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We introduce three tunable parameters to optimize the fidelity of quantum teleportation with continuous
variables in a nonideal scheme. By using the characteristic-function formalism, we present the condition that the
teleportation fidelity is independent of the amplitude of input coherent states for any entangled resource. Then we
investigate the effects of tunable parameters on the fidelity with or without the presence of the environment and
imperfect measurements by analytically deriving the expression of fidelity for three different input coherent-state
distributions. It is shown that, for the linear distribution, the optimization with three tunable parameters is the
best one with respect to single- and two-parameter optimization. Our results reveal the usefulness of tunable
parameters for improving the fidelity of teleportation and the ability against decoherence.

DOI: 10.1103/PhysRevA.93.033807

I. INTRODUCTION

Quantum teleportation has an indispensable role in the
manipulation of quantum states and the processing of quantum
information [1–4]. Usually, the two-mode squeezed vacuum
is often used as the entanglement resource with continuous
variables (CVs). However, due to the limitation of experiments,
it is hard to achieve a high degree of squeezing, which leads
to a low teleportation fidelity.

In order to increase the entanglement and fidelity of
teleportation, a number of methods have been proposed [5–14].
Among them, non-Gaussian operations, including the photon
subtraction a or addition a† or the superposition of both, can be
used to realize this purpose for a given Vaidman–Brauntein–
Kimble (VBK) scheme. For example, the superposition op-
erator ta† + ra is proposed for quantum-state engineering to
transform a classical state into a nonclassical one [15], and it
can also be applied on a two-mode squeezed vacuum (TMSV)
for enhancing quantum entanglement as well as the fidelity of
teleportation [16]. It is found that the fidelity of teleporting
a coherent state can be further improved by optimizing the
superposition operation compared with the other non-Gaussian
states, such as photon-subtraction TMSV. As another example,
a remarkable improvement of the teleportation fidelity with
CVs can be obtained by optimizing a non-Gaussian resource in
both the usual and nonideal VBK scheme [17–19]. In Ref. 18,
the “shot fidelity” and single-gain factor are used to discuss the
performance of teleportation. In fact, the protocols discussed
above are employed to enhance the fidelity of teleportation by
changing the quantum entangled resources.

Then an inverse question is that, given a certain class
of entangled resources with some given properties, how
can we modify the VBK scheme to improve the fidelity
of teleportation? It is interesting to note that there is an
alternative method to improve the fidelity of teleportation by
using classical information. For instance, the fidelity of CV
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teleportation can be enhanced by tuning the gain parameters
via Einstein-Podolsky-Rosen (EPR) resources without loss
[7,20] and this has been experimentally realized by Furusawa
et al. [21]. However, these two important theoretical works are
concerned with the study of the ideal protocol implementation
using Gaussian resources [7,20]. In addition, there are some
other strategies by gain tuning and by gain optimization
[22,23], using the Heisenberg picture and the Wigner function,
but they cannot be directly applied to more general cases. In
addition, in Refs. [22,24] the gain factor is used to maximize
the teleportation fidelity for the case of Gaussian resources,
but the gain-optimized fidelity of teleportation is strongly
suppressed when dissipation is considered. Recently, a hybrid
entanglement swapping protocol has been proposed experi-
mentally to transfer discrete-variable (DV) entanglement by
using continuous-variable (CV) Gaussian entangled resources
and by tuning a gain factor of the teleporter [23,25,26],
which shows that DV entanglement remains present after
teleportation for any squeezing by optimal gain tuning. For
more information about advances in quantum teleportation,
we refer to a recent review paper [27] and references therein.

The fidelity of teleportation, as mentioned above, can be
improved by using tunable entangled resources or classical
parameters [17,18,20,23]. In Refs. [20,28], a three-parameter
optimal strategy is introduced to improve the quality of
teleportation, including unbalanced beam splitter (BS) and
two nonunity gains. However, they only considered an ideal
case. Actually, the interaction between the quantum system and
the environment cannot be avoided and the Bell measurements
are usually imperfect. Thus, it would be interesting to see
whether it is still possible to enhance the fidelity by using
these tunable parameters in a realistic case. In this paper,
by using the characteristic-function (CF) formalism, we
extend the analysis of the parameter-optimization strategy
for realistic input states and nonideal entangled resources.
We investigate nonideal quantum teleportation by deriving
an analytical expression of the teleportation fidelity. This
formalism is very convenient for discussing the teleportation
for the nonideal case and any entangled resources.

This paper is arranged as follows: In Sec. II, we give
a description of the characteristic-function formalism for
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the case of the nonideal CV teleportation scheme. In this
scheme, we find the condition that the fidelity is independent
of the amplitude of input coherent states for any entangled
resource. Then we present a qualitative description of fidelity
and average fidelity. In Sec. III, we derive an analytical
expression of the fidelity of teleportation when the TMSV and
coherent states are used as entangled channel and teleported
states, respectively. In Sec. IV we study the performance of
amplitude-independent optimal fidelity by using the condition
found in Sec. II. It is found that the optimal condition is
just that the two gain factors and θ are equal to unity and
π/4, respectively. Section V is devoted to discussing the
optimal fidelity over these three tunable parameters and three
different probability distributions for the input coherent states
by deriving the analytical expression of the optimal fidelity.
Our conclusions are drawn in the last section.

