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We propose a scheme for generating two-dimensional turbulence in harmonically trapped atomic condensates
with the novelty of controlling the polarization (net rotation) of the turbulence. Our scheme is based on an initial
giant (multicharged) vortex which induces a large-scale circular flow. Two thin obstacles, created by blue-detuned
laser beams, speed up the decay of the giant vortex into many singly quantized vortices of the same circulation; at
the same time, vortex-antivortex pairs are created by the decaying circular flow past the obstacles. Rotation of the
obstacles against the circular flow controls the relative proportion of positive and negative vortices, from the limit
of strongly anisotropic turbulence (almost all vortices having the same sign) to that of isotropic turbulence (equal
number of vortices and antivortices). Using this scheme, we numerically study the decay of two-dimensional
quantum turbulence as a function of the polarization. Finally, we present a model for the decay rate of the vortex
number which fits our numerical experiment curves, with the novelty of taking into account polarization time
dependence.
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I. INTRODUCTION

The study of quantum turbulence is heavily motivated
by liquid helium ( 4He and 3He) experiments [1,2]. A
striking discovery has been that, under appropriate forcing,
quasiclassical behavior arises displaying statistical properties
characteristic of ordinary turbulence; an example is the
celebrated Kolmogorov − 5

3 scaling of the energy spectrum [3]
which suggests the existence of a classical energy cascade
from large to small length scales. Under other conditions, a
different kind of turbulence (called “ultraquantum turbulence”
or “Vinen turbulence”) has also been found [4,5], characterized
by random tangles of vortices without large-scale, energy-
containing flow structures. Quantum turbulence experiments
are also performed in atomic Bose-Einstein condensates [6–9];
the relative small size of these condensates (compared to flows
of liquid helium or of ordinary fluids) limits the study of scaling
laws but offers opportunities to study minimal processes that
also take place in larger systems (e.g., vortex interactions,
vortex reconnections, vortex clustering) with greater experi-
mental controllability and more direct visualization than in
liquid helium.

Atomic condensates are also ideal systems to study two-
dimensional (2D) turbulence [10], a problem with important
applications to oceans, planetary atmospheres, and astro-
physics. In classical systems, reduced dimensionality may
arise from strong anisotropy, stratification, or rotation (via
the Taylor-Proudman theorem). From the physicist’s point of
view, the dynamics of 2D turbulence is very different from
three dimensional (3D) [11]. The existence (besides the kinetic
energy) of a second inviscid quadratic invariant, the enstrophy,
implies that a downscale enstrophy transfer is accompanied
by an upscale energy cascade; in other words, in 2D turbulent
flows the energy flows from small to large length scales rather
than vice versa as in 3D turbulence. With the possible exception
of soap films [12], 2D flows which can be created in the

laboratory are only approximations. However, using suitable
trapping potentials, atomic condensates can be easily shaped
so that vortex dynamics is 2D rather than 3D. Unlike liquid
helium, in atomic condensates 2D quantum vortices can be
directly imaged, and, unlike classical systems, the motion of
such 2D vortices is not hindered by viscous effects or friction
with the substrate.

Several works have explored the generation of turbulence
in 2D condensates. The 2D energy spectrum and scaling
laws have been computed in numerical simulations [13–15],
and the problem of what should be the quantum analog of
the classical enstrophy has been raised. In Ref. [9], vortices
were nucleated by small-scale stirring of a laser spoon, after
which a persistent current was verified both experimentally
and through numerical simulations, suggesting transfer of in-
compressible kinetic energy from small to large length scales.
Emergence of large-scale order from vortex turbulence was
also observed [16] as predicted by the “vortex gas” theory of
Onsager. A similar setup was used to explore vortex shedding
and annihilation processes in both experiments [17,18] and
simulations [19]. The effect of stirring laser beams with
different shapes or along different paths was investigated in
Refs. [20–23]. However, in all cases cited, vortices have always
been generated in such a way that the number of positive and
negative vortices is approximately the same; in other words,
all vortex configurations which have been investigated had
approximately zero polarization. Since irrotational flow is
a hallmark property of superfluidity, the polarization of the
vortex configuration (i.e., the relative proportion of positive
and negative vortices) plays the role of net rotational angular
velocity � of a classical fluid, so it is important to explore its
effects on the properties of turbulence.

