
PHYSICAL REVIEW A 93, 033650 (2016)
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We analyze the finite-temperature effects on the phase diagram describing the insulating properties of
interacting one-dimensional bosons in a quasiperiodic lattice. We examine thermal effects by comparing
experimental results to exact diagonalization for small-sized systems and to density-matrix renormalization group
(DMRG) computations. At weak interactions, we find short thermal correlation lengths, indicating a substantial
impact of temperature on the system coherence. Conversely, at strong interactions, the obtained thermal correlation
lengths are significantly larger than the localization length, and the quantum nature of the T = 0 Bose-glass phase
is preserved up to a crossover temperature that depends on the disorder strength. Furthermore, in the absence
of disorder, we show how quasiexact finite-T DMRG computations, compared to experimental results, can be
employed to estimate the temperature, which is not directly accessible in the experiment.
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I. INTRODUCTION

For their ability to simulate condensed matter systems,
ultracold atoms in disordered optical potentials are known
to be very effective and versatile systems. The appeal of such
systems, already highlighted in the observation of Anderson
localization [1–3] for vanishing interactions, is increasing in
the research activity on many-body quantum physics. Since
several decades, large effort has been made to investigate the
combined effect of disorder and interaction on the insulating
properties of one-dimensional (1D) bosonic systems, both
theoretically and experimentally.

From a theoretical viewpoint, the T = 0 phase diagram
describing the superfluid-insulator transitions has been studied
for both random disorder [4–6] and quasiperiodic lattices
[7–11]. The quasiperiodic lattice displays behaviors that are
qualitatively and quantitatively different from those of a true
random disorder. Yet, the occurrence of localization makes it
a remarkable testbed for studying the Bose-glass physics. On
the experimental side, the disorder-interaction phase diagram
has been examined [12–14] and, in the recent study of
Ref. [15], measurements of momentum distribution, transport,
and excitation spectra showed a finite-T reentrant insulator
resembling the one predicted by theory.

In this context, the question of the effect of finite tempera-
ture is, however, still open [16] and a direct link between the
T = 0 theory and the experiment is still missing. In particular,
whether and to what extent the T = 0 quantum phases persist
at the low but finite experimental temperatures still has to be
understood. Increasing the temperature in a clean (i.e., nondis-
ordered) system, the quantum Mott domains progressively
shrink, vanishing at the “melting” temperature kBT � 0.2U ,
with U being the Mott energy gap [17]. In the presence of
disorder, no theoretical predictions are so far available.

In this article, starting from the recent experimental study
[15], we analyze the temperature effects on the coherence
properties of the system. On the experimental side, it is very

challenging to measure and control the temperature. We thus
investigate the loss of coherence induced by a heating of the
system, relating it to an increase of the entropy, which, in
contrast to the temperature, is experimentally accessible. For
a detailed analysis, we compare the experimental finite-T
data with a phenomenological approach based on density-
matrix renormalization group (DMRG) calculations [18–20]
for our inhomogeneous system at T = 0. This provides
a qualitative estimation of the coherence loss induced by
temperature throughout the disorder-interaction diagram. In
this framework, the coherence loss is quantified in terms of a
phenomenological parameter, the effective thermal correlation
length. Furthermore, a rigorous analysis of the temperature
dependence of the correlation length is provided by exact
diagonalization of the Hamiltonian for the case of small
homogeneous systems. A reduction of the correlation length
above a disorder-dependent characteristic temperature can be
interpreted as a crossover from a quantum to a normal phase.
In the regime of strong interactions, the exact diagonalization
method, which well reproduces the melting temperature for
the clean commensurate Mott insulator, is found to apply also
to the disordered case, thus providing a crossover temperature
for the incommensurate Bose-glass phase.

