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Topologically nontrivial Hofstadter bands on the kagome lattice
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We investigate how the multiple bands of fermions on a crystal lattice evolve if a magnetic field is added which
does not increase the number of bands. The kagome lattice is studied as generic example for a lattice with loops
of three bonds. Finite Chern numbers occur as a nontrivial topological property in the presence of the magnetic
field. The symmetries and periodicities as a function of the applied field are discussed. Strikingly, the dispersions
of the edge states depend crucially on the precise shape of the boundary. This suggests that suitable design of the
boundaries helps to tune physical properties which may even differ between upper and lower edges. Moreover,
we suggest a promising gauge to realize this model in optical lattices.
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I. INTRODUCTION

Since the discovery of the quantum Hall effects [1,2],
interest in topological aspects of condensed-matter systems
has risen and has stayed very high ever since. The link to
topological invariants is given by the Berry phase [3] of the
ground-state wave function in its dependence of magnetic
fluxes on a torus [4,5]. This line of argument even shows that
there are no corrections to Ohm’s law on the linear relationship
between voltage and current [6,7].

Only a few years ago, the discovery of topological insulators
[8] gave another impetus to the field of topology in condensed-
matter physics. Even in classical mechanical systems topologi-
cal edges states can be excited [9]. Very recently, topologically
nontrivial bands were realized in lattices of ultracold atoms
[10,11] and advocated in strongly frustrated spin systems with
Dzyaloshinskii-Moriya interactions [12].

For the present article, we are inspired by the realization
of nontrivial gauge fields in optical lattices filled by ultracold
atoms [10,11] and by the interest in nontrivial lattices. Whereas
Aidelsburger et al. realized bands with Chern numbers
different from zero in Bravais lattices, we show that similar
physics also occurs in crystal lattices, i.e., lattices with a basis.
Moreover, our focus is on lattices with loops of odd numbers
of bonds. The generic loop is a triangle which has the smallest
odd number of bonds. In antiferromagnetic spin systems, it is
the prime source of frustration.

In our theoretical study, we aim at a proof-of-principle
result. Though inspired by the impressive recent advances
in systems of ultracold atoms in optical lattices [10,11,13],
we do not claim that this class of systems provides the
most promising candidate for experimental realizations. The
obstacle may be that the traps constructed so far do not
provide well-defined edges, which we examine below. But
solid-state systems may fill the gap. The recent observation
of the quantum anomalous Hall effect in thin layers for
ferromagnetic Chern insulators provides seminal progress
[14,15]. Presently, higher temperatures are reached at which
the effect occurs [16] and theoretical calculations even suggest
that in tailored systems experiments at room temperature are
possible [17,18]. There are concrete suggestions for tailored
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superlattices which should also make the design of particular
edges possible [18,19]. An alternative to solid-state lattices
may be the artificial lattices built from dots or antidots in
tailored semiconductor structures [20].

In the present fundamental investigation, we study the
kagome lattice shown in Fig. 1. This crystal lattice has a basis
of three atoms, labeled A, B, and C in the sketch. One choice
of primitive vectors is shown; they span a parallelogram which
constitutes a unit cell. Note that the coordination number is
only z = 4 which is rather low in comparison to z = 6 for the
triangular lattice, the generic Bravais lattice with triangular
loops. This lattice has appeared before in several studies. In
particular, we show that the kagome lattice in certain magnetic
fields corresponds to special cases of Haldane models [21],
i.e., models without uniform magnetic field but complex
hoppings, on the kagome lattice [22–24]. Moreover, in the
research field investigating flat band models and interaction
effects on them the kagome lattice is also studied intensively;
for a review see Ref. [25].