II. MODE AND QUANTITATIVE ANALYSIS

Here, we consider a more realistic case of the teleportation
scheme shown in Fig. 1(a). In this scheme, there are three
tunable parameters, unbalanced BS and two nonunity gains (gq

and gp). The input state (mode 1) and the entangled resources
(shared by modes 2 and 3) are not limited to being pure
states. Considering that mode 2 can be prepared close to the
sender Alice while mode 3 usually has to propagate over much
longer distances, we can assume that mode 2 is not affected by
losses but that mode 3 is. In addition, two symmetrical lossy
bosonic channels have been considered before making Bell
measurements, which are simulated through an extra vacuum
mode and a beam splitter with transmission coefficient T . The
input states of modes 4 and 5 are pure vacuum states.

Next, we describe the scheme in the CF formalism where
it is very convenient to discuss teleportation for the nonideal
case and for non-Gaussian entangled resources [18,29].

A. Input-output relation of beam splitter
in characteristic-function formalism

To obtain the relationship between input and output, we
first calculate the output of a beam splitter with a vacuum and
an arbitrary density operator as inputs shown in Fig. 1(b). For
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FIG. 1. Realistic schematic diagram for CV teleportation. “BS”
indicates beam splitter.

simplicity, we denote the vacuum and the input state as |0〉5

and ρ1, respectively. The output state (denoted as ρ ′
1) is given

by

ρ ′
1 = Tr5[B15(T )ρ1 ⊗ |0〉5,5〈0|B†

15(T )], (1)

where Tr5 is the partial trace over the ancilla mode 5 and
Bkl(T ) = exp[ϕ(aka

†
l − a

†
kal)] is the beam-splitter operator

describing the interaction between modes 1 and 5 with cos ϕ =√
T and ak,l (k = 1, l = 5) being the photon annihilation

operator of the k(l) modes. By using the Weyl expansion of
the density operator, we can express the density operator ρ1

and the vacuum projector |0〉55〈0| in the following forms:

ρ1 =
∫

d2α

π
χ1(α)D1(−α),

|0〉55〈0| =
∫

d2β

π
e− 1

2 |β|2D5(−β), (2)

where D1(α) = exp{αa
†
1 − α∗a1} is the displacement operator,

and χ1(α) is the CF of ρ1. On the other hand, by using the
transformation relation

B15D1(−α)D5(−β)B†
15 = D1(ᾱ)D5(β̄), (3)

where R = 1 − T , ᾱ = β
√

R − α
√

T , and β̄ = −β
√

T −
α
√

R, we can derive

Tr5[B15D1(−α)D5(−β)B†
15] = D1(ᾱ)Tr5[D5(β̄)]

= D1(ᾱ)πδ(2)(β̄). (4)

Here we have used the relation Tr5D5(β̄) = πδ(2)(β̄). Substi-
tuting Eqs. (2) and (4) into Eq. (1) then yields

ρ ′
1 =

∫
d2αd2β

π2
e− 1

2 |β|2χ1(α)Tr5[D1(ᾱ)D5(β̄)]

=
∫

d2αd2β

π2
e− 1

2 |β|2χ1(α)D1(ᾱ)πδ(2)(β̄)

=
∫

d2α

π
e− 1

2 R|α|2χ1(
√

T α)D1(−α), (5)

where e− 1
2 |β|2 is the CF of the vacuum state, and in the second

step in Eq. (5) the CF χ1(α) is transformed to χ1(
√

T α) with a
Gaussian term e− 1

2 R|α|2 due to photon loss. It is then convenient
to obtain the input-output relation of the teleportation scheme
shown in Fig. 1(a) as detailed below.

B. Input-output relation of teleportation scheme
in characteristic-function formalism including
photon loss or imperfect Bell measurements

Next, we consider the effect of photon loss on the relation
between input and output of the teleportation scheme in CF
formalism. Here we use BS2 and BS3 with vacuum inputs to
simulate the photon loss or imperfect Bell measurements [see
Fig. 1(b)] and denote the teleported state, entangled resource,
and auxiliary vacuum as ρ1, ρ23, and |00〉45, respectively. To re-
alize the teleportation, Alice should make Bell measurements
on modes 1 and 2. Before she makes the Bell measurements,
the unitary-state evolution can be formulated as

ρ1−5 = Uρ1 ⊗ ρ23 ⊗ |00〉45〈00|U †, (6)
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where the unitary evolution operator is defined as U. =
.B24B15B12 and Bkl are the BS operators defined as before.
In a similar way as for deriving Eq. (5), and using the Weyl
expansion for the entangled resource, the reduced output state
denoted as ρ1−3 ≡ Tr45ρ1−5 is given by

ρ1−3 = Tr45[Uρ1 ⊗ ρ23 ⊗ |00〉45〈00|U †]

=
∫

d2αd2βd2γ

π3
χ1(α)χ23(β,γ )

× Tr45[UD1(−α)D2(−β)D3(−γ )|00〉45〈00|U †]

=
∫

d2αd2βd2γ

π3
χ1(α)χ23(β,γ )Tr45[B24

× B15D1(−α1)D2(−β1)D3(−γ )|00〉45〈00|B†
24B

†
15],

(7)

where B12D1(−α)D2(−β)B†
12 = D1(−α1)D2(−β1) with

α1 = α cos θ − β sin θ , β1 = β cos θ + α sin θ , and cos2 θ

being the transmission coefficient of beam splitter B12. By
using Eqs. (1) and (4), we can obtain

ρ1−3 =
∫

d2αd2βd2γ

π3
χ1(

√
T α)χ23(

√
T β,γ )

× e− R
2 (|α1|2+|β1|2)D1(−α1)D2(−β1)D3(−γ ). (8)

Equation (8) is the representation in CF of the deduced density
operator before Bell measurements but after BS2 and BS3.