Complementarily, we show how to estimate the temperature
of the experimental system by comparison of the measured
momentum distribution with quasiexact theoretical results,
obtained with a finite-T DMRG method [21–24]. Up to
now it was possible to determine the temperature of a 1D
quasicondensate in the presence of the trap alone [25,26].
By using the DMRG simulations, it is also possible to
determine temperatures of quasi-1D systems in the presence
of lattice potentials. For the present experiment we estimate
the temperature in the superfluid regime without disorder.
Problems can arise in the analysis of insulating experimental
systems as these are not necessarily in thermal equilibrium.
Attempts of temperature measurements for such systems are
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reported as well, highlighting the difficulties also caused
by the coexistence of different phases in the considered
inhomogeneous system.

The exposition of this work is organized as follows.
Section II describes the experimental setup and the methods
for measurements of momentum distribution and entropy. In
Sec. III, we first recall the main experimental results reported
in Ref. [15], which provide an overview of the coherence
properties at the given finite temperature of the experiment.
The effect of a heating, which is accompanied by an increase
of the entropy, is then investigated by measuring the resultant
broadening of the momentum distribution. In Sec. IV, we
explain the theoretical methods employed in the subsequent
sections to analyze more systematically the finite-T effects
on the quantum phases of the system. Section V presents
a phenomenological approach based on T = 0 DMRG cal-
culations that captures thermal effects by introducing an
effective thermal correlation length which is fitted to the
experimental data. The effect of the system inhomogeneity is
analyzed as well. In Sec. VI, we perform exact diagonalization
for small homogeneous systems. For weak interactions, this
provides the T dependence of the correlation length for the
superfluid and weakly interacting Bose glass while, for strong
interactions, it provides the crossover temperature for the
existence of the quantum phases, the Mott insulator, and the
strongly interacting Bose glass. In Sec. VII, we use finite-T
DMRG calculations for an ab initio thermometry in a clean
system. In particular, experimental temperatures are estimated
by comparing the experimental momentum distributions with
quasiexact DMRG calculations. Finally, the conclusions are
reported in Sec. VIII.

II. EXPERIMENTAL METHODS

Starting from a three-dimensional (3D) Bose-Einstein
condensate (BEC) with Ntot � 35 000 atoms of 39K, a strong
horizontal two-dimensional (2D) optical lattice (with depth
of 30 recoil energies) is ramped up such that an array of
independent potential tubes directed along the z axis is created.
This forms a set of about 500 quasi-1D systems, as depicted
in Fig. 1. Additionally, a quasiperiodic lattice along the z

direction is then ramped up, yielding a set of disordered
quasi-1D systems [3,12]. Such systems are described by the
disordered Bose-Hubbard Hamiltonian [8,10]

H = −J
∑

i

(b†i bi+1 + H.c.) + �
∑

i

cos(2πδi)ni

+ U

2

∑
i

ni(ni − 1) + α

2

∑
i

(i − i0)2ni, (1)

where b
†
i , bi , and ni = b

†
i bi are the creation, annihilation, and

number operators at site i. The Hamiltonian is characterized
by three main energy scales: the tunneling energy J , the
quasidisorder strength �, and the interaction energy U . The
tunneling rate J/h � 110 Hz is set by the depth of the primary
lattice with spacing d = λ1/2 = 0.532 μm. � can be suitably
varied by changing the depth of a weaker secondary lattice,
superimposed to the primary one and having an incommensu-
rate wavelength λ2 such that the ratio δ = λ1/λ2 = 1.243 . . .

is far from a simple fraction and mimics the potential that

FIG. 1. Experimental setup. Two horizontal optical lattices pro-
vide a tight confinement forming an array of 1D vertical potential
tubes for the 39K atoms with tunable interaction energy U . The
vertical quasiperiodic potential is formed by superimposing two
incommensurate optical lattices: the main lattice (λ1 = 1064 nm),
which is related to the tunneling energy J , and the secondary
one (λ2 = 859.6 nm), which is related to the disorder amplitude
�. The harmonic trapping confinement makes the 1D systems
inhomogeneous.

would be created by a truly irrational number. U can be
easily controlled as well thanks to a broad Feshbach resonance
[27] which allows to change the interparticle scattering length
as from about zero to large positive values. Finally, the
fourth term of the Hamiltonian, which is characterized by
the parameter α � 0.26J , represents the harmonic trapping
potential, centered around lattice site i0. Depending on the
value of U , the mean site occupancy can range from n = 2 to
8. More details on the experimental apparatus and procedures
are given in Ref. [15].