In this work, we propose a scheme for generating 2D
quantum turbulence in atomic condensates. Our scheme, which
is based on a giant vortex as the initial state, is control over
polarization of the turbulence, which can be interpreted as the
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classical rotation of the entire flow. One of the most important
properties of turbulence is its decay because the growth of the
turbulence or its character in a steady state may depend on how
it is forced, whereas the decay is an intrinsic property of the
dynamics. We shall report the decay of 2D quantum turbulence
as a function of the polarization.

II. GIANT VORTEX AND SMALL PINS

Multicharged vortices with circulations as large as 60
quanta have already been produced in condensates using
dynamical methods, as consequences of rapid rotations of
the confining trap [24]. Another route to achieve these
highly excited states is using phase-engineering techniques,
such as those described in Refs. [25–28]. In these cases,
quanta of angular momentum are added to the condensate by
adiabatically inverting the direction of the magnetic bias field
which composes the usual Ioffe-Pritchard magnetic trap. To
date, only charges below 10 quanta were produced using their
proposed setups. However, an improvement on the method,
known as the “vortex pump,” has been described in Refs. [29–
31]. In practical terms, a hexapole magnetic field is superposed
to the Ioffe-Pritchard magnetic trap, allowing vorticity to be
cyclically pumped into the condensate, thus generating giant
vortices. Progress in this direction has been made in recent
experiments with synthetic magnetic monopoles [32].

A giant vortex at the center of a harmonically trapped
condensate can be described by a single-particle wave func-
tion of the form ψ(r) = f (r)eiκφ , where f (r) is the wave
function’s amplitude, r = (r,φ,z) is the position in cylindrical
coordinates, and a large winding number κ corresponds to a
large angular momentum. Such giant vortices are dynamically
unstable [30,33], and split into singly quantized (κ = 1)
vortices. Being parallel to one another, these singly quantized
vortices impose a strongly azimuthal flow to the condensate.
During the following evolution, some vortices of the opposite
polarity may be generated by occasional large-amplitude
density waves, but these events are rare, and do not change the
main property of the flow resulting from the decay of a giant
vortex configuration: the strong polarization of the vorticity
(almost all vortices have the same sign).

The scheme that we propose uses blue-detuned lasers [18]
to perturb this initial state with two diametrically opposite
laser beams, creating thin obstacles (which we refer to as pins)
with width σ of the order of magnitude of the healing length ξ

(two pins are enough to homogenize the vortex distribution).
The pins perturb the initial giant vortex, accelerating its decay;
they also deflect the large azimuthal flow, generating vortex-
antivortex pairs [19,34–36]. To control the effect of the pins,
we move them at constant angular velocity ω in the direction
opposite to the main azimuthal flow.

III. MODEL

The dynamics of our system is dictated by the 2D
Gross-Pitaevskii equation (GPE). We introduce dimensionless
variables based on the trapping potential of frequency ω0, mea-
suring times, distances, and energies in units of ω−1

0 ,
√

�/mω0,
and �ω0, respectively, where m is the mass of one atom and �

is the reduced Planck’s constant. The resulting dimensionless

GPE is

i
∂ψ

∂t
=

(
− 1

2
∇2 + V + C|ψ |2 − μ

)
ψ, (1)

where the time-dependent wave function ψ(r,t) is nor-
malized so that

∫ |ψ |2d2r = 1. The external potential is
V (r,t) = Vtrap(r) + Vpins(r,t), where Vtrap(r) = (x2 + y2)/2
and Vpins(r,t) = V+(r,t) + V−(r,t) represent, respectively,
the trapping potential which confines the condensates
and the pins which perturb the initial giant vortex. The
terms V±(r,t) = V0 exp {−|r − r±(t)|2/2σ 2} with r±(t) =
[±x0 cos (ωt),y0 sin (ωt)] are diametrically opposite, thin,
Gaussian potentials of width σ = ξ which rotate clockwise
(against the flow of the initially imposed giant vortex) at
constant angular velocity ω. The quantity C = 2

√
2πN (a/az)

parametrizes the two-body collisions between the atoms,
where N is the total number of atoms, a the scattering
length, and az the axial harmonic oscillator’s length; we
choose C = 17 300. The chemical potential μ is introduced
to guarantee normalization of the wave function, and the
amplitude of the pins is V0 ≈ 1.43μ. In homogeneous systems
(V = 0) the healing length is found by balancing kinetic and
interaction energies terms in the GPE. In a harmonically
trapped condensate, the healing length can be defined with
reference to the density at the center of the trapped condensate
in the absence of any vortex or hole. In our dimensionless units,
we obtain ξ ≈ 0.13, and rTF ≈ 74ξ for the Thomas-Fermi
radius.