Then, as the first step of teleportation, Alice makes a joint
measurement for modes 1 and 2 at the output ports, i.e.,
measures two observables corresponding to coordinate and
momentum of modes 1 and 2. After the measurements, the
outcomes ρM (M means measurement) in mode 3 are

ρM ≡ 1

P (q,p)
Tr12[|q〉11〈q| ⊗ |p〉22〈p|ρ1−3], (9)

where P (q,p) is the probability distribution function of the
Bell measurement outcomes, P (q,p) = Tr3{Tr12[|q〉11〈q| ⊗
|p〉22〈p|ρ1−3]}, and |q〉1 and |p〉2 are the eigenstates of
coordinate and momentum operators Q1 and P2 corresponding
to modes 1 and 3, respectively.

According to the definition of the CF and using the relations

Tr1[|q〉1,1〈q|D1(α)] = ei
√

2q Im αδ(
√

2 Re α),

Tr2[|p〉2,2〈p|D2(β)] = e−i
√

2p Re βδ(
√

2 Im β), (10)

and

Tr3[D3(−γ )D3(η)] = πδ(2)(η − γ ), (11)

the CF of ρM defined as χM (q,p; η) = Tr3[ρMD3(η)] reads

χM (q,p; η) = P −1(q,p)

sin 2θ

∫
d2α

π2
exp{α∗ξ − αξ ∗}

× χ1(
√

T α)χ23[
√

T (α cot 2θ + α∗ csc 2θ ),η]

× exp

{
−R

2
[(Re α)2 csc2 θ

+ (Im α)2 sec2 θ ]

}
, (12)

where we have defined ξ = (q/ cos θ + ip/ sin θ )/
√

2. When
T = 1, Eq. (12) reduces to Eq. (2.9) in Ref. [29].

After Alice communicates the measured results (q,p)
to Bob, Bob needs to make a unitary transformation on
mode 3 to obtain the output state of the teleportation.
Here, we consider the unitary transformation to be the
displacement operator D3(Z) with nonunity and asymmet-
rical gains, where Z ≡ gqq + igpp with gq and gp being
two tunable gain parameters. Thus, after the displacement
operation, the output state can be expressed as ρD ≡∫

d2ηχM (q,p; η)D3(Z)D3(−η)D3(−Z)/π . Usually, we are
not interested in every measurement result but the average
effect. Thus, we perform an ensemble averaging over all
measurement results, and the average CF of the output state
χ̄out is given by

χ̄out(β) = Tr3

[
D3(β)

∫
dqdpP (q,p)ρD

]

= χ1(f1β − f2β
∗)χ23(β∗f3 − βf4,β)

× exp
{ − R

[
g2

p(Re β)2 + g2
q(Im β)2

]}
, (13)

where

f1 =
√

T

2
(gq cos θ + gp sin θ ),

f2 =
√

T

2
(gq cos θ − gp sin θ ),

f3 =
√

T

2
(gq sin θ + gp cos θ ),

f4 =
√

T

2
(gq sin θ − gp cos θ ), (14)

and T (R) denotes the transmissivity (reflectivity) of BS2 and
BS3 with T + R = 1, which can simulate the photon losses or
the imperfect Bell measurements.

C. Relation between input and output in characteristic-function
formalism including noise in mode 3

In this section, we consider the effect of decoherence of
mode 3 in the CF formalism. Here we consider the case
where mode 3 propagates in a noisy channel such as photon
loss and thermal noise. We assume that the decoherence
occurs after Alice’s measurement but before it reaches Bob’s
location [see Fig. 1(a)]. In the interaction picture and the
Born–Markov approximation, the time evolution of the density
matrix describing the thermal environment is governed by the
master equation (ME) [30]

d

dt
ρ(t) = κn̄(2a†ρa − aa†ρ − ρaa†)

+ κ(n̄ + 1)(2aρa† − a†aρ − ρa†a), (15)

where κ is the dissipative coefficient and n̄ is the average
thermal photon number of the environment. When n̄ = 0,

Eq. (15) reduces to the one describing the photon-loss channel.
By solving the ME in the CF form, one can find that the
evolution of the CF described by Eq. (15) is given by

χ (γ ; t) = χ (γ e−κt ; 0) exp{−�|γ |2}, (16)
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where � = (2n̄ + 1)(1 − e−2κt )/2, and χ (γ ; 0) is the CF of
the initial state ρ(0). In a similar way as for deriving Eq. (13),
the CF χ̄f of the final output state including the decoherence
on mode 3 can be calculated to be

χ̄f (β; t) = e−�|β|2χ1(f1β − f2β
∗)χ23(β∗f3 − βf4,βe−κt )

× exp
{−R

[
g2

p(Re β)2 + g2
q(Im β)2

]}
. (17)

From Eq. (17), one can see the different roles played by
the noise channel (�,κ), gain factors (gp,gq), as well as the
unbalanced BS (θ ) and the reflectivity R. The decoherence
effect from the noisy channel affects only mode 3 by means of
the exponentially decreasing weight e−κt in the arguments of
χ23. Equation (17) is the general description of the input-output
relations of the nonideal teleportation scheme in CF formalism,
which reduces to the factorized form of the output CF in Eq. (9)
herein and in Eq. (4) of Ref. [18], as expected, when κt = 0
and gq = gp = g, θ = π/4, respectively.