Theoretical phase diagrams for the model (1) were obtained
by numerical computation and analytical arguments [7–10]
for the ideal case of zero temperature and no trapping
potential. However, due to experimental constraints, the 1D
quasicondensates we actually produce are at low but finite
temperatures (of the order of few J , thus below the charac-
teristic degeneracy temperature TD � 8J/kB [28]). Moreover,
the unavoidable trapping confinement used in the experiment
makes the system inhomogeneous and limits its size. As a
result, in the experimental system, different phases coexist
and the theoretical sharp quantum phase transitions occurring
in the case of the thermodynamic limit are actually replaced
by broad crossovers.

A. Momentum distribution

Both experimental and theoretical analysis are mainly
based on the momentum distribution P (k). The experimental
P (k) is obtained by releasing the atomic cloud from the
trapping potential and letting it expand freely for 16 ms before
acquiring an absorption image. Due to the presence of the
lattice potential, P (k) is characterized by three equidistant
peaks whose width depends on the coherence of the system.
Experimentally, the central peak of P (k) can be fitted with a
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FIG. 2. Measured rms width � of the momentum distribution
P (k) in the U -� diagram. Without interaction (U = 0), increasing
� induces the transition from the superfluid (SF) to the Anderson
insulator (AI). In the absence of disorder (� = 0), increasing U leads
to the superfluid to Mott-insulator (MI) transition. For increasing �

at large interaction, according to T = 0 DMRG calculations, MI
domains exist only at the right of the dashed line (i.e., U > 2� for
large U ), where they coexist with SF or Bose-glass (BG) domains,
respectively, below and above � = 2J . The diagram is generated
from 94 data points (crosses). Standard deviations of � are between
2% and 5%. Data taken from Ref. [15].

Lorentzian function

L(k) ∝ 1

k2 + ξ−2
expt

. (2)

The half-width half-maximum ξ−1
expt, which is left as a free

fitting parameter, provides a measure for the real-space
correlation length ξ . Actually, P (k) has in general a more
complex shape that cannot be simply described by a Lorentzian
function. In order to facilitate the comparison to theory (see
Sec. V), we also obtain the root mean squared (rms) width � of
P (k). Even though there is no longer a linear relation with the
correlation length, � still increases monotonically with 1/ξ ,
thus providing information about the coherence properties of
the system.

B. Entropy

Aside from the unavailability of direct experimental means
to measure temperature, thermalization is a difficult issue in
the insulating phases of the system, as discussed in Sec. VII.
Nevertheless, entropy measurements are feasible and can
provide information about the heating of the system. The
entropy in the 1D tubes is estimated as follows. We first
measure the initial entropy of the system in the 3D trap:
in the BEC regime with T/Tc < 1, where Tc is the critical
temperature for condensation in 3D, we use the relation
S = 4NT kBζ (4)/[ζ (3)(T/Tc)3], where ζ is the Riemann zeta
function [29]. The reduced temperature T/Tc is estimated
from the measured condensate fraction by taking into account
the finite interaction energy. After slowly ramping the lattices
up and setting the desired values of U and �, we again
slowly ramp the lattices down, such that only the 3D trapping
potential remains, and we again measure the entropy as just
described. As an estimate for the entropy in the 1D tubes we
use the mean value of these initial and final entropies. Through

FIG. 3. U -� diagram for experimental estimates of the entropy
per particle, S/(NkB ). The white crosses show the data points
from which the 2D diagram was generated by interpolation. The
measurements are performed at the lowest possible experimental
temperature as in the measurements of Fig. 2. Data taken from
Supplemental Material of Ref. [15].

variation of the waiting time in the 1D tubes, we can change
the amount of heating and thus of entropy in the system.