Our choice of dimensionless parameters corresponds to
typical [17,18] experiments with 23Na condensates (scattering
length a = 2.75 nm, atom mass m = 3.82 × 10−26 kg) with
N = 1.3 × 106 atoms, radial and axial trapping frequencies
ω0 = 2π × 9 Hz and ωz = 2π × 400 Hz, radial and axial
harmonic oscillator’s lengths a0 = √

�/mω0 ≈ 7.1 μm and
az = √

�/mωz ≈ 1.0 μm, for which the dimensional healing
length is ξ = 0.13a0 ≈ 0.9 μm; the laser beam would then
have a Gaussian 1/e2 radius of w0 = 2σ ≈ 1.8 μm. Blue-
detuned Gaussian laser beams have been used as pins in a
series of experiments with highly oblate BECs [18,23,37].
Particularly in [37], a laser beam of width w0 ≈ 2 μm was used
to stir a 2D 87Rb condensate, similarly to what we propose,
maintaining a circular motion with the help of piezodriven
mirrors.

In order to define our initial state, a circulation of 37 quanta
(i.e., winding number κ = 37) is initially imprinted around the
center of the Thomas-Fermi profile, thus imposing an initial
counterclockwise circular flow. Changing t into −it in Eq. (1),
we shortly evolve the state for t = 0.09 in imaginary-time
description, guaranteeing a fixed phase of 2πκ in the center
of the condensate and adjusting the density to the presence of
the pins. We then compute the evolution in real time.

By substituting t → (1 − iγ )t in Eq. (1), we are left with
a phenomenological dissipative GPE (dGPE), where γ is
a dissipation constant which models the interaction of the
condensate with the surrounding thermal cloud. This equation
can be used to investigate the effect of finite temperature in
our system. With this aim, we also run simulations with the
same initial states using dGPE instead of GPE. We choose γ =
3.0 × 10−4, a typical value of dissipative parameter [38–40],
particularly chosen for the experimentally realistic case found
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t = 0.0 t = 3.6t = 0.9

t = 5.6 t = 7.2 t = 8.1

t = 10.2 t = 50.8 t = 150.0

FIG. 1. Density plots of the condensate at different times t for
ω = 0 (nonrotating obstacles). Regions of large and low density
are displayed in white and black, respectively. Red triangles and
blue circles identify positive-charged and negative-charged vortices,
respectively. The giant vortex decays by injecting a large number of
singly quantized (positive) vortices into the condensate, while the
pins generate vortex pairs, as can be clearly seen at time t = 0.9.

in current experiments [17,19]. Summarizing beforehand, we
find the same overall behavior for both dissipationless and this
specific dissipative case.

All numeric simulations are performed in the 2D domain
−25 � x,y � 25 on a 512 × 512 grid using the fourth-order
Runge-Kutta method in Fourier space with the help of
XMDS [41].

IV. RESULTS

A. Creating polarized flow

We simulate the real-time evolution of the system
for different values of the pins’ angular velocity: ω =
0, π/16, π/8, π/6, and π/4. A series of snapshots for the
case of ω = 0 is shown in Fig. 1 to exemplify a typical run.
The initial large hole at the center of the figure is the core
of the giant vortex. The two small holes (north and south
of the giant hole) are the two stationary pins. The critical
velocity vc for the creation of a vortex-antivortex pair depends
on the barrier’s shape [19,42] and also on inhomogeneities of
the system [18]. Typically, vc/c ∼ 0.1–0.4 for infinitely high
cylindrical barriers, where c is the local speed of sound. Since
our barriers (the pins) are either stationary or rotate against
the main flow, vortex shedding is a dissipative mechanism
which slows down the superfluid’s azimuthal flow and removes
angular momentum.

