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Within the quantum phase representation we derive Heisenberg limits, in closed form, for NOON states and
two other classes of states that can perform better in terms of local performance metrics relevant for multiply
peaked distributions. One of these can also enhance the superresolution factor beyond that of a NOON state of
the same power, at the expense of diminished fringe visibility. An accurate phase estimation algorithm, which
can be applied to the minimally resourced apparatus of a standard interferometer, is shown to be resilient in the
presence of additive white-Gaussian noise (AWGN). In the limit of no AWGN the algorithm achieves over nine
digits of accuracy for the case of a four-photon NOON state, orders of magnitude below its Heisenberg limit.
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I. INTRODUCTION

Quantum phase estimation plays an important role in
quantum computing and quantum sensing applications. With
regard to quantum computing, phase estimation is often
implemented via the inverse of the quantum discrete Fourier
transform (QDFT). Phase estimation via QDFT is an integral
step in many quantum algorithms, including the assessment
of periodicity in Shor’s algorithm, etc. [1,2]. Quantum com-
puting is typically realized as quantum circuits implementing
algorithms on individual qubits [3]; however, these can also
be realized as quantum multiparticle interferometers [4,5]
along the lines of Feynman’s original ideas [6]. A mapping
between quantum circuits, interferometers, and spectrometers
[7], coupled with linear optics realizations [8], leads naturally
to a quantum sensing perspective that is realizable via beam
splitters, phase shifters, and photodetectors.

Therein, in addition to the achievement of phase mea-
surement accuracies below the shot-noise limit [9], the
quantum interference effects in electromagnetic fields have led
to superresolving phase measurements [10,11] (also known
as superresolution), which also circumvents the Rayleigh
diffraction limit in lithography [12] and imaging [13]. In
essence, N photons of a field at wavelength λ are utilized
to perform “quantum sensing” with an effective wavelength of
λ/N , while still utilizing sources, detectors, and propagation
properties associated with an actual wavelength λ. In the
standard methods, the improvement factor N has been limited
to date [14–16]. This limitation arose primarily because in
order to observe these higher-order fringes, the standard
schemes relied on coincidence detection methods. Thus, the
measurement apparatus increases in complexity with N . It
was thought that coincidence detection schemes of order N

were required since the superresolving fringes vanish in the
output of a first-order interferometer. Fortunately, however, a
method of extracting this higher-order phase information from
a standard [17] interferometer has been found [18]. In this
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method (termed the phase function fitting algorithm, PFFA)
the apparatus complexity is independent of the superresolving
improvement factor N . Herein, we examine the robustness of
the PFFA to additive white-Gaussian noise (AWGN), after first
gleaning insights and deriving NOON (and other state) limits
within the quantum phase [19,20] representation.

The quantum phase representation that is complementary
to the measurement of the difference of photon numbers
between two harmonic oscillators is useful for visualizing and
calculating the phase information associated with a quantum
state, although its apparatus has yet to be realized. Herein
it is used to derive Heisenberg limits (without bounds or
approximation) for three classes of states and to show how
an entanglement of NOON states with the vacuum state can
surpass the NOON state in terms of two local performance
measures appropriate for multiple-peaked distributions. Both
measures, the half width at half maximum (HWHM) and the
square root of the bin variance, scale as ∼1/N (where N is the
average photon number) for all three classes of states, which
are Heisenberg limited in that sense. They differ, however, in
the coefficient which multiplies 1/N , and one of these can go
to zero but only at the expense of reduced fringe visibility.