We study this model for the special magnetic fields where
the number of bands still equals the number of bands without
magnetic field. Note that this is an important difference from
the investigation of the square lattice by Aidelsburger et al.,
where topological effects could only arise once the number of
bands was increased by certain values of the magnetic field
[11]. The bands and their dispersion are computed, as well
as the first Chern number Cn. This Chern number equals the
Berry phase [3] occurring for a Bloch state which surrounds
the Brillouin zone. The Brillouin zone is the relevant two-
dimensional manifold, namely, a simple torus T 2. This Chern
number is defined by

Cn := 1

2πi

∫
T 2

F (n)df ∈ Z (1a)

= 1

2πi

∫
T 2

(〈∂1unk|∂2unk〉 − 〈∂2unk|∂1unk〉)dk1dk2. (1b)

In Eq. (1a) F (n) is the Berry curvature [3] of the principal
U (1) fiber bundle defined by the nth Bloch eigenstate over the
Brillouin zone. Equation (1b) is the explicit formula in terms
of the Bloch states |unk〉. The partial derivatives ∂i refer to the
derivation with respect to the momenta ki , i.e., ∂i := ∂/∂ki .
The above Chern number must be an integer since it can be
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FIG. 1. Sketch of the kagome lattice, which is a crystal lattice
with a basis of three sites (A, B, and C). Also shown is one choice of
primitive vectors ei (in light blue) which span the unit cell.

converted by the Stokes theorem to the integrated phase along
a closed path divided by 2π .

We compute the above Chern number for the three kagome
bands, thereby identifying the topologically nontrivial bands.

II. MODEL AND MAGNETIC FIELDS

For simplicity, we study a nearest-neighbor tight-binding
model on the kagome lattice. Its Hamiltonian reads

Ĥ =
∑
〈ij〉

tij c
†
i cj +

∑
i

Vic
†
i ci , (2)

where the indices run over all sites and 〈ij 〉 stands for nearest
neighbors. The creation operator c

†
i creates a fermion at site

i and ci annihilates it. In general, we consider complex
hopping elements tij = t exp(iϑij ) with some directed phases
ϑij resulting from the Peierls substitution, i.e.,

ϑij = q

�

∫ j

i

A dr, (3)

where q is the charge of the hopping particle. The local
potentials are given by Vi . They depend on the sublattice to
which the site i belongs.

As a reference, we first look at the case without any
magnetic fields and without local potentials such that ϑij = 0
and Vi = 0. It is known that in this case a flat band occurs
because the kagome lattice is a line graph, namely, the line
graph of the honeycomb lattice. Line graphs are generally
known to have flat bands [26,27]. The explicit calculation
illustrates the flat band nicely in Fig. 2. It is based on the 3 × 3
matrix in momentum space

Hk = 2t

⎛
⎝ 0 cos k1 cos k2

cos k1 0 cos k3

cos k2 cos k3 0

⎞
⎠, (4)

where we use the wave-vector components

ki := k · �i , (5a)

�1 := e1/2, (5b)

FIG. 2. Dispersion of the three bands as functions of k1 and k2 as
defined in Eq. (5) in the kagome lattice without any magnetic field
and local potentials. The hopping is set to t = 1. Note the flat lowest
band and the two Dirac cones where the two other bands touch with
linear dispersion.

�2 := e2/2, (5c)

�3 := �2 − �1, (5d)

with e1 = (1,0)† and e2 = (1,
√

3)†/2; i.e., the lattice constant
from one A site to the nearest A site is set to unity. We stress that
the full Brillouin zone is given by ki ∈ [−π/2,π/2] because
the �i have only half the length of the primitive vectors. Note
that k3 = k2 − k1 holds according to the above definitions;
only two of the ki are independent.

The energy eigenvalues of the matrix (4) are

E1,2k = t(1 ±
√

1 + 8 cos k1 cos k2 cos k3), (6a)

E3k = −2t. (6b)

These bands are degenerate at k = (0,0)† where the
flat band touches the lower dispersive band and at k± =
±(2π/3)(1, − √

3)† where the two dispersive bands display
Dirac cones. Due to the degeneracy, the Chern numbers Cn of
the bands are not properly defined. But even if one breaks the
degeneracy, for instance by infinitesimal local potentials, the
Cn turn out to be trivial, i.e., zero, because the model without
finite phases is time-reversal invariant which implies Cn = 0.