D. Fidelity and average fidelity

To measure the performance of the teleportation scheme,
we resort to the fidelity of teleportation, defined by
F =Tr(ρinρout), which is valid only for the pure input or output
states. In the CF formalism, the fidelity reads

F =
∫

d2λ

π
χin(λ)χout(−λ), (18)

where χin and χout are the CFs corresponding to density
operators ρin and ρout, respectively. Equation (18) is the
fundamental quantity that measures the performance of a CV
teleportation, which is often used in the following calculations.
Based on Eqs. (17) and (18), we can examine the performance
of teleportation for pure input states and any entangled
resources, including non-Gaussian ones.

In particular, when we specify the input teleported states
at Alice’s location to be coherent states ρ1 = |ε〉〈ε| with
complex amplitude ε, the CF reads χ1(λ) = e− 1

2 |λ|2+λε∗−ελ∗
.

By substituting χ1(λ) into Eqs. (17) and (18) we get

F =
∫

d2λ

π
exp

{
−1

2

(
1 + f 2

1 + f 2
2 + 2�

)|λ|2
}

× exp

{
1

2
f1f2(λ2 + λ∗2) + λ� − λ∗�∗

}

× χ23(λf4 − λ∗f3, − λe−κt )

× exp
[ − R

(
g2

p Re2 λ + g2
q Im2 λ

)]
, (19)

where � = (1 − f1)ε∗ − εf2. The amplitude of the coherent
state only appears in the parameter �. If we choose � = 0
then the fidelity will be independent of ε for any entangled
resources. The conditions of � = 0 are given by

gq = 1√
2T cos θ

, gp = 1√
2T sin θ

. (20)

This is the only choice making the fidelity independent of
ε, which allows us to have no information about the input
coherent states. The conditions shown in Eq. (20) depend on
T and θ but are independent of the decoherence involved in
mode 3. This is true for any entangled resources. In particular,

when θ = π/4, Eq. (20) reduces to the case in Ref. [18]; while
for T = 1 and θ = π/4, this result is just the case discussed
in Ref. [31].

In general, the fidelity in Eq. (19) depends on the teleported
input states which are usually unknown by the sender and the
receiver. Here, we introduce the average fidelity to describe the
performance of a teleportation scheme with unknown inputs.
Assuming that partial knowledge of the input states is known,
e.g., the probability distribution of the input states is given by
P (μ) with

∫
P (μ)dμ = 1 where the integral is taken over all

possible values of μ, the average fidelity is then given by

F̄ =
∫

F(μ)P (μ)dμ. (21)

In the following sections, we take three probability distribu-
tions into account for input coherent states, such as line-, circle-
and two-dimensional Gaussian distributions [20].

III. TWO-MODE SQUEEZED VACUUM
AS ENTANGLED RESOURCES

In this section, we use the usual TMSV as entangled
resources to analyze the performance of these three tun-
able parameters for improving the fidelity of teleportation.
The TMSV entangled resource, most commonly used in
continuous-variable teleportation, can be generated by the
parametric down-conversion (PDC) process and theoretically
can be defined as

|�〉sv = S(r)|00〉 = sechr exp(a†b† tanh r)|00〉, (22)

where S(r) = exp{r(a†b† − ab)} is the two-mode squeezing
operator with r being the squeezing parameter, and a†(a) and
b†(b) are photon creation (annihilation) operators. According
to the definition of the CF, the CF of the TMSV is given by

χsv(α,β) = exp
{− 1

2 (|α|2 + |β|2) cosh 2r
}

× exp
{

1
2 (αβ + α∗β∗) sinh 2r

}
. (23)

In particular, for the largest entangled resource with r → ∞,
we have limr→∞ χsv(β∗,β) = 1. For ideal Bell measurements
with T = 1 and R = 0, as well as balanced BSs (θ = π/4)
and g1 = g2 = 1, we have f1 = f3 = 1 and f2 = f4 = 0.
Substituting these into Eq. (13) yields limr→∞ χ̄out(β) =
χ1(β), i.e., a perfect teleportation fidelity is achieved, as
expected.

When Alice uses the TMSV as entangled resource to
teleport the coherent states, the fidelity in Eq. (19) can be
calculated as

F = 1√
G

exp

{−K1|�|2 + K2(�2 + �∗2)

G

}
, (24)

where we have defined G = K2
1 − 4K2

2 and

K1 = 1

2

(
1 + f 2

1 + f 2
2 + 2�

) + R

2

(
g2

p + g2
q

)
+ 1

2

(
f 2

3 + f 2
4 + e−2κt

)
cosh 2r − f3e

−κt sinh 2r,

K2 = 1

2

{
f1f2 − R

(
g2

p − g2
q

)/
2

+ f3f4 cosh 2r − f4e
−κt sinh 2r

}
, (25)
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and have used the following integration formula:∫
d2z

π
exp(ζ |z|2 + ξz + ηz∗ + f z2 + gz∗2)

= 1√
ζ 2 − 4fg

exp

{−ζ ξη + ξ 2g + η2f

ζ 2 − 4fg

}
. (26)

From Eq. (24) one can see that the fidelity F depends on
the amplitude of the teleported coherent states. In the next
sections, we consider two kinds of cases: one is independent
of the amplitude by the choice in Eq. (20) and the other is
not, but partial information about the input-state distribution
is known.