Aside from generating vortices of opposite sign, the pins
act as a perturbation to the giant vortex and accelerate its
decay process; for example, a wave front which perturbs the

core of the giant vortex is visible at time t = 0.9 in Fig. 1.
The decay of the giant vortex takes place via deformation
of the core, which becomes elliptical before vanishing, and
injecting a large number of positive, singly quantized vortices
into the condensate. At the same time, vortex-antivortex pairs
are created by the flow past the pins. This process continues
until the large azimuthal flow is lower than the critical velocity
vc; at that point, the giant vortex has disappeared, and the pins
are practically unable to generate further vortices. Therefore,
after this slowdown and due to their small sizes, the pins
are practically irrelevant to the vortex dynamics (apart from
occasional creation of pairs in the fast rotating case, ω = π/4).
In spite of that, in order to study the vortex number decay,
we simply remove them at t = 82 and allow for longer
simulations.

We perform a phase-unwrapping procedure and, by de-
tecting windings of ±2π around small closed paths (pla-
quettes) on the phase profile [20], we are able to count
the numbers N+ and N− of positive and negative singly
quantized vortices in the system (anticlockwise and clockwise
circulation, respectively). This vortex detection algorithm
uses a density-cut criterion (∼0.75 of |ψ |2’s mean value)
to avoid detection of ghost vortices. Given the initial giant
vortex (which is multicharged and therefore not detected by
our vortex-detecting algorithm), depending on the value of
ω, there can be an imbalance of N+ and N− throughout
the evolution. Vortices can be expelled from the condensate
due to their mutual interaction, spiral out of the condensate
because of dissipation, or undergo vortex-pair annihilation
processes. In our particular finite-temperature simulation, we
verify that the chosen experimentally realistic value of the
dissipation parameter γ is small enough that, on the time scale
analyzed (and compared to the dissipationless simulations),
dissipation-induced spiraling out of individual vortices is less
significant than vortex interactions or annihilations.

After the decay of the initial giant vortex, the imbalance of
positive and negative vortices is measured by the polarization

P = (N+ − N−)

(N+ + N−)
(2)

which takes maximum or minimum values (P = ±1) if all
vortices have positive or negative sign. Figure 2 shows the time
evolution of the total number of vortices Ntot(t) = N+ + N−
and of the polarization P (t) under influence of the obstacles
(present throughout the whole evolution) with angular velocity
ω. Figure 2(a) shows that the maximum value of Ntot(t)
increases with ω. It is apparent that, by choosing ω, we can
control the polarization. We use this tunable mechanism to
create initial vortex distributions (without the pins) as shown in
Fig. 3, which plots Ntot(t) and P (t) for initial states taken from
instant t = 82 of Fig. 2. Clearly, by tuning ω we can produce
a condensate free of external holes (the giant vortex or the
obstacles) with approximately the desired vortex polarization.

By numerically detecting each vortex and its trajectory, we
determine Ntot at each time step. By subtraction from the initial
total vortex number N0 = Ntot(0), we can infer the number
of vortices which have drifted out of the condensate and the
number of vortices which have disappeared in annihilation
events, colliding with vortices of opposite sign. We find that
such vortex-antivortex annihilation events generate density
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FIG. 2. (a) Total number of vortices Ntot vs time t ; (b) polarization
P vs time t . The vertical dashed line marks the time (t = 82) we
use to make initial states for longer simulation without the pins.
The curves are distributed in increasing value of ω from bottom to
top, for the top plot, and conversely, for the bottom plot. In (a),
at t ≈ 8, from bottom to top, the curves refer, respectively, to ω =
0, π/16, π/8, π/6, and π/4. In (b), from top to bottom, the curves
refer, respectively, to the same latter series of increasing values of ω.
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FIG. 3. (a) Total number of vortices Ntot; (b) polarization P vs
time t , from initial states created at t = 82 in the previous stirring pro-
cess (Fig. 2), labeled by the angular velocities which generated them.
The pins are removed and we evolve those states longer in time to
study the vortex number decay. In (a), at t ≈ 150, from bottom to top,
the curves refer, respectively, to ω = 0, π/4, π/16, π/6, and π/8.
In (b), from top to bottom, the curves are labeled as in Fig. 2(b).