Thus we turn to the model in a uniform magnetic field
perpendicular to the kagome plane. This induces finite phases
according to Eq. (3). We do not aim at discussing the
complete intricate interplay of discrete lattice symmetry and
noncommuting magnetic translations [28–30] which give
rise to multiple Hofstadter bands [31]. Instead, we aim at
the situation where the magnetic translations Ti along the
primitive vectors ei commute. They obey the relation T1T2 =
exp(iφUC)T2T1 where φUC is the magnetic flux through the
unit cell measured in units of �/e [28–30]. Thus, in order
not to increase the number of bands, we avoid decreasing the
translational symmetry. Thus we focus on the commuting case
T1T2 = T2T1 implying

φUC = 2πn, (7)

where n ∈ Z is an arbitrary integer. Inspecting the unit cell
shown by the lightly shaded area in Fig. 3, elementary
geometry shows that φUC = 8φ� if φ� is the flux through
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FIG. 3. Gauge chosen for the specific calculations. Two phases,
ϑ1 and ϑ2, are introduced which are directed in the sense of the arrows.

a triangle. Thus Eq. (7) translates to

φ� = π

4
n. (8)

The physics modulo gauge transformations of the phases is
only influenced by the fluxes through the loops modulo flux
quanta, not by the individual phases. Thus we conclude that
the physics, such as Chern numbers of the bands, depends on
φ� with periodicity of 2π so that we have to study only the
values of n modulo 8.

We choose a specific gauge where the phases ϑij take
values as depicted in Fig. 3. The arrows on the bonds stand for
the direction of the phases ϑ1 and ϑ2. In this gauge, the total
phase around the unit cell takes the value zero, which may be
a surprise because it seems to reflect zero flux and thus zero
magnetic field. But this is not the case because the sum of
all phases along closed loops is meaningful only modulo 2π .
Hence zero total phase complies with a finite flux fulfilling
Eq. (7). To make this point explicit we consider a gauge for
arbitrary flux in Appendix A and show that it can be regauged
to the one in Fig. 3 in Appendix B. In this particular gauge, the
relation between these phases and the flux φ� is the following:

3ϑ1 = φ� − 2π m1, (9a)

3ϑ2 = φ� − 2π m2, (9b)

−3(ϑ1 + ϑ2) = 6φ� − 2π m3, (9c)

0 = 8φ� − 2π n, (9d)

where mi and n ∈ Z may occur since the fluxes through the
loops are only fixed up to multiples of 2π . The last equation
[Eq. (9d)] is the sum of the three equations before with n =
m1 + m2 + m3 which confirms Eq. (7). The left-hand side of
Eq. (9d) stands for the vanishing sum of all phases around a
unit cell; see Fig. 3. This does not mean that there is no net
uniform magnetic field through the lattice, but it reflects the
fact that the magnetic translations commute for the special
magnetic fields we are considering because the flux through
the unit cell is a multiple of the flux quantum. Thus, there are
gauges without net total phase around the unit cells and we are
employing such a gauge here for simplicity. But in the smaller
loops, i.e., the triangles, there is a net flux given by φ�.

For finite phases and local potentials we obtain the
following matrix problem:

Hk =

⎛
⎜⎝

VA 2te−iϑ̄ c1 2teiϑ̄ c2

2teiϑ̄ c1 VB 2te−iϑ̄ c3

2te−iϑ̄ c2 2teiϑ̄ c3 VC

⎞
⎟⎠, (10)

where we use the shorthand

ci := cos(ki − (−1)i�ϑ) (11)

for brevity. We have introduced the average and the difference
of the phases ϑ̄ := (ϑ1 + ϑ2)/2 and �ϑ := (ϑ1 − ϑ2)/2.
Obviously, the matrix Hk is 2π periodic in ϑ̄ and �ϑ .
Interestingly, the band Hamiltonian (10) is identical to the
ones considered in Haldane models before [22–24] if �ϑ = 0
and the local potentials are switched off. But we recall that
Eq. (10) only holds for uniform magnetic fields which meet the
condition (8). This observation leads us to the experimentally
useful result that certain Haldane models can be realized for
specific fluxes complying with Eq. (8) by uniform magnetic
fields.