IV. ε-INDEPENDENT OPTIMAL FIDELITY

In this section, we examine the fidelity for teleporting
coherent states with two gain factors fixed to be gq =
1/(

√
2T cos θ ), gp = 1/(

√
2T sin θ ). This choice allows us

to have no information about the amplitude of coherent states.
Noticing that f1 = 1, f2 = 0, f3 = csc 2θ , and f4 = − cot 2θ ,
then from Eq. (24) we get

Fε = {H [1/(
√

2T c1),c2]H [1/(
√

2T c2),c1]}−1/2, (27)

where c1 = cos θ, c2 = sin θ , and we define the function
H (x,y) as

H (x,y) = 1
2 + � + x2(1 + 2Ty2 sinh2 r)

+ 1
2e−2κt cosh 2r − xye−κt

√
2T sinh 2r. (28)

It is clear that the fidelity Fε depends on multiparameters such
as r, κt, n̄, T , and θ . At fixed r, κt, n̄, and T , the optimal
fidelity of teleportation is defined as

Fopt = max
θ

F(r,θ ). (29)

To maximize the fidelity in Eq. (27) over θ , we can take
∂Fε/∂θ = 0, which leads to the condition

cos 2θ = 0, (30)

or

csc 2θ = 1

2

{
e−κt sinh 2r

1/T + 2 sinh2 r

+ e−κt sinh 2r

1/T + 1 + 2� + e−2κt cosh 2r

}
. (31)

It is not difficult to see that the first term (F1) in the curly
bracket of Eq. (31) is less than unity, and the second term (F2)
satisfies (by taking T = 1 and n̄ = 0)

e−κt sinh 2r

1/T + 1 + 2� + e−2κt cosh 2r
� e−κt sinh 2r

3 + 2e−2κt sinh2 r
. (32)

By numerical calculation, we find that, when the squeezing
parameter r is less than a threshold value of about 2.1, the sum
of (F1 + F2)/2 is always less than unity, which will lead to
an impossible case, i.e., csc 2θ < 1. Thus, within the region
of the threshold value, the optimal point is at θ = π/4 and
gq = gp = 1/

√
T , which is independent of n̄ and e−κt . The

threshold value of r will increase with increasing n̄ and 1/T .
Actually, the presence of the threshold value results from the

FIG. 2. The optimal fidelity for teleporting coherent states as a
function of the squeezing parameter r with some different values
of T and κt when n̄ = 0. Here, solid lines are the transmissivity
T = 1, 0.95, 0.9, 0.85, 0.8 and κt = 0. Blue-dash lines are κt =
0.1, 0.2, 0.3, 0.4 and T = 1. The corresponding lines are arranged
from top to bottom with the increasing 1/T and κt , respectively.

decoherence on mode 3, since F2 is always less than unity for
any squeezing r when κt = 0.

Substituting the above optimal condition into Eq. (27), we
get the optimal fidelity

Fopt =
[

1

T
+ � + e−κt (cosh κt cosh 2r − sinh 2r)

]−1

. (33)

It is clear that Fopt decreases with the increasing n̄ and 1/T ,
as expected. In particular, when κt = 0 and T = 1, Eq. (33)
reduces to Fopt = (1 + tanh r)/2, which is the best fidelity
when we use the coherent states as inputs and the TMSV as
entangled resources in the VBK scheme. In addition, when
κt → ∞, Fopt → ( 1

T
+ n̄ + cosh2 r)−1, which decreases with

the increasing n̄, r and the decreasing T .
In order to examine the effects of different parameters on

the optimal fidelity, we plot the optimal fidelities as a function
of squeezing parameter r for different κt and T in Fig. 2. From
Fig. 2, we can see that, for κt = 0 (without decoherence on
mode 3), the optimal fidelities increase monotonically with
the increasing squeezing parameter r and the transmissivity
T . However, when we consider the effects of decoherence
on mode 3, the optimal fidelities first increase and then
decrease with the increasing r . The maximal value and the
corresponding value of rmax reduces as κt increases. In fact, we
can take ∂Fopt/∂r = 0 to get the following simple expression
for rmax (cosh κt = coth 2rmax):

e2rmax = coth
κt

2
. (34)

It is interesting to note that rmax is independent of T and n̄.

V. AVERAGE OPTIMAL FIDELITY AND EFFECT
OF TUNABLE PARAMETERS

In the previous section, we considered the ε-independent
optimal fidelity. However, when gq �= 1/(

√
2T cos θ ) and

gp �= 1/(
√

2T sin θ ), the scenario is changed dramatically. In
this case, the fidelity in Eq. (24) depends on the amplitude ε

of the coherent state. In this section, we examine the average
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optimal fidelity for three different probability distributions of
the teleported input states where partial information of the
input state is known by Alice and Bob. For example, they may
be completely sure of the phase of the input states but the
amplitude is unknown [20].