The simplest phase estimation apparatus that we know how
to realize is a standard quantum interferometer. Therein quan-
tum resources are diminished by exploiting the multiphoton
interferences inherent within the probability amplitudes of
the quantum electromagnetic field itself. The quantum theory
of an interferometer is based on the observation by Yurke
et al. [21] that it is mathematically isomorphic to rotating a
quantum state by an unknown angle and estimating that angle
from the projection of the rotated state onto the z-component
angular momentum eigenkets. This stems from Schwinger’s
observation that the algebra of two uncoupled harmonic
oscillators can reproduce the algebra of angular momentum
[22]. In terms of eigenvalues we have m = (nu − nd )/2 for
the eigenvalue associated with Ĵz and j = (nu + nd )/2 for the
eigenvalue associated with Ĵ 2 ≡ Ĵ 2

x + Ĵ 2
y + Ĵ 2

z , where nu and
nd are the photon number eigenvalues of the two oscillators.
The interferometer’s statistics are Pm = |�m(�)|2, which is
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a probability distribution in discrete m space, under relative
interferometer-arm phase shift �, and the underlying wave
functions are �m(�) ≡ 〈m|D̂x(�)|ψ〉, where D̂x(�) is the
analogous rotation about the x axis by �, the unknown signal
we wish to estimate.

The general theory of quantum angle measurement (com-
plementary to the measurement of a single component of
angular momentum) is described in [20,23], but for states of
unique j for all m (as for all states considered herein) the
angle or relative-phase measurement, taken at a “snapshot” in
absolute time, reduces to what one would naturally expect for
complementary quantities: a Fourier transform between wave
functions. Although this can be formally justified only on a
product space of two oscillators, with dimension large enough
to give a complete description of the quantum measurement
(in terms of sets of commuting observables, or, equivalently, a
collapsible wave function), for the states considered herein we
can simply take a Fourier transform of the complementary
wave function ψj,m ≡ 〈j,m|ψ〉, the magnitude square of
which yields the quantum phase distribution, viz.,

ψ(φ) =
∑

j

j∑
m=−j

ψj,meimφ, P (φ) = |ψ(φ)|2
2π

. (1)

II. QUANTUM PHASE REPRESENTATION OF
THREE CLASSES OF STATES

Although its apparatus has yet to be realized, the phase (or
angle) representation is useful for visualizing and calculating
the phase information associated with a quantum state. Herein
we use it to derive Heisenberg limits (without bounds or
approximation) for three classes of states, the latter two
of which can be written in the following form (times a
normalization constant):

|ψ〉 = r2(|2jmax〉u|0〉d + |0〉u|2jmax〉d )

+ r1(|jmax〉u|0〉d + |0〉u|jmax〉d ) + |0〉u|0〉d .
The first of the three classes considered is the NOON states; the
second class (termed substates) is an entanglement of a NOON
state of j = jmax/2, with an equally likely superposition of a
NOON state of j = jmax and the vacuum state (r2 = 1/

√
2);

and the third class (termed NOON-vac states) are composed of
an entanglement of a NOON state with the vacuum state (r1 =
0). In all cases the cost function is the expected number of
photons used, N = 2〈j 〉, and our metrics are local performance
measures appropriate for multiple-peak distributions (half
width at half maximum and bin variance) as well as fringe
visibility and other aspects of the probability distribution
function (PDF) of the quantum phase measurement P (φ),
including the number of peaks and their height.

The Fourier transform of the number-ket expansion
coefficients of the NOON state readily yields P (φ) =
(1/π ) cos2(jmaxφ), which has N = 2jmax peaks (of height
1/π ) separated by perfect nulls [hence, the fringe visibility
V ≡ (max − min)/(max + min) is always unity for NOON
states in the phase representation, independent of jmax], and
we observe the superresolving aspect of obtaining N identical
peaks or fringes, in contrast to the single-peaked PDF which
would arise in the case of a coherent state. As a consequence

of the Fourier transform, the periodicity (here the number
of peaks, which is also the number of identical bins) is set
by the minimal separation of values of m for which we
have nonzero number-ket expansion coefficients (1 for the
coherent state, 2jmax for the NOON state). The variance on a
2π interval of this multiple-peak PDF is clearly not a useful
performance measure, so we consider bin variance, defined to
be the variance of the PDF over one of these identical bins,
renormalized to the bin width (for NOON states that is a 2π/N

interval) and centered on that bin (to avoid branch-cut effects).
For example, in the case of a NOON state, the bin variance
would be ∫ π/N

−π/N

dφ (N/π ) φ2 cos2(Nφ/2). (2)