But the eigenvalues are even periodic in ϑ̄ with period 2π/3.
This can be seen by the gauge transformation

U =

⎛
⎜⎝

1 0 0

0 ei2π/3 0

0 0 ei4π/3

⎞
⎟⎠, (12)

which transforms the Hamiltonian matrix according to

Hk(ϑ̄ + 2π/3) = UHk(ϑ̄)U†. (13)

The value of �ϑ remains unchanged. Clearly, the eigenvalues
at each momentum do not change under the transformation and
hence they are 2π/3-periodic in ϑ̄ . Since the transformation
U is independent of momentum it does not change the
Chern numbers either so that the Chern numbers are also
2π/3-periodic. Note that a change of ϑ̄ by 2π/3 at constant
�ϑ corresponds to the simultaneous change

m1 → m1 − 1, m2 → m2 − 1, and m3 → m3 + 2.

(14)

Alternatively, the increase of ϑ̄ by 2π/3 can be interpreted
as an increase of φ� by 2π and the increment m3 → m2 + 8.
Thus, we see that the physics is indeed 2π -periodic in φ�.

In addition, one easily sees that ϑ̄ → ϑ̄ + π simply leads
to a global minus sign in the Hamiltonian matrix (10), thus
inverting the sequence of bands and thereby swapping the
Chern numbers of the first and the third bands. The change
ϑ̄ → ϑ̄ + π directly corresponds to the change φ� → φ� +
3π ; see Eq. (9). But in view of the 2π -periodicity in φ� we find
the corresponding bands up to a gauge transformation already
for φ� → φ� + π . For examples, we refer the reader to the
Sec. III below.

Moreover, reversing time amounts to changing the sign of
the phases ϑi → −ϑi and of the flux φ� → −φ�; i.e., the
Hamiltonian matrix is complex conjugated. This transforma-
tion of Hk leaves the eigenvalues and, thus, the dispersion
unchanged because the energy eigenvalues are real numbers.
But it changes the sign of the Chern numbers.

Combined with the shift of the flux by π we obtain the result
that the change φ� → π − φ� inverts the energy bands, i.e.,
takes the dispersion energy to their negative values, but leaves
the Chern numbers unchanged. We illustrate these properties
in Sec. III below.
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The Chern numbers of the bands are also 2π/3-periodic in
�ϑ because the shift of the momenta

k1 → k1 + 2π/3, (15a)

k2 → k2 − 2π/3, (15b)

implies k3 → k3 − 4π/3 = k3 + 2π/3, where the last identity
holds modulo 2π . Thus, this shift of the momenta corresponds
to the change of gauge �ϑ → �ϑ + 2π/3. So the eigenvalues
at given momenta change, but they are only shifted in
reciprocal space. Since the Chern number is a property of the
band in the Brillouin zone it does not change under Eqs. (15).
This is obvious if one uses the shifted Brillouin zone, shifted
by the same amount as in Eqs. (15). Note that a change of �ϑ

by 2π/3 at constant ϑ̄ corresponds to the simultaneous change

m1 → m1 + 1, m2 → m2 − 1, and m3 → m3. (16)

We stress that the combination of the two gauge transforma-
tions, Eqs. (14) and (16), illustrates that the essential physics is
determined by n = m1 + m2 + m3 while the individual values
of the mi do no matter much. However, m3 cannot be regauged
to change by unity only.

III. RESULTS

In this section, we show explicit results for the dispersion
and the Chern numbers of the three bands of the kagome lattice
in a magnetic field obeying relation (8).

A. Results without local potentials

For vanishing local potential the eigenvalues of matrix
(10) can be determined analytically. Solving the characteristic
polynomial of order 3 we obtain

Ebk = 4t
√

Q cos ([θk + 2πb]/3), b ∈ {0,1,2}, (17a)

θk := arg(P cos(3ϑ̄) + i
√

Q3 − [P cos(3ϑ̄)]2), (17b)

P := c1c2c3, (17c)

Q := (
c2

1 + c2
2 + c2

3

)
/3. (17d)

For simplicity, we choose m1 = m2 = 0, thus �ϑ = 0,
and vary m3 = n to achieve various fluxes φ�. As pointed

FIG. 4. Dispersion of the three bands as functions of k1 and k2

as defined in Eq. (5) in the kagome lattice at φ� = π , i.e., n = 4 in
Eq. (8), and ϑi = φ�/3 and no local potentials. The hopping is set to
t = 1.