A. Optimal fidelity for teleporting coherent states on a line

First, let us consider the teleportation of coherent states
on a line, i.e., the phase is fixed but the amplitude can vary.
Without loss of generality, we assume here that the phase of
the teleported coherent states is zero because we can always
achieve this by rotating frame. The corresponding probability
distribution can be given by (letting ε = x + iy)

P (x,y) = 1

2L
δ(y) ×

{
1, |x| � L

0, otherwise. (35)

Substituting Eqs. (24) and (35) into Eq. (21) yields the average
fidelity

F̄line = 1

2L
√

G

∫ L

−L

dxe− M
G

x2

=
√

π

2L
√

M
Erf

{
|1 − √

2T gq cos θ |
[H (gq, sin θ )]1/2L−1

}
, (36)

where Erf{a} = 1/
√

π
∫ a

−a
e−x2

dx is the error function and

M· = ·(1 − √
2T gq cos θ )2H (gp, cos θ ).

Noticing the separability of gq and gp in F̄line, the optimal
value of gp can be obtained by ∂F̄line/∂gp = 0 equivalent to
∂H (gp, cos θ )/∂gp = 0, which leads to

gopt
p = e−κt

√
2T cos θopt sinh 2r

2(1 + 2T cos2 θopt sinh2 r)
. (37)

It is interesting to note that the optimal value of g
opt
p is related

to e−κt and T but independent of the average thermal-photon
number. In particular, for the ideal case of κt = 0 and T = 1,
Eq. (37) just reduces to Eq. (27) in Ref. [28], except for a factor√

2 which is from the different definition of gain factors.
Next, we maximize the fidelity by numerical calculation.

At fixed r , κt , n̄, and T , the optimal fidelity of teleportation
can be defined as

F̄opt
line = max

gq ,gp,θ
F̄line(r,gq,gp,θ ). (38)

In Fig. 3 we plot the optimal fidelity as a function of squeezing
parameter r for some different values of parameters κt , n̄, and
T . In Fig. 3(a), we consider the optimal fidelities with some
different values of L and T = 1, n̄ = 0 as well as κt = 0.2
(for comparison, the case of κt = 0 is also plotted as dashed
lines). From Fig. 3(a), we can see that the optimal fidelities
grow with increasing r and 1/L. The fidelities can be greatly
optimized with respect to the standard teleportation scheme
(STS with gq = gp = 1 and θ = π/4; see short dash-dot-dot
lines). Especially for a smaller L (e.g., L = 0.1), the optimal
fidelity can almost access unity. While for a larger L (e.g.,
L = 300), the optimal fidelity approaches a value (less than
one but still larger than 0.8), which is still superior to that in
the STS. In Fig. 3(b), we consider the effect of different values
of T on the optimal fidelity at κt = 0,0.2. It is shown that

FIG. 3. The optimal fidelity for teleporting coherent states (CSs)
as a function of r with n̄ = 0, κt = 0,0.2 corresponding to solid
and dash lines, respectively. (a) L = 0.1,0.5,1,3,300 and T = 1; for
comparison, the teleportation in the STS is also plotted as dash-dot
and dash-dot-dot lines for κt = 0,0.2; (b) T = 1,0.95,0.9,0.85,0.8
and L = 1. The corresponding lines are arranged from top to bottom
with the increasing L and 1/T for a given κt .

the optimal values decease with increasing 1/T for a given
κt ; while for the case of T �= 1, by comparing the fidelities at
κt = 0,0.2 for a given T , it is found that the optimal fidelities
first increase and then decrease with increasing r , and it is
interesting to note that the optimal fidelity with κt = 0.2 is
superior to that with κt = 0 when r exceeds a certain value.
This indicates that our scheme may protect the teleportation
fidelity from noise.

To see more clearly whether this scheme has the ability
against the decoherence by using these tunable parameters, we
plot here the optimized fidelity as a function of the evolution
time κt for some different L with n̄ = 0, r = 0.8, and T = 0.9.
Figure 4 shows that the fidelity by optimizing the three tunable
parameters remains above 0.8 even for large value of κt . The
result is true even for the limitation of L → ∞. The teleported
fidelities in the standard teleportation scheme (with gq = gp =
1 and θ = π/4) are shown in the dashed lines in Fig. 4. We
see that the optimized fidelities by three tunable parameters
present higher ability against the decoherence than those in
the standard teleportation scheme.

In addition, we compare the optimal effects of three tunable
parameters. In Fig. 5, we plot the optimized fidelity over
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FIG. 4. The optimal fidelity for teleporting CSs as a function of
κt with n̄ = 0, r = 0.8, T = 0.9 and L = 0.1, 0.5, 1, 3, 300 from
top to bottom, respectively. The dashed lines are the results in the
standard teleportation scheme.

different tunable parameters as a function of squeezing pa-
rameter r for a given L = 1 with T = 1, n̄ = 0, and κt = 0.2.
It is found that the optimization by three tunable parameters
is the best when compared to single- and two-parameter
optimization, especially when r is small. Thus, it is necessary
to perform a simultaneous balanced optimization over these
three parameters to obtain a maximization of teleportation
fidelity for the probability distribution in Eq. (35).