waves, as already reported [19,43,44], turning incompressible
energy into compressible energy. The reverse mechanism is
also possible [45] and in our 2D case takes the form of
vortex-antivortex creation events, which we observe. Creation
events occur when the motion of the vortices induces a
sufficiently deep density wave, or when a large amplitude
wave approaches the edge of the condensate where the local
speed of sound c is less than in the central region. We have also
observed annihilation events immediately followed by creation
events: this sequence happens when a vortex collides with
an antivortex, producing a large sound wave, which almost
immediately generates a new vortex-antivortex pair, due to the
changing value of the local ratio vc/c; this effect happens near
the condensate’s edge.

B. Polarized turbulence decay

Starting from t > 82 (when we remove the pins and start a
new simulation), we examine whether there is a simple law
for turbulence decay in 2D condensates. We remark that,
consistently with previous work [17,19], in the time scales
under investigation we do not observe a tendency to form
large-scale clusters of vortices of the same sign, an effect called
the inverse energy cascade in fluid dynamics and the negative
temperature in the case of the Onsager gas of vortex points;
the reason, as explained in a recent study [46], is the harmonic
shape of the trapping potential. It has been suggested [17,19]
that the decay rate of the total number of vortices is not
exponential but can be phenomenologically described by the
logistic equation

dNtot

dt
= −�1Ntot − �2N

2
tot, (3)

where the linear term refers to vortex drifting out of the
condensate, the nonlinear term arises from vortex-antivortex
annihilation events, and the coefficients �1 and �2 are rates
to be determined. We find that the solution of the logistic
equation fits our decays for t > 82 (after pins removal) fairly
well. However, in most cases which we examined, the fitting
parameter �1 is negative, corresponding to positive growth.
Clearly, after the pins are removed, no vortex generation is
expected (apart from occasional creation of vortex-antivortex
pairs as mentioned above); therefore a naive association of the
linear term of the logistic equation with vortex drifting out of
the condensate does not seem appropriate.

In alternative to the logistic model of Eq. (3), we propose a
model which captures some essential physics of the complex
vortex interaction, although only in an idealized way. First,
we model the rate of drift of vortices out of the condensate
[attributed to the linear term of Eq. (3) in [17,19]]. Consider
a positive vortex near the edge of the condensate. In the first
approximation, its trajectory is a random zigzag caused by the
other vortices (see Fig. 4). The azimuthal velocity component
of the vortex vθ will be biased by its sign and, hence, the
(opposite) sign of its image with respect to the boundary
of the condensate (in the present case of a positive vortex,
the interaction with its negative image will give to vθ an
anticlockwise contribution). This azimuthal flow, however,
gives no contribution to the vortex drift out of the condensate:
what matters to the rate of vortex decay is only the radial
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R

Δr = vrΔt

FIG. 4. Schematic trajectories of vortices in a thin annulus of
thickness �r = vr�t near the edge of a condensate of radius
R. Vortices (red triangles) and antivortices (blue dots) describe
erratic paths (arrowed lines) due to interaction with other vortices.
Collisions, mainly with same-signed vortices, drive vortices out of
the condensate.

component vr which will depend on the velocity induced by
the surrounding vortices vi . In this simple model, vi can be
thought as the velocity induced by the nearest vortex located
(if we consider a random vortex distribution) at the typical
average inter-vortex distance � ≈ n−1/2, where n = N/(πR2)
is the number of vortices per unit area (in 2D) or the length
of vortex line per unit volume (in 3D) and N is the number of
vortices in the condensate of radius R.1

1This scaling is well known in the superfluid helium literature, and
has been numerically verified by D. Kivotides, Y. A. Sergeev, and C.
F. Barenghi, Phys. Fluids 20, 055105 (2008).

The magnitude of the induced velocity vi will, hence, be
approximately vi ≈ κ/(2π�) = κN1/2/(2π3/2R) (where κ =
±1 is the circulation in our units). The resulting radial velocity
of the vortex vr is therefore given by the expression vr ≈ βvi ≈
βκN1/2/(2π3/2R), where |β| � 1 depends on the direction of
vi and thus on the sign and the relative angular position of the
nearest vortex.