out above, one only has to consider eight values of φ�

because of the 2π -periodicity and the quantization condition
(8). Additionally, φ� → φ� + π only inverts the energies
and swaps Chern numbers so that it is sufficient to consider
n = 0,1,2,3. For instance, n = 4 corresponds to adding the
phase π and, indeed, Fig. 4 displays the negative bands of
Fig. 2. The degenerate, touching bands do not allow for an
unambiguous definition of the Chern number. But the fact
that the Hamiltonian matrix is equivalent to a real matrix up
to a gauge transformation (14) teaches us that the bands are
topologically trivial Cn = 0.

The three cases n = 1,2,3 are much more interesting; the
corresponding bands are depicted in Fig. 5 in ascending order.

FIG. 5. Dispersion of the three bands as functions of k1 and k2

as defined in Eq. (5) in the kagome lattice at φ� = (π/4)n for n = 1
(top), n = 2 (middle), and n = 3 (bottom) and ϑi = φ�/3 and no
local potentials. The hopping is set to t = 1.
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All three bands are separated from one another so that the
Chern numbers are well defined. Note the gradual evolution
upon increasing flux, illustrated nicely from Fig. 2 over the
panels of Fig. 5 to Fig. 4.

The fact that φ� → π − φ� inverts the signs of the energies
is nicely illustrated by comparing Fig. 2 and Fig. 4. The same
relation is seen between the upper and lower panels of Fig. 5.
The middle panel of Fig. 5 remains unchanged under inversion
of the signs, which implies that the upper and lower bands
differ only by their sign and that the middle band is identical
to zero.

Next, we turn to the Chern numbers of the bands. We
did not find a way to evaluate the expressions in Eqs. (1)
analytically. Moreover, the two-dimensional integrals are
difficult to implement numerically to high precision. But due to
the robustness of the discrete Chern numbers the computation
of accumulated phases on a finite mesh is very accurate, even
if the mesh is not particularly dense [32]. Thus we use this
approach to compute the Chern numbers shown in Fig. 6.

Several interesting observations can be made. First, the
fluxes, which are multiples of π , indeed yield trivial bands.
Second, incrementing the flux by π yields a swap of the Chern
numbers due to the inverted global sign of the energies. The
change φ� → π − φ� leaves the Chern numbers unchanged.
Third, swapping the sign of the fluxes swaps also the
sign of the Chern numbers. Fourth, the gradual evolution
of the bands from φ� = π/4 to φ� = 3π/4 with energet-
ically well-separated bands is reflected in constant Chern
numbers.

Further values of φ� do not need to be analyzed because of
the 2π -periodicity of the Chern numbers as a function of φ�.
Thus the pattern in Fig. 6 will occur repeatedly.

−π −3π
4

−π
2 −π

4 0 π
4

π
2

3π
4

π
−1

0

1

φΔ

C
n

band 1
band 2
band 3

FIG. 6. Chern number Cn as defined in Eqs. (1) computed for
various fluxes φ� for ϑ1 = ϑ2 = φ�/3. The bands are numbered in
order of ascending energy.

−3 −2 −1 0 1 2 3
−1

0

1

δ

C
n

band 1
band 2
band 3

FIG. 7. Chern number Cn as defined in Eqs. (1) computed for
flux φ� = π/2 for ϑ1 = ϑ2 = π/6 at finite local potential according
to VA = δ = −VB and VC = 0. The hopping t is set to 1 as before.

B. Robustness against local potentials

In order to illustrate that the Chern numbers are robust
against small changes of the Hamiltonian we turn to the case
with local potentials. Clearly, equal changes of all potentials
VA, VB , and VC do not affect the Chern number at all because
they simply add an identity matrix to Hk which shifts the
eigenenergy but has no impact on the eigenvectors and hence
no impact on the Chern numbers; see Eqs. (1).