III. EXPERIMENTAL RESULTS

In this section, we summarize the properties of the ex-
perimental system as a function of disorder and interaction
strengths. First, we will discuss the U -� diagram for the rms
width � of the momentum distribution P (k). This was obtained
at the lowest but finite temperature imposed by the experimen-
tal constraints and is the starting point for the further detailed
analysis. At two exemplary points, we then demonstrate the
effect of heating in the system by measuring the broadening
of the momentum distribution as a function of the entropy.

A. Coherence U-� diagram

An overview of the insulating properties of our system
is provided by measurements of the momentum distribution
P (k) [15]. Obtained by interpolating 94 sets of measurements,
Fig. 2 shows the rms width � of P (k) as a function of the
interaction strength U and the disorder strength �. The plot is
representative of the phase changes occurring in the system.
At small disorder and interaction values where the system is
superfluid, P (k) is narrow (blue zone). At larger disorder and
interaction values, P (k) progressively broadens (green, yellow,
and red zones) meaning that the system is becoming more
and more insulating. In particular, along the � = 0 line, the
diagram is consistent with the progressive formation of a Mott
insulator, which, in our inhomogeneous system, coexists with
a superfluid fraction. For increasing � along the U = 0 line, an
Anderson insulator forms above the critical value � = 2J pre-
dicted by the Aubry-André model [3,30]. For finite U and �,
we observe a reentrant insulating regime extending from small
U and � > 2J to large U , which surrounds a superfluid regime
at moderate disorder and interaction. This shape is similar to
that of the Bose-glass phase found in theoretical studies of the
U -� diagram for homogeneous systems at T = 0 [4,10,31].

Ideally, studying the finite-temperature effects would re-
quire proper thermalization of the system in its different
phases, means to measure the temperature, as well as the
capability to tune it in a controlled way. In the absence of a
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FIG. 4. Inverse correlation length 1/ξexpt as a function of the en-
tropy S, for � = 6.6J and for two interaction strengths (a) U = 2.3J

and (b) U = 23.4J . In the regime of strong interaction, where the
Bose-glass and the disordered Mott-insulating phases coexist, 1/ξexpt

starts increasing only above a certain entropy value. The uncertainties
are the standard deviation of typically five measurements. The lines
are a guide to the eye.

direct way to measure temperature, we measure the entropy to
get information about the effect of heating. Figure 3 shows the
entropy S across the U -� diagram, measured according to the
procedure described in Sec. II B. The measurements for Fig. 3
are performed at the shortest waiting times in the 1D tubes
and thus correspond to the lowest reachable temperatures. We
find that S increases when U is lowered and that it is rather
independent of �. The former observation is presumably due
to a reduced adiabaticity in the preparation of the 1D systems
for weak interactions. The latter confirms that the reentrant
incoherent regime shown in Fig. 2 is indeed ascribed to the
actual coherence properties of the system and not to heating
processes arising from technical issues.

B. Heat-induced coherence loss

Let us now look at the loss of coherence induced by a
heating of the system, corresponding to an entropy increase.
In Fig. 4, we report the inverse correlation length 1/ξexpt

as a function of S, both at weak and strong interactions.
1/ξexpt is obtained from momentum distribution measurements
according to Eq. (2).

The plot for the weak-U regime shows that as S increases,
1/ξexpt also increases, meaning that the system loses coherence
when being heated. This suggests that, for weak interaction,
the system is sensitive to heating. More interestingly, the
plot at strong interaction shows the existence of a plateau
at low entropy, before a broadening sets in. Assuming a
monotonic increase of temperature with entropy, this result
suggests that, conversely to the weak-interaction case, here the
low-temperature coherence properties can be preserved in the
finite-T experiment, provided that temperature is sufficiently
small. This experimental observation will be better analyzed
and described from a theoretical viewpoint in Sec. VI B.