B. Optimal fidelity for teleporting coherent states on a circle

In this section, we consider the optimal fidelity for tele-
porting CSs on a circle, i.e., ε = |ε|eiϕ ≡ Aeiϕ with a fixed
amplitude |ε| = A and unknown phase ϕ. In this case, the
distribution function is P (A,ϕ) = δ(|ε| − A)/2π which satis-
fies the normalization condition

∫ ∞
0

∫ 2π

0 P (A,ϕ)d|ε|dϕ = 1.
In this case, the average teleportation fidelity can be calculated
as

F̄circle = e−R1

√
G

∞∑
k=0

(R2)2k

k!k!
, (39)

FIG. 5. The optimal fidelity for teleporting CSs as a function of
r with n̄ = 0, κt = 0.2, T = L = 1 for three tunable optimization
parameters.

where R1 = A2{K1[(1 − f1)2 + f 2
2 ] + 4K2(1 − f1)f2}/G,

R2 = A2{K1(1 − f1)f2 + K2[(1 − f1)2 + f 2
2 ]}/G, and

G = K2
1 − 4K2

2 . Maximizing F̄circle over these three
tunable parameters, we can get the optimized fidelity
F̄opt

circle = maxgq ,gp,θ F̄circle(r,gq,gp,θ ). Our numerical
calculations show that, for the circle probability distribution,
the maximum fidelity can be achieved when gq = gp = g and
θ = π/4, which is different from the case in Sec. V A. Under
this condition we have f1 = f3 = g

√
T and f2 = f4 = 0, as

well as R2 = K2 = 0. Thus the optimized fidelity is given by

F̄opt
circle = 1

�
exp

{
−A2

�
(1 − g

√
T )2

}
, (40)

where we have set � = � + [g2(R + 1) + 1 + (g
√

T −
e−κt )2 cosh 2r + 2g

√
T e−κt e−2r ]/2. It is obvious that � > 0.

In particular, Eq. (40) reduces to Eq. (33) in Ref. [28] when
κt = 0 and T = 1.

Using Eq. (39) or (40), we plot the optimal fidelity as a
function of squeezing parameter r for some different values
of A and T in Fig. 6. In Fig. 6(a), we consider the optimal
fidelities with some different values of A with T = 1, n̄ = 0

FIG. 6. The optimal fidelity for teleporting CSs as a function of
r with n̄ = 0, κt = 0, 0.2 (a) A = 0.1, 0.5, 1, 3, 300, and T = 1;
(b) T = 1, 0.95, 0.9, 0.85, 0.8, and A = 1. For each optimized case
(associated with a special plot style), the corresponding lines are
arranged from top to bottom with the increasing A and 1/T at the
point r = 0, respectively. For each plot style, the upper curve is for
κt = 0 while the lower curve is for κt = 0.2.
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as well as κt = 0, 0.2. From Fig. 6(a), we can see that the
optimal fidelities grow monotonically with increasing r for
κt = 0, but for κt = 0.2 the optimal fidelities first increase
and then decrease with increasing r , especially for a large A

(say A = 3). In addition, for a small A, the optimal fidelity
almost approaches unity. In Fig. 6(b), we also examine the
effect of different T on the fidelity. It is interesting to notice
that the optimal fidelity with κt = 0.2 can be better than that
with κt = 0 when the squeezing r exceeds a certain value.
This case is similar to that in Fig. 3(b). In Fig. 6, the point rmax

corresponding to the maximum fidelity depends on κt and, for
given κt , A, and T , the value of rmax can be determined by
taking ∂F̄opt

circle/∂r = 0, which leads to

{� − A2(1 − g
√

T )2}∂�

∂r
= 0. (41)

After a straightforward calculation, we obtain

tanh 2rmax = 2g
√

T e−κt

g2T + e−2κt
. (42)

or

e4rmax − be2rmax + c2 = 0, (43)

where b = 4[A2(1 − g
√

T )2 − �]/(g
√

T − e−κt )2, and c =
(g

√
T + e−κt )/(g

√
T − e−κt ). In particular, when g = 1/

√
T

the fidelity is independent of the amplitude A and since � > 0,
the value of rmax in Eq. (42) reduces to that in Eq. (34).

In Fig. 7, choosing the same values of parameters T , r ,
and n̄ as in Fig. 4, we plot the optimal fidelity as a function
of κt . For comparison, we also plot the fidelity without
the optimization, i.e., gq = gp = 1 and θ = π/4 (see dashed
lines). Figure 7 shows that the teleportation fidelity can be
always above the classical limit 0.5 up to a large value
of κt (�2) when the amplitude A is less than about 1.7.
When A > 1.7, it can go below the 0.5 for A > 1.7 when
κt exceeds a certain threshold value. The optimal fidelities
with A = 15, 300 are indistinguishable. In the STS, the fidelity
is less than 0.5 when A > 15. Comparing the fidelities with
and without optimization, it is shown that the former have
better teleportation performance than the latter. However, this

FIG. 7. The optimal fidelity for teleporting CSs as a function of
κt with n̄ = 0, r = 0.8, T = 0.9 and A = 0.1, 0.5, 1, 1.7, 3, 300
from top to bottom, respectively. The dashed lines are the results in
the standard teleportation scheme.

improvement is not as good as that shown in Fig. 4 where the
optimal fidelities are over 0.8 for any L and κt � 2.