For illustration, we study two nontrivial patterns of the
local potentials, namely VA = δ = −VB and VC = 0 in Fig. 7
and VA = δ = VC and VB = 0 in Fig. 8. These patterns

−3 −2 −1 0 1 2 3
−1

0

1

δ

C
n

band 1
band 2
band 3

FIG. 8. Chern number Cn as defined in Eqs. (1) computed for
flux φ� = π/2 for ϑ1 = ϑ2 = π/6 at finite local potential according
to VA = δ = VC and VB = 0. The hopping t is set to 1 as before.
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N units

N units

N units

FIG. 9. Three types of edges: with triangular teeth at both edges
(top), for smooth boundaries without triangular teeth at both edges
(middle), and for mixed boundaries which are smooth at the upper
edge and saw-toothed at the lower edge (bottom). The bracket labeled
“N units” stands for N times repeated units between the boundaries.

are applied to the case φ� = π/2 of which the dispersion
without local potentials is shown in the middle panel of
Fig. 5. Clearly, the nontrivial Chern numbers of the lower
and upper bands are robust against the local potentials. It is
necessary to apply potentials of the order of δ ≈ t to destroy
the topological phases because these phases are protected by
gaps; see the middle panel of Fig. 5. This is numerically shown
in Figs. 7 and 8 and can be analytically verified. For the pattern
VA = δ = −VB and VC = 0, the gaps close at |δ| = √

2, and
for the pattern VA = δ = VC and VB = 0, they close at |δ| = 2.

These exemplary results illustrate the robustness of topolog-
ical phases against perturbations. For the topological character
to be lost the bands must touch and become degenerate. A
deformation alone is not sufficient.

IV. EDGE STATES

For measurable quantities the bulk properties are not of
prime interest. The main difference between a usual, trivial
band insulator and a topological one occurs at the boundaries

FIG. 10. Dispersions of the edge states at φ� = π/2 if the
edges are shaped as shown in Fig. 9: the top, middle, and bottom
panels here shows the data relevant for the corresponding panel
in Fig. 9. The right-moving states from the lower edge are shown
in orange and the left-moving ones from the upper edge in dark
green. The shaded area stands for the continua of the bulk states
if ky is not fixed. The dashed line at zero stands for the nondis-
persive bulk states of the trivial middle band; cf. middle panel in
Fig. 5.
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where states with vanishing gap have to appear since otherwise
the integer Chern numbers cannot change from their finite
value to zero. These edge states are crucial for the interesting
properties of topologically ordered systems.

To illustrate the existence of such edge states also in the
kagome lattice in a magnetic field we diagonalize strips of it.
A strip is infinitely extended in the x direction such that kx

is a conserved quantum number. But in the y direction the
strip is of finite extension. Three different situations of the
boundaries are displayed in Fig. 9. The height of the strips
is fixed by the number N of repeated units of six sites in
the perpendicular y direction. The dispersions of the in-gap
edges states converge very quickly for N → ∞. Our results
are based on computations with N = 80 which amounts to the
diagonalization of matrices of dimension 480.

The resulting dispersions are shown in Fig. 10. Strikingly,
there occur significant differences for the dispersions of the
differently shaped boundaries. Even the group velocities differ
by about a factor of 2.

These differences make the assignment of the edge states
to the upper and lower edges particularly simple by analyzing
mixed boundaries; see the lower panels in Figs. 9 and 10.
Clearly, we partly find the dispersion from the upper panel for
the right-moving states and from the lower panel for the left-
moving states. Thus the right-moving states live at the lower
edge and the left-moving states at the upper edge. Of course,
this will be swapped if the sign of the magnetic field is inverted.

We conclude that the shapes of the boundaries open an
interesting field for tuning the properties, for instance the
transport properties, of topologically nontrivial bands.

V. CONCLUSIONS

We have shown that a crystal lattice with basis equally
allows us to induce topologically nontrivial bands upon
application of a uniform magnetic field. Interestingly, the
number of bands does not need to be increased from the values
at zero magnetic field, which is in contrast to the situation in
Bravais lattices [11,31].

In particular, we studied nearest-neighbor hopping on the
kagome lattice with a three-fold basis. This lattice is made
of triangular loops, i.e., loops with the smallest number
of odd bonds which generically induces frustration effects.
Without magnetic field the bands are not separated, but the
special magnetic fields which preserve the commutation of
the translations induce a proper splitting and nonzero Chern
numbers for two of the three bands. Interestingly, we found
that the kagome lattice in a uniform magnetic field of particular
strengths realizes Haldane models on this lattice for particular
quantized fluxes.