IV. THEORETICAL METHODS

In this section, we first describe how DMRG computations
can be used to obtain the averaged momentum distribution

resulting from the contributions of the many 1D systems that
our experimental setup consists of and how the distribution
of particles among the 1D systems can be modeled. We then
describe the three different theoretical approaches, used in
this work to investigate the thermal effects and determine ex-
perimental temperatures. The first one is a phenomenological
approach based on a comparison of the finite-T experimental
data and T = 0 DMRG data. The second technique is to use
exact diagonalization of the Hamiltonian. On the one hand, it
allows to tune temperature in a systematic manner but, on the
other hand, it is limited to small system sizes and can hence not
take account of the inhomogeneity of our system. Finally, we
present a finite-T DMRG method, which provides quasiexact
finite-temperature results, also for the inhomogeneous system,
and can for example be used for thermometry purposes.

A. Averaged momentum distribution

DMRG calculations, as described in Secs. IV C and IV E,
give access to the density profiles in the 1D tubes and
to the single-particle correlation functions gij (T ) = 〈b†i bj 〉T ,
where 〈. . . 〉T denotes the quantum-mechanical expectation
value in thermal equilibrium. The corresponding momentum
distributions are computed according to

P (k) = |W (k)|2
∑
i,j

eik(i−j )ḡij , (3)

where W (k) is the Fourier transform of the numerically
computed Wannier function. For quasimomenta k in the first
Brillouin zone, W (k) can be approximated very well by an
inverse parabola. The notation (. . . ) indicates the average over
all tubes in the setup.

B. Distribution of particles among tubes

There are several assumptions made in modeling the exper-
imental setups. As numerical calculations and most theoretical
analyses are better suited for studying lattice models, one has
to derive the lattice model from the continuous Hamiltonian
corresponding to the optical lattices setup. For our system, this
issue is discussed in Refs. [8,10].

The experiment comprises a collection of 1D tubes modeled
by Hamiltonian (1). Due to the transverse component of the
harmonic trapping potential, these tubes contain different num-
bers of particles. The total number of particles Ntot is known
with an uncertainty of 15% and the distribution of particles
among the tubes is also not exactly known. In the theoretical
analysis, we consider two different distributions, that we call
Thomas-Fermi (TF) distribution and grand-canonical (GC)
distribution, respectively. The former basically assumes that,
during the ramping of the lattice potentials, particles are not
redistributed among the tubes. The latter rather assumes that
the system evolves until it has reached its equilibrium state and
particles have correspondingly redistributed between the tubes.

For the Thomas-Fermi approximation, the distribution of
particles among the tubes still corresponds to the Thomas-
Fermi distribution of the anisotropic 3D BEC before the
ramping of the lattice potentials. Integrating the Thomas-Fermi
profile along the z direction gives a continuous 2D transverse
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density profile of the form

N (r⊥) = Nmax

(
1 − r2

⊥
R2

r

)3/2

, (4)

where Rr = √
2μ/(mω2

r ) and μ = �ω̄
2 (15as/ā)2/5N

2/5
tot . Here,

ωr and ω̄ are the radial and mean optical trap frequencies before
the loading of the tubes, and ā = √

�/(mω̄) is the associated
harmonic length. Inserting the experimental parameters, we
obtain the relation Rr � 1.9 N

2/5
tot d. The number of atoms in

the central tube is given by Nmax � 5
2π

d2

R2
r
Ntot. For DMRG

computations, we approximate Eq. (4) by a set of integers
{Nν} satisfying

∑
ν Nν = Ntot, where Nν denotes the number

of particles in tube ν. In this approach, the distribution of
particles depends only on Ntot and not on T , U , J , or �.

In addition, we consider the grand-canonical approach,
which is well suited for calculations done with finite-T
DMRG. This is also useful in the classical limit (J = 0)
for which the grand partition function naturally factorizes.
We choose a global chemical potential μ such that the
expectation value of the total number of particles is Ntot. As
the different tubes are independent of each other, the effective
chemical potential μν of tube ν is determined by μ and by
the transverse component of the harmonic trapping potential
such that μν = μ − 1

2mω2
r r2

⊥,ν where r⊥,ν is the transverse
2D position of tube ν. Physically, this assumes that particles
are redistributed between tubes when the lattice potentials are
ramped up. In order to determine μ for a given total number
of particles Ntot = ∑

ν N (μν), we rely on data for the number
of atoms N (μν) in a tube for a given chemical potential of the
tube. N (μν) is computed numerically with finite-T DMRG or
in the classical limit of the model. Contrary to the TF approach,
N (μν) here depends on the temperature and on all parameters
of the model, in particular the interaction. As in the experiment,
theoretical expectation values are averaged over all tubes.