Inherent to the utility of this metric (and to the use of
superresolution in general) is the assumption that we can
correctly assess the bin to which any particular estimate
corresponds; otherwise, we make a bin error (the probability
of which will be influenced by fringe visibility and how one
tracks a dynamically varying unknown phase). We similarly
consider the local (defined on one bin) HWHM and obtain the
NOON state results

HWHM = π

2N
, bin variance = π2/3 − 2

N2
. (3)

The square root of the bin variance and HWHM both scale as
1/N in terms of our cost function. Indeed, all three classes
of states considered herein follow a 1/N scaling, but the
difference in the coefficient multiplying 1/N varies widely and
can even go to zero at the cost of diminished fringe visibility.
Other differences, gleaned from the PDFs, will impact upon the
probability of bin error in a practical system, but the fact that
the other two classes of states can yield coefficients better than
those in Eq. (3) indicates that state optimization remains a field
open for investigation (e.g., the NOON state is not optimal,
even in the above two metrics). The fact that the NOON states
are also not optimal for interferometry is well known [9,24],
and the relationship between the quantum phase measurement
and the SU(2) interferometer statistics is delineated in [18,25].

Within the second class of states the strategy is to utilize
a subharmonic to, in effect, delete alternate bins and sharpen
the PDF within the remaining bins. Details of a bin-dropping
protocol in [26] show that the probability of a dropped bin
achieves its minimal value of less than 3.164% at r1 = 1.
Figure 1 compares the quantum phase distribution of an N = 8
substate (r1 = 1, jmax = 8) to that of a NOON state of N =
8 (jmax = 4). The bin variance on the retained bin and the
HWHM [26,27] are readily derived in the phase representation
and are always smaller than the NOON state limit of (1). Note
in passing that the enhanced peaks of the substates also permit
more rapid acquisition of useful phase estimates during the
collection of the histograms which evolve into these PDFs
(so these higher peaks can be useful for tracking a dynamic
unknown phase).

The third class of states considered herein has r1 = 0, and
r2 is a free parameter. These are entanglements of a NOON
state (of j = 2jmax → jmax) with the vacuum state, termed
NOON-vac states. To clarify the physics we let r2 = 1/

√
2n

and initially consider n to be an element of the set of integers.
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FIG. 1. NOON (blue solid line) and r1 = 1 substate (red dashed
line) quantum phase PDFs for N = 8.

For n = 1 the NOON-vac state is equivalent to a substate of
r1 = 0. The number of bins for this class of states is jmax

(the minimal distance in m of the NOON state component is
2jmax, but that distance is reduced to jmax via inclusion of the
vacuum state), and there is no motivation for any bin-dropping
protocol.

The strategy for the NOON-vac states is to make jmax

large (to reap the benefits of superresolution) but at the
same time reduce the probability of actually being found in
the NOON state component by also increasing n since then
we can simultaneously constrain N ≡ 2〈j 〉, which is 2〈j 〉 =
2jmax/(n + 1) for these states. We find that the probability
amplitude of the vacuum state can strongly interfere with the
probability amplitude of the NOON state component even
when the probability of actually being in that component is
greatly diminished and that the only fundamental trade-off in
this scheme is a slowly diminished fringe visibility as V =
(2

√
2
√

n)/(2 + n) [28]. In designing states for the algorithm
of the next section the peaks are more important than the
nulls. It can be shown that as we increase n, the peaks of
the NOON-vac PDFs come down and become equal to those
of the NOON states when n = 8 (independent of jmax), as
illustrated for N = 4 in Fig. 2. As we continue to increase
n, the superresolving enhancement aspect (i.e., the number of
fringes or bins at a fixed N ) continues to increase while the

FIG. 2. NOON (red solid line) and NOON-vac state (blue dashed
line) quantum phase PDFs for N = 4 (and n = 8).

visibility diminishes, until at n = 2(17 + 12
√

2) ≈ 67.9411,
min = max/2, and beyond this value of n the HWHM metric
has no meaning. For n less than this value, the formula for
HWHM [29] is better than 17.87 times smaller than the NOON
state limit at n = 67. Similarly, the coefficient (multiplying
N−2) in the formula for the bin variance of the NOON-vac
states,

2(3 − 24
√

2
√

n + 2π2 + 2nπ2)

3(n + 1)3
, (4)

is smaller than the NOON state limit (and is monotonically
decreasing in n) for all n � 1. Bin variance maintains its
meaning, even when min > max/2, and its corresponding
coefficient goes to zero as n → ∞. With V > 1/3 at n = 67
the bin-variance coefficient is better than 569.9 times smaller
than the NOON state limit.