It would be interesting to realize crystal lattices with
nontrivial gauges experimentally [10,11]. In order not to be
forced to induce finite phases ϑ := ϑ1 = ϑ2 for all hopping
processes, we point out that a simple gauge transformation
eliminates all phases on bonds to or from sites of sublattice
C. It consists of the additional factor c

†
i → c

†
i exp(−iϑ) for

A sites and the additional factor c
†
i → c

†
i exp(iϑ) for B sites.

Of course, the fluxes through the triangles are left unchanged
because the phases on bonds between the A and B sites are
tripled, ϑ → 3ϑ , as shown in Fig. 11.

>

>

>

>

>

>

>

>

>

>

>

>

>
3ϑ

>3ϑ

φΔ

φΔ

6φΔ

>

>

>

>

FIG. 11. Phases after the gauge transformation c
†
i → c

†
i exp

(∓iϑ) for A and B sites, respectively. The experimental realization
should be easier in this gauge.

Finally, we investigated the edge states for three ways to
cut the kagome lattice along the same direction. Again, this
possibility is a particular feature for lattices with a basis.
Surprisingly, we found a significant qualitative dependence of
the dispersion of the edge states on the nature of the boundaries.
The shape and the position of the dispersions differ as well
as the group velocities. Still there are left- and right-moving
modes which can be clearly assigned to the upper or lower
edge. The situation is particularly clear if the upper and lower
edges differ. Then we obtained two differing edge states, one
reflecting the behavior at the upper edge and one the behavior
at the lower edge.

Experimental verification of this interesting scenario is
called for. One may envisage fascinating applications because
the transport properties will differ depending on the direction
of motion of a fermion from left to right or vice versa. It is
conceivable to build diodelike devices if the properties of the
edges are tuned to maximize their differing characteristics, for
instance the group velocity.

At present, the most promising systems for experimental re-
alization are not yet clear [25]. But recent advances in realizing
artificial gauges in systems of optical lattices [10,11,13] make
it likely that soon the theoretical results presented here can be
put to experimental tests. The realization of precisely defined
edges may pose a problem, but any reproducible difference
between two edges of a strip of lattice will make a verification
possible.

Alternatively, various solid-state systems may constitute
alternative routes towards experimental realizations, for in-
stance thin slabs of ferromagnetic Chern insulators [14–16],
honeycomb lattices built from atoms with higher atomic
number [17], artificial lattices on surfaces [18,19], or special
lattices built from semiconductor nanostructures [20]. In any
case, we conclude that designed crystal lattices constitute a
promising field of research.
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APPENDIX A: ARBITRARY MAGNETIC FLUX

In Fig. 12 a general gauge is shown which is a lattice version
of the Landau gauge. The phases depend on the x coordinate
of their bond, i.e., on the x coordinate of the midpoint of their
bond. The dependence is linear,

ϕ(x) := 4φ�x, (A1)

where we imply that the lattice constant is set to unity.
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FIG. 12. Gauge for arbitrary magnetic flux, i.e., for arbitrary
homogeneous magnetic field. Recall that the lattice constant, i.e.,
double the distance between neighboring sites, is set to unity.

Then it is easy to see that indeed the flux through a triangle
is given by

φ� = ϕ

(
x + 1

4

)
− ϕ(x) (A2)

so that our notation is consistent. Similarly, we find for the
flux through the hexagon

φhexagon = 2ϕ(x + 1) − 2ϕ

(
x + 1

4

)
(A3a)

= 6φ� (A3b)

as it has to be for a homogeneous magnetic field. In total, the
flux through a unit cell is given by 8φ�. Note that these results
do not change if we consider shifted triangles or hexagons
in other parts of the lattice. Shifts in the y direction do not
change the phases (A1) at all. Shifts in the x direction do not
change the fluxes because they depend on phase differences
being independent of x due to the linearity of Eq. (A1). So
the gauge shown in Fig. 12 correctly describes the effect of
an arbitrary homogeneous magnetic field perpendicular to the
plane of the lattice.