Typical N (μν) relations for the trapped system are shown
in Fig. 5(a) for the values of interaction and temperature that
will be used later. The corresponding distribution of the atom

FIG. 5. (a) Finite-T DMRG data for the number of atoms N (μ) in
a tube, as a function of the tube chemical potential μ. (b) Distribution
of the tube particle numbers. Compared to the grand-canonical
distribution of particles among tubes, the Thomas-Fermi distribution
favors more highly filled tubes in the center of the trap.

numbers in the tubes is given in Fig. 5(b), showing that,
in comparison to the TF approximation, the GC approach
favors tubes with lower fillings. For the typical parameters
of the experiment and range of temperatures found hereafter,
the modification of P (k) due to a change of Ntot by ±15%
is less relevant than the modification obtained by changing
the assumption about the tube atom number distribution
(TF or GC). Consequently, unless stated differently, we use
Ntot = 35 000 in the following.

C. Phenomenological finite-T approach based on T = 0 DMRG

For a single tube, standard DMRG [18–20] calculations
provide accurate T = 0 results for the momentum distribution.
As the analysis of the full U -� diagram requires computations
for 94 points, a systematic scan of the temperature for each
point using finite-T DMRG represents a numerical challenge.
In the case of the 2D Bose-Hubbard model without disorder,
such an ab initio fit of the data was carried out using quantum
Monte Carlo [32]. In Ref. [15] and in Sec. V, we pursue
a phenomenological approach to capture finite-temperature
effects. Since temperature is expected to induce an exponential
decay of the correlations gij at long distances |i − j |, the
idea is to first do DMRG calculations at T = 0, which are
computationally cheap, and to then multiply the obtained
correlators gij (T = 0) by e−|i−j |/ξT . The parameter ξT , in the
following called effective thermal correlation length, is left as
the only free parameter to fit the finite-T experimental data.
Specifically, we introduce the modified correlations

g̃ij (T ) = Ce−|i−j |/ξT gij (T = 0). (5)

The normalization factor C is chosen such that the correspond-
ing momentum distribution P (k) obeys P (k = 0) = 1. In the
superfluid regime, this approach is motivated by Luttinger
liquid theory [33]. In this theory, the correlation function
behaves as

gij (T ) ∝ exp

{
− 1

2K
ln

[
sinh(2K|i − j |/ξ̃T )

2Kd/nξ̃T

]}
, (6)

which interpolates between a power-law behavior when
|i − j | � ξ̃T and an exponential behavior when |i − j | � ξ̃T .
Here, K is the dimensionless Luttinger parameter, which is of
order one in our case. This formula is expected to be valid in
the low-temperature regime with a thermal correlation length
behaving as ξ̃−1

T = π
2K

kBT
�u

, where u is the sound velocity. In
the Luttinger liquid result (6), the exponential tail at finite
T is expected to depend on the particle density n/d. Hence,
for inhomogeneous systems, one should rather have a site
dependent ξT , also varying from tube to tube. However, for
the sake of simplicity, for each point in the diagram, we use a
single ξT for all tubes and all sites.

Of course, this approach is not exact and its validity
depends on the temperature regime and the considered phase.
It can be tested quickly on small homogeneous systems using
exact diagonalization. Such a comparison shows that the
phenomenological ansatz provides a sensible fit of the exact
finite-T data for the range of temperatures relevant for the
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FIG. 6. Theoretical rms width � of the momentum distribution P (k) at T = 0, averaged over all tubes. The diagram is built from 94 data
points as in the experimental diagram in Fig. 2. For few representative points, P (k) is also shown at the side of the diagram: the theoretical result
for T = 0 (blue, dotted-dashed) is compared to the experimental finite-T data (black, solid). The labels indicate the different quantum phases:
superfluid (SF), Mott insulator (MI), Anderson insulator (AI), and Bose glass (BG). The dashed line delimits the region for the existence of the
MI phase. Data taken from Ref. [15].

experiment, i.e., T � J/kB . The validity of the approach for
the trapped system is discussed further in Sec. VII.