Since collisions which take vortices out of the condensate
are mainly with vortices of the same (positive) sign, we
only use N+ to estimate � in this term, accounting for the
polarization. In this idealized model, the number of positive
vortices �N+ expelled from the condensate in the (small) time
�t will therefore be proportional to the number of positive
vortices N+

a lying in the small circular annulus of width
�r = vi�t and area �A = 2πR�r , next to the edge of the
condensate: these are the only positive vortices which can
potentially travel a radial distance greater than their separation
gap from the boundary of the condensate. Hence, assum-
ing a uniform vortex distribution we have �N+ ∝ N+

a ≈
N+�A/(πR2) = κN+3/2

�t/(π3/2R2). Taking the limit for
small �t , we conclude that positive vortices drift out of
the condensate as dN+/dt ∝ (N+)3/2; similarly, dN−/dt ∝
(N−)3/2 for negative vortices.

We turn now the attention to the nonlinear term of
Eq. (3), and remark that polarization must be included in the
description. In Ref. [17], the authors added the nonlinear term
on the intuitive assumption that annihilation rate depends on
the number of vortex dipoles (composed of a positive and a
negative vortex) which can be formed, which is of order ∝ N2

in a zero-polarized system. Following a similar reasoning, in a
polarized system the annihilation rate should then be of order
∝ N+N−, as fewer vortex-dipole pairs are formed if P �= 0
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FIG. 5. Positive and negative vortex numbers N+ and N− decay as a function of time t for cases (a) ω = 0; (b) ω = π/16; (c) ω = π/8;
(d) ω = π/6; (e) ω = π/4; and (f) phase imprinted P = 0. The dashed lines are the respective fits for the numerical data (full lines) with the
fitting parameters �1 and �2 appearing at top part of each plot. For plots (a), (b), and (c), the top and bottom curves are related to the positive
and negative vortex numbers, respectively; for plots (d), (e), and (f), curves are in the opposite order.
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(this consideration implicitly allows for any time dependence
of the polarization).

We conclude that, in alternative to Eq. (3), a more physically
realistic (although still rather idealized) model is

dN+

dt
= −�1(N+)3/2 − �2(N+N−)2,

dN−

dt
= −�1(N−)3/2 − �2(N+N−)2.

(4)

Summing up Eqs. (4), the total number of vortices Ntot =
N+ + N− decays nontrivially as a function of polarization
P = P (t) according to

dNtot

dt
= −�1f (t)N3/2

tot − �2g(t)N4
tot, (5)

where the time-dependent polarization P (t) appears in the
functions

f (t) ≡ [(1 + P )/2]3/2 + [(1 − P )/2]3/2, (6)

g(t) ≡ (1 − P 2)2/8. (7)

Notice that in our model the rates of drift and annihilation have,
respectively, dependence N

3/2
tot and N4

tot [rather than Ntot and
N2

tot of Eq. (3)]. The fit to the data is slightly better, and both
coefficients �1 and �2 are positive (see Fig. 5), consistently
with the interpretation of the two terms of the equation. Above
all, our model is not arbitrary, but attempts to capture some of
the physics of vortex interaction.

The same N4
tot scaling for the annihilation rate was justified

heuristically in the context of a quenched 2D homogeneous
system in Ref. [47]. Recently, in Ref. [46], the N4

tot scaling
was also associated with a four-body process in simulations
of trapped systems, in agreement with our observations.
The general behavior is as follows: initially, a vortex dipole
interacts with a third, catalyst vortex (or antivortex), turning
into a rarefaction wave which the authors of Ref. [46] called
a vortexonium in analogy with the positronium (the neutral
bound state of an electron an a positron). The vortexonium
travels through the condensate until it encounters a fourth
vortex (or antivortex), which acts as a second catalyst. The
four-body annihilation process is completed when the collision
of the vortexonium with the fourth vortex converts the
vortexonium irreversibly into sound. Figure 6 illustrates the
process, showing zoomed-in images of a typical vortex-pair
annihilation time sequence from our simulations. In this
particular case, the third and fourth bodies are catalyst vortex
and antivortex, respectively [see Figs. 6(c) and 6(f)]. It is
important to notice that the process of vortex unbind that
we have previously discussed often frustrates the last step
of this process (i.e., the interaction with the second catalyst
vortex) and the annihilation does not happen: although the
vortexonium is formed, the local speed of sound may quickly
change and split the dipole back again.