III. THE PHASE FUNCTION FITTING ALGORITHM

The phase function fitting algorithm [18] consists of the fol-
lowing protocol. Under a given, but unknown, value of � one
measures the interferometer’s statistics and retains the 2j + 1
probabilities for each possible value of m: Pm = |�m(�)|2.
To incorporate knowledge of the allowable quantum results
one then calculates the interferometer’s statistics for some
dummy variable x: fm(x) = |�m(x)|2 (for the four-photon
NOON state of our simulations herein, those are 2j + 1 = 5
different functions). One then performs a least-mean-square
error (LMS) fit of these 2j + 1 functions to the measured
2j + 1 numbers to perform an optimal estimation of parameter
x, thereby yielding our estimate of �.

In so doing, our simulations yield surprisingly good results:
over nine digits of phase accuracy for a NOON state input of
j = 2 when � ranges over a bin width, here an interval of
π/4 [30]. At first this might seem to be either an impossibly
good result (over nine digits of accuracy from only four
photons would be orders of magnitude below the Heisenberg
limit of 1/4) or a ridiculously trivial result (certainly, similar
extractions of information might be made from the ideally
collected statistics of other measurements). There is no
contradiction here; instead this result teaches the following:

(1) Local performance measures are important character-
izations of measurement statistics, but they do not uniquely
identify what can be achieved when further processing (i.e.,
an algorithm) is applied.

(2) Most significantly for phase estimation, it specifically
demonstrates that the superresolving information has not
vanished from the measurement performed in a quantum
interferometer. These higher-order fringes vanished only in the
standard (first-order) way of extracting information from the
interferometer statistics. Since the higher-order information is
uniquely extractable (over a nontrivial range), this information
has not been destroyed in the measurement process. This
significantly opens the door to the possibility of minimally
resourced quantum interference sensors in which the quantum
resources are dramatically reduced via classical signal pro-
cessing that incorporates knowledge of the allowable quantum
results.

This is not an impossible result, from point (1) above, and
in the static limit [18] there is always a sense in which an
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FIG. 3. Average PFFA error (dots) and average of the absolute
value of the PFFA error (line) versus AWGN noise power.

infinite number of photons is implied [31]; it is also not a
trivial result because it cannot be applied to arbitrary quantum
measurements. If, for example, our apparatus consisted of a
first-order interferometer (in which we subtract and average
the two photodetector currents), the desired phase information
vanishes entirely, and no further processing can extract it.
If, instead, we multiply those two currents (second-order
coincidence detection) or do a parity measurement [32], then
other limits are obtained. Note in passing that the PFFA does
not require any presently unachievable amount of number
resolving in the photodetectors. Indeed, in the four-photon
(j = 2) example presented, these need only discern between
0, 1, 2, 3, and 4 counts (photodetection events within the
observation time T ).

The utility of any parameter estimation algorithm will
lie in its ability to perform well under nonideal conditions
for the collection of measurement statics. To that end we
herein test the algorithm’s resilience to AWGN in which
five statistically independent AWGN processes are added to
each of the the probabilities of the five different values of
m, {+2, + 1,0, − 1, − 2} for a NOON state input of j = 2
with � fixed. After each addition of the five independent noise
samples, the PFFA is executed, and its phase estimation error
is calculated. Each dot in Fig. 3 represents the average error
obtained from 40,000 such executions, and four such dots are
presented for each value of noise power σ 2 to demonstrate the
variation in the average error. The estimate is unbiased, so there
is some cancellation due to polarity in that average, which is
useful in some applications. In other applications the absolute
value of the error is more relevant, and these are connected by
the line in Fig. 3 (averaged over only 2000 executions because
they did not vary appreciably from run to run).

