx)(inΩ − γy), (B4b)

C|1|21 = −Re[(iΩ − γy)Δc,1]

γzωcωa
+ (iΩ − γy)Δc,1

2ωcωa(i2Ω − γz)
,

(B5a)

C|3|21 = −Re[(i3Ω − γy)Δc,3]

γzωcωa

+ (i3Ω + γy)Δ∗
c,3 − (iΩ − γy)Δc,1

2ωcωa(i2Ω + γz)
, (B5b)

C(−1)23 = (i3Ω − γy)Δc,3 − (iΩ + γy)Δ∗
c,1

2ωcωa(i2Ω − γz)

+ (iΩ + γy)Δ∗
c,1

2ωcωa(i2Ω + γz)
, (B5c)

C|1|23 = −Re[(iΩ − γy)Δc,1]

γzωcωa

+ (i3Ω − γy)Δc,3 − (iΩ + γy)Δ∗
c,1

2ωcωa(i2Ω − γz)
, (B5d)

C|3|23 = −Re[(i3Ω − γy)Δc,3]

γzωcωa
, (B5e)

C13 = (iΩ − γy)Δc,1

2ωcωa(i2Ω − γz)
. (B5f)

Once we get a solution to Eqs. (B2), the other frequency
components are obtained as

ᾱ3 = ηᾱ1e
i2θ , (B6a)

p̄n = inΩ

ωc
ᾱn, (B6b)

x̄n = (inΩ − γy)Δc,n

4gωcω2
a

ᾱn, (B6c)

ȳn = − ωa

inΩ − γy

x̄n, (B6d)

Z̄0 = Zp − 2gωa

γz

(ᾱ∗
1 x̄1 + ᾱ∗

3 x̄3 + c.c.), (B6e)

z̄2 = 2gωa

(i2Ω − γz)
(ᾱ∗

1 x̄3 + ᾱ1x̄1 + x̄∗
1 ᾱ3), (B6f)

while the phase θ of ᾱ1 can be chosen arbitrarily.

APPENDIX C: OSCILLATING STEADY STATES IN THE
LENGTH FORM

In the same manner as in the velocity form, the equations
of the frequency components are obtained in the length form
as

(∂/∂t)α̃n = inΩα̃n − ωcp̃n + 4gωcx̃n, (C1a)

(∂/∂t)p̃n = (ωc − iκ)α̃n + inΩp̃n, (C1b)

(∂/∂t)x̃n = (inΩ − γx)x̃n − ωaỹn, (C1c)

(∂/∂t)ỹ1 = ωax̃1 + (iΩ − γy)ỹ1

− 8g2ωc(Z̃0x̃1 + z̃∗
2x̃3 + x̃∗

1 z̃2)

+ 2gωc(Z̃0p̃1 + z̃∗
2p̃3 + p̃∗

1 z̃2), (C1d)

(∂/∂t)ỹ3 = ωax̃3 + (i3Ω − γy)ỹ3 − 8g2ωc(Z̃0x̃3 + x̃1z̃2)

+ 2gωc(Z̃0p̃3 + p̃1z̃2), (C1e)

(∂/∂t)Z̃0 = −γz

(
Z̃0 − Zp

) + 8g2ωc(x̃∗
1 ỹ1 + x̃∗

3 ỹ3 + c.c.)

− 2gωc(p̃∗
1 ỹ1 + p̃∗

3 ỹ3 + c.c.), (C1f)

(∂/∂t)z̃2 = (i2Ω − γz)z̃2 + 8g2ωc(x̃∗
1 ỹ3 + x̃1ỹ1 + ỹ∗

1 x̃3)

− 2gωc(p̃∗
1 ỹ3 + p̃1ỹ1 + ỹ∗

1 p̃3). (C1g)

The equations to solve are

0 =
{

Δc,1Δa,1

8g2ωcωaΩ2
+ Zp

+ [C|1|21 + C|3|21|η|2 + C(−1)23η]|α̃1|2
}
α̃1, (C2a)

0 =
{

Δc,3Δa,3

8g2ωcωaΩ2
+ 9Zp

+ [C|1|23 + C|3|23|η|2 + C13η−1]|α̃1|2
}
ηα̃1e

i2θ

(C2b)

for unknown variables Ω , |α̃1| ∈ R, and η = e−i2θ α̃3/α̃1 ∈
C. The other quantities in Eqs. (C2) are defined as
follows:

Δc,n = ωc
2 − n2Ω2 − iκωc, (C3a)

Δa,n = ωa
2 + (inΩ − γx)(inΩ − γy), (C3b)

C|1|21 = −Re[(iΩ − γx)Δc,1]

γzωcωa
+ (iΩ − γx)Δc,1

2ωcωa(i2Ω − γz)
,

(C4a)

C|3|21 = −Re[(i3Ω − γx)Δc,3]

γzωcωa

+ (i3Ω + γx)Δ∗
c,3 − 9(iΩ − γx)Δc,1

2ωcωa(i2Ω + γz)
, (C4b)

C(−1)23 = − (i3Ω − γx)Δc,3 − 9(iΩ + γy)Δ∗
c,1

6ωcωa(i2Ω − γz)

− 3(iΩ + γx)Δ∗
c,1

2ωcωa(i2Ω + γz)
, (C4c)

C|1|23 = −9Re[(iΩ − γx)Δc,1]

γzωcωa

+ (i3Ω − γx)Δc,3 − 9(iΩ + γx)Δ∗
c,1

2ωcωa(i2Ω − γz)
, (C4d)

C|3|23 = −9Re[(i3Ω − γx)Δc,3]

γzωcωa
, (C4e)

C13 = − 3(iΩ − γx)Δc,1

2ωcωa(i2Ω − γz)
. (C4f)
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The other frequency components are obtained as

α̃3 = ηα̃1e
i2θ , (C5a)

p̃n = −ωc − iκ

inΩ
α̃n, (C5b)

ỹn = − (inΩ − γx)Δc,n

i4ngωcωaΩ
α̃n, (C5c)

x̃n = ωa

inΩ − γx

ỹn, (C5d)

Z̃0 = Zp + i2gΩ

γz

(α̃∗
1 ỹ1 + 3α̃∗

3 ỹ3 − c.c.), (C5e)

z̃2 = − i2gΩ

i2Ω − γz

(α̃∗
1 ỹ3 − α̃1ỹ1 − 3ỹ∗

1 α̃3). (C5f)
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Lett. 35, 432 (1975).
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