C. Optimal fidelity for teleporting coherent states
by two-dimensional Gaussian distribution

In this section, we consider another probability
distribution—the two-dimensional (2D) Gaussian distribu-
tion. The corresponding distribution is given by P (α) =
1/(πχ ) exp[−|α|2/χ ] satisfying

∫
P (α)d2α = 1 [18,20,32],

where the variance parameter χ determines the cutoff of the
amplitude α. By using Eqs. (21) and (24), the averaged fidelity
can be calculated as

F̄G = 1√
H (gp, cos θ ) + χ (1 − √

2T gp sin θ )2

× 1√
H (gq, sin θ ) + χ (1 − √

2T gq cos θ )2
, (44)

where the function H (x,y) is defined in Eq. (28) [(K1 +
2K2) = H (gq, sin θ ), (K1 − 2K2) = H (gp, cos θ )]. Notice
that the parameters gq and gp are independent from each
other in Eq. (44), thus it is not difficult to obtain the
optimal parameters by calculating ∂F̄G/∂gq = ∂F̄G/∂gp =
∂F̄G/∂θ = 0. The optimal value is given by θ = π/4 and
gq = gp = g, where g is

g =
√

T (e−κt sinh 2r + 2χ )

2[1 + T (sinh2 r + χ )]
. (45)

At this optimal point, the average optimized fidelity can be
expressed as

F̄opt
G = 1

H (g,1/
√

2) + χ (1 − g
√

T )2
. (46)

It is clearly seen that the optimal factor g depends not
only on T , but also on the evolution time κt . In particular,
when T → 1 and κt → 0, Eq. (45) reduces to the result in

FIG. 8. The optimal fidelity for teleporting CSs as a function
of r with n̄ = 0, T = 1, χ = 0.1, 0.5, 1, 3, 300, and T = 1.

For each optimized case (associated with a special plot style),
the corresponding lines are arranged from top to bottom with
the increasing χ . κt = 0, 0.2 corresponds to solid and dash lines,
respectively.
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FIG. 9. The optimal fidelity for teleporting CSs as a function of
κt with n̄ = 0, r = 0.8, T = 0.9, and χ = 0.1, 0.5, 1, 3, 300 from
top to bottom, respectively. For comparison, the fidelities with g = 1
are plotted here (dash lines).

Refs. [28,33]. In addition, in the limit χ → ∞ which implies
that the probability distribution includes the whole complex
plane, we have g → 1/

√
T , which corresponds to the fidelity

independent of ε.
Using Eq. (44) or (46), we plot the optimal fidelity as a

function of squeezing parameter r and κt for some different
values of χ in Figs. 8 and 9, respectively. From Fig. 8, we see
that the smaller the distribution χ is, the higher the optimal
fidelity is. As χ increases, which implies that we have less
knowledge of the amplitude of the teleported states, the optimal
fidelity approaches to that in the standard scheme (g = 1). In
addition, as r increases, the fidelity first increases up to rmax,
and then decreases for a larger values of r for a given big T χ .
Actually, by using ∂F̄opt

G /∂r = 0, we get

e2rmax = (eκt + 1)T χ + 1

(eκt − 1)T χ − 1
. (47)

For instance, when T = 1, χ = 300, and κt = 0.2, then
rmax � 1. 16, which is in agreement with the numerical result
in Fig. 8. In Fig. 9, we also consider the effect of decoherence
on the fidelity. We can see that the results are similar to
those for the case of circle distribution. Among the three
distributions used above, the line distribution presents the
most improvement for fidelity, while the Gaussian distribution
presents the least improvement. Nevertheless, for three cases
it is clearly shown that the fidelity of CV teleportation can
be improved by using the tunable parameters even in a noise

environment when compared with the standard teleportation
scheme.

VI. CONCLUSIONS

In this paper, we examine the performance of three-tunable
parameters in realistic scheme of CV quantum teleportation
with input coherent states and the TMSV entangled resources.
For our purpose, we derive the input and output relation
in the CF formalism, which is convenient for calculating
the teleportation fidelity for non-pure state inputs and any
entangled resources. In this realistic scheme, including the
noise effects and imperfect Bell measurements, we have
derived the condition that the fidelity is independent of the
amplitude of input coherent states for any entangled resource.
To investigate the effect of three-tunable parameters on the
fidelity of teleportation in the nonideal scheme, we derived
the analytical expressions of the optimal fidelity for input
coherent states with three different probability distributions. It
is theoretically shown that the usefulness of tunable parameters
for improving the fidelity of teleportation with or without the
effect of environment and imperfect measurements. In partic-
ular, for the input coherent states with a linear distribution, the
optimization with three tunable parameters is the best one with
respect to single- and two-parameter optimization, especially
in the region of small squeezing.

It would be interesting to extend the present analysis to tele-
port two-mode states (ideal or nonideal cases) by using multi-
partite (non-) Gaussian entangled resources in the formalism of
CF. In addition, a recent comparison between the well-known
CV VBK scheme and the recently proposed hybrid one by
Anderson and Ralph (AR) has been made [34,35]. It is shown
that the VBK teleportation is actually inferior to the AR tele-
portation within a certain range, even when considering a gain
tuning and an optimized non-Gaussian resource. Thus it may
be worthwhile considering whether these three-parameter op-
timizations can further improve the fidelity in the VBK scheme
over that in the AR scheme, especially in the nonideal scheme.
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