Vortex decay curves as a function of the polarization are
shown in Fig. 5. We can identify cases (b) and (e) (ω =
π/16 and ω = π/4), (c) and (d) (ω = π/8 and ω = π/6),
respectively, as counterparts with the opposite polarization: the
decay curves are similar in behavior, with mirror-symmetric
polarization. The main difference between a curve and its

(a) (b)

(c) (d)

(e) (f)

FIG. 6. Vortex annihilation through a four-body process. The
white circles highlight the time sequence, which shows that (a) a
vortex dipole is formed; (b) the dipole turns into a solitary wave
(vortexonium) by interacting with a catalyst vortex; (c) the solitary
wave deflects the catalyst vortex; (d) it travels to a higher density
region, becoming a grayer, rarefaction pulse; (e) the pulse is about
to collide with an anti-vortex; and (f) the annihilation process is
complete after the collision, where the pulse is irreversibly converted
into sound.

counterpart is the steeper number decay at initial times for
(c) and (e). We found that the number of vortices lost due to
annihilations is always considerably less than due to drift.
Drift out of the condensate is strongly induced by vortex
interactions: the values of the dissipation parameter γ which
we used are too small to make vortices to spiral out of
the condensate in the time scales studied. Therefore, both
linear and nonlinear terms in Eq. (5) have origins in vortex
interactions. Case (e) (ω = π/4) illustrates well the need for
a steeper than quadratic term in the rate equation since it
characterizes a purely nonlinear decay (i.e., �1 = 0).

Finally, in order to compare models from Eqs. (3) with (5)
we performed numerical experiments in which, rather than
creating vorticity with the giant vortex pins set up here
proposed, we simply numerically imprint a given initial
number of vortices uniformly at random positions onto the
same harmonically trapped condensate. We obtain essentially
the following results: the polarization approximately retains
its initial value P = 0 [see Fig. 5(f)], and a reasonable fit is
obtained using Eq. (3). As opposed to the polarized cases, we
find non-negative rates. However, we see in the comparison
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FIG. 7. Total number of vortices Ntot vs time t for the case where
an unpolarized P = 0 vortex distribution was created through phase
imprinting, in order to compare fits given by Eq. (3) (black dotted-
dashed line) and Eq. (5) (blue dashed line).

shown in Fig. 4 that Eq. (5) fits the curve better than Eq. (3),
clearly showing that the ∝ N4 scaling is a better fit than ∝ N2.
Similarly to the polarized cases, drift is the main mechanism
of vortex loss. Equation (3) has modeled well the decays
studied by [17,19], which differs from our P = 0 case not in
polarization but rather in the initial number of vortices (∼60
as opposed to our ∼140) (see Fig. 7). Therefore, we attribute
the departure from the quadratic decay (which is consistent
with the “ultraquantum” decay observed [4,5] in superfluid
helium, where the system’s finiteness was not an issue) to
vortex mutual interaction in a confined region. The finite-size
system probably imposes a limit to the number of vortices
which can be accommodated in the condensate.

In summary, for both polarized case and the particular
unpolarized case where the vortex density is high, our rate
equation (5) successfully describes the evolution of the total
number of vortices.

V. CONCLUSION

We have presented a scheme for generating 2D quantum
turbulence in atomic condensates which allows control over
the polarization of the flow, equivalent to the net rotation of
a turbulent ordinary fluid. Using this experimentally feasible
scheme, we have examined the decay of the turbulence and
the vortex interactions (vortex-antivortex creation and annihi-
lation) which take place in the condensate. We have modeled
the decay of the number of vortices using a rate equation that
takes into account the time-dependent polarization. The rate
equation (5) is physically more justified and gives a better
fit to the numerical experiments than the logistic equation
proposed by [17]; in particular, its two terms have clearly
distinct physical meaning in terms of drift and annihilation. It
also agrees with the recent finding of Ref. [46] in suggesting
that vortex annihilation is a four-vortex process. The rate
equation is therefore a better starting point to interpret the
decay of 2D quantum turbulence in further experiments and
simulations in which turbulence is generated in different ways,
which will help understanding the scatter of the values of �1

and �2.
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