APPENDIX B: TRANSLATIONAL INVARIANT GAUGE
FOR SPECIFIC MAGNETIC FLUXES

Here we show that for φ� = nπ/4 the gauge in Fig. 12 can
be regauged to yield the gauge in Fig. 13. For clarity we focus
on the case ϑ1 = ϑ2 = φ�/3, i.e., m1 = m2 = 0 in Eq. (9).

We leave the fermion at site a in Fig. 13 unchanged, but we
transform the others according to

c†a → c†a, (B1a)

c
†
b → c

†
b exp(iϑ1), (B1b)

c†c → c†c exp (2iϑ1 − iϕ(x + 1/4)), (B1c)

>
ϑ1

>ϑ1

>
ϑ1

<<
ϑ2

>
>ϑ2 >

>ϑ2

<<
ϑ2

a b

c

d e

>
ϑ1

>ϑ1<ϑ1

<<
ϑ2

<
<ϑ2 >
>ϑ2

a b

c

d ee >
ϑ1

>ϑ1<ϑ1

<<
ϑ2

<
<ϑ2 >
>ϑ2

f

hg

FIG. 13. Gauge for specific magnetic fluxes, i.e., for specific
homogeneous magnetic fields. The necessary regauging on the
various sites a to h and a′ to e′ are given in the main text.

c†e → c†e exp (3iϑ1 − i2ϕ(x + 1/4)), (B1d)

c
†
d → c

†
d exp (iϑ1 − iϕ(x) − iϕ(x + 1/4)). (B1e)

The annihilation operators are transformed by the complex
conjugate phase factors. Obviously, the phase factors are
chosen such that the phases on the bonds ab, bc, ce, and cd

match those in Fig. 13. We have to check the resulting phase
factor on ca and compute

ϑca = −2ϑ1 + ϕ(x + 1/4) − ϕ(x) (B2a)

= −(2/3)φ� + φ� (B2b)

= φ�/3 (B2c)

= ϑ1, (B2d)

which is what we wanted to have. Analogously, we confirm
for the phase on bond ed

ϑed = ϑ1 − ϕ(x) − 3ϑ1 + ϕ(x + 1/4) (B3a)

= −(2/3)φ� + φ� (B3b)

= φ�/3 (B3c)

= ϑ2. (B3d)

If we now pass from the sites a to e to the sites a′ to e′
we can use almost the same transformations (B1) because the
phases on the bonds are changed by multiples of π due to

φ(x̃ + 1) = φ(x̃) + 4φ� (B4a)

= φ(x̃) + nπ (B4b)

for any x̃. This is so because φ� takes the particular values
nπ/4 representing the crucial step in our argument.

If n is even we may use exactly the same transformations. If
n is odd we regauge the center site c′ by the factor −1 and we
are back to the phases between the sites a through e and use
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the regauge transformation (B1). In addition, it is obvious that
the phases on the bonds ba′ and ed ′ correspond to the ones in
Fig. 13.

For completeness, we state the regauge transformations on
sites f , g, and h,

c
†
f → c

†
f exp(2iϑ1 − 3iϕ(x) − 4iφ�), (B5a)

c†g → c†g exp(iϑ1 − 4iϕ(x) − 6iφ�), (B5b)

c
†
h → c

†
h exp(3iϑ1 − 4iϕ(x) − 7iφ�), (B5c)

because they are not directly deduced from the ones on a to e.
Straightforward calculations verify that these transforms yield
the phase pattern shown in Fig. 13. The sites resulting from a

shift by one lattice constant to the right are again transformed
either exactly the same way as the sites e to h and d ′ if n is
even. For odd n, the same transformations are used except for
an additional sign change on the shifted center site f ′.

In the next upper row the phase pattern for the row of sites
a to e is repeated. Thus one can reuse the transformations (B1)
except that all the phases must be taken relative to the phase
of the h site [Eq. (B5c)].

In an analogous fashion, one can implement regauge
transformations yielding ϑ1 �= ϑ2, but they are slightly more
complex because they comprise a certain phase shift upon
x → x + 1.

In conclusion, we can regauge the case of a general
homogeneous magnetic field to the phases shown in Figs. 3
or 13.
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