IV. A COMPARISON TO BAYESIAN TECHNIQUES

It is important to note that the PFFA gives exceptional
accuracy even in a single execution. Unlike a Bayesian
protocol [33,34], the PFFA does not improve its estimates
in successive applications of the algorithm, and the 2000
executions mentioned above were only for the sake of allowing
the five statistically independent AWGN processes to combine
in a sufficiently large number of ways so that we better

test the algorithm’s resilience to the presence of noise in its
measurement statistics.

A Bayesian analysis [35] proceeds as follows: after an n-
dimensional sample of data m, one then updates a previous
estimate of the PDF P (�) to P (�|m) in order to better estimate
the parameter � via Bayes’s theorem:

P (�|m) = P (�)P (m|�)/P (m)

= P (�)P (m|�)/
∫ π

−π

d� P (�)P (m|�), (5)

where, in our case, P (m|�) = Pm(�) are the interferometers’
measurement statistics and the denominator ensures normal-
ization of the updated PDF P (�|m). In contrast, in the static
limit (where � is fixed but unknown, as the above Bayesian
strategy also assumes), in the normal application of the PFFA
one would simply wait for the histograms to sufficiently
converge to Pm(�) before executing the algorithm once.

Nevertheless, as a step towards the more challenging
problem of tracking a dynamic phase shift, it is of interest
to compare the performance of the PFFA to that of a Bayesian
protocol on a finite set of data collected within the static limit.
For simplicity we will use a two-photon NOON state. The
measurement statistics are therefore

Pm=±1/2(�) = (1/2)cos2(�); Pm=0(�) = sin2(�). (6)

From successive applications of (5) and an a priori as-
sumption of P (�) = 1/(2π ), after n measurements (or one
n-dimensional sample) the Bayesian would therefore obtain

P (�|m) = c cos2(N+)(�) sin2(N0)(�) cos2(N−)(�), (7)

where N+ is the number of counts for which m = +1/2, N0

is the number of counts for which m = 0, N− is the number
of counts for which m = −1/2, and c is the normalization
constant.

The rapidity with which trigonometric functions raised
to a power p ∼ O(102) can approach δ functions is quite
astounding, even more so when p ∼ O(103). On the other
hand, this can make the functions in (7) a bit cumbersome,
such that in our simulations we had to abandon numerical
integration of (7) as a means of obtaining c [which was
∼O(10−246) for a run at n = 1000] in favor of integrating (7)
in closed form, resulting in hypergeometric functions [which
accurately calculated c ∼ O(10−481) for a run at n = 2000].
Likewise, although numerical schemes to obtain the peak of
(7) sometimes failed to converge, we were able to accurately
calculate 〈�〉 numerically. Thus, 〈�〉 will be used as the means
for extracting an estimate from (7), and these are calculated on
the closed interval [0,π/2] for a true value of � = π/3 in our
simulations (as any algorithm will have to know which bin it
should use for this four-peaked NOON state).

The PFFA will use the three simple functions in (6) and
perform an LMS fit of these to the same finite set of simulated
counts via Pm=1/2 = N+/n, Pm=0 = N0/n, and Pm=−1/2 =
N−/n. The “which bin” information is supplied to the PFFA
in the form of an initial estimate of � = +1, although any
initial value on the open interval (0,π/2) will converge to the
same result.

Sufficient detail about the actual counts used will be
provided so that the interested reader can readily verify our
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FIG. 4. Bayesian error (red upper dots) and PFFA error (blue
lower dots) versus sample size n.

results. The simulation of any random process brings up some
interesting issues of its own, and means of doing so in a
way in which one can control the spectrum (or, equivalently,
the autocorrelation function) as well as the PDF have been
suggested [18]. Herein, we will simply concern ourselves with
the PDF, and for a true value of � = π/3 we have from (6) that
we hope to generate sequences which will converge in mean
to the measurement statistics of {1/8, 6/8, 1/8}. One way of
generating the three counts is to process two Bernoulli trials,
which we found to give the same conclusions as the method
used for our presented results, which is to generate a discrete
uniform distribution of eight integers and take six of these to
represent the event m = 0 and the other two to represent the
events m = −1/2 and m = +1/2.

A discussion of the first two runs of only n = 200 samples
each will illustrate some of the issues involved. The outcome
of run 1 was N+ = 28, N− = 24, and N0 = 148, which led
to a Bayesian estimate error of eb 
 0.0121565 and a PFFA
error of ep 
 0.011472. The outcome of run 2, however, was
N+ = 27, N− = 23, and N0 = 150, which (by itself) would
yield eb 
 0.000722269 and ep 
 2.60236 × 10−13. Notice,
in run 2 we got lucky in that N0/n = 6/8, so that we hit
one of our targeted measurement statistics exactly; this helped
the Bayesian estimate, but it helped the PFFA even more. If
we plotted the results of run 2 first in Fig. 4, it could very
misleadingly appear that the PFFA holds an advantage for a
small number of samples, and this brings up some important
issues. An experimentalists would never know that they got
lucky and would continue to take more data in the hopes that
their estimates would improve in accuracy, in accordance with
the central limit theorem or the weak law of large numbers
[35]. Moreover, run 2 did not occur first; it occurred second.
Our experimentalists would report the estimates from run 1
for the first n = 200 samples (the accuracies of which are as
in Fig. 4); then adding the counts from run 2 (to those of run
1), they would obtain eb 
 0.00610597 and ep 
 0.00575451,
which correspond to the second set of points presented in Fig. 4
(for a total of n = 400 samples).

The accuracies improved because of run 2. Likewise, things
can get worse, as they did by incorporating run 3 of N+ = 28,
N− = 25, and N0 = 147 for the points at n = 600, after which
we increased the sample size to 400 in run 4 (improving
the accuracies of both algorithms at n = 1000). In run 5

we increased the sample size to 1000, which changed the
total counts to N+ = 130 + 113, N− = 122 + 116, and N0 =
748 + 771 = 1591 (reducing the accuracies of both algorithms
at n = 2000). Of course 2000 samples are not statistically
large, but at this point we can make some observations. We see
that, within the static limit, both algorithms can perform with
similar accuracies for such small sample sizes. Second, even
for states of relatively simple measurement statistics, as in (6),
the burden on the classical signal processing aspects increases
with sample size for the Bayesian analyst. In contrast, the PFFA
operator could argue that if we are indeed in the static limit,
then we can simply take as much time as needed to acquire
accurate measurement statistics since power is the relevant
cost function (not energy). Thus, for future work, we suggest
a comparison of the performance of the two methods in the
tracking of a dynamic phase (but such an ambitious analysis
is beyond the scope of the present paper).

V. CONCLUDING REMARKS

Within the quantum phase representation we have derived
Heisenberg limits in closed form for three classes of states
in terms of two local performance metrics: HWHM and bin
variance. All three classes of states are Heisenberg limited
in that the HWHM and the square root of the bin variance
scale as 1/N (where N is the expected number of photons)
but the coefficients multiplying 1/N can vary. Two of these
(termed substates and NOON-vac states) are demonstrated
to perform better than the other class, the NOON states, in
both metrics and also exhibit properties useful for tracking a
dynamic phase. The NOON-vac states entangle the vacuum
state with a NOON state of relative probability equal to n. For
fixed N , these enhance the superresolution (number of fringes
or bins) by a factor of (n + 1)/2, and for large n they diminish
the bin variance as 1/n2 relative to the NOON state results at a
diminished fringe visibility which scales only as 1/

√
n. These

higher-order (superresolving) fringes vanish from the output
signal of a first-order interferometer (in which one averages the
difference of the two photodetector currents), so coincidence
detection schemes of order N have been utilized. We discussed
an algorithm which can extract this higher-order information
from the apparatus of a standard interferometer (of complexity
independent of N ) by processing the information in a way
that incorporates knowledge of the allowable quantum results.
The algorithm provides over nine digits of phase estimation
accuracy from a four-photon NOON state (over an unknown
signal range of π/4) within a standard interferometer and is
shown herein to be fairly robust in the presence of additive
white-Gaussian noise in the measurement statistics.
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