D. Exact diagonalization for homogeneous systems

For small homogeneous systems (α = 0), we use full
diagonalization of the Hamiltonian (1) to obtain real-space
correlations gij at finite temperatures. Such correlation func-
tions typically show an exponential decay that we fit using
points with relative distance �z � 4d,5d to obtain the total
correlation length ξ (T ). We use systems with various densities
and sizes. Depending on the density, the system size L ranges
from 8d to 13d. Because of finite-size effects, the results are
useful as long as ξ (T ) is sufficiently below the system size.

E. Quasiexact finite-T DMRG computations

Zero-temperature DMRG computations [18–20], as em-
ployed in the approach described above, variationally optimize
a certain ansatz for the many-body quantum state so-called
matrix product states. While this only covers pure states, it
can be extended to directly describe thermal states [21–24].
To this purpose, one computes a so-called purification of the
thermal density matrix ρβ = e−β(H−μN), where β = 1/(kBT ).
Specifically, if the system is described by a Hilbert space
H, a purification |ρβ〉 of the density matrix is a pure state
from an enlarged Hilbert space H ⊗ Haux such that ρβ =
Traux |ρβ〉〈ρβ |, i.e., such that the density matrix is obtained by
tracing out the auxiliary Hilbert space Haux from the projector
|ρβ〉〈ρβ |. As the purification |ρβ〉 is a pure many-body state,
we can make a matrix product ansatz for it and deal with
it in the framework of DMRG. Noting that it is simple to
write a purification for the infinite-temperature state ρ0 = 1,
one can start the computation at infinite temperature and
use imaginary-time evolution to obtain finite-T purifications
|ρβ〉 = e−β(H−μN)/2 ⊗ 1aux|ρ0〉. Based on this, finite-T expec-
tation values of any observable A can be evaluated in the form
〈A〉β = 〈ρβ |A ⊗ 1aux|ρβ〉/〈ρβ |ρβ〉.

V. PHENOMENOLOGICAL ANALYSIS
OF THE U-� COHERENCE DIAGRAM

The challenge in the analysis of the experimental data and
its comparison to the ideal theoretical case is posed by the
inhomogeneity and the finite temperature of the experimental
system, especially, as there are no direct means to measure the
temperature. In the following, we first use DMRG calculations
to compute particle density profiles and momentum distribu-
tions P (k) for the inhomogeneous system at zero temperature
across the U -� diagram. The comparison to the experimental
finite-T diagram (Fig. 2) highlights the effects of temperature.
Subsequently, a phenomenological extension of the theoretical
T = 0 data to finite temperatures provides a more quantitative
understanding of the temperature-induced coherence loss.

A. Zero-temperature U-� diagram from DMRG

Let us theoretically study the behavior of the momentum
distribution P (k) [Eq. (3)] of the model (1). Figure 6 shows
the full U -� coherence diagram at T = 0 in terms of the rms
width � of P (k), together with a few distributions P (k) at
representative points. The data are based on the TF hypothesis
for the distribution of particles among tubes. Indeed, using the
GC hypothesis would require to compute all N (μ) curves
across the diagram which is rather expensive numerically.
In contrast to the typical phase diagrams for homogeneous
systems [10], here, only crossovers between regimes occur,
as different phases can coexist due to the inhomogeneity of
the system. Still, Fig. 6 shows the same three main regions
occurring in the experimental diagram; in particular, the
strongly correlated regime for large interaction strengths with
a reentrance of the localization. However, the different colors
reveal the quantitative difference between the theoretical
T = 0 results and the experimental finite-T results in Fig. 2.
In particular, for small U (left panels in Fig. 6), the numerical
T = 0 momentum distributions (blue, dotted-dashed curves)
are considerably narrower than the experimental finite-T ones
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FIG. 7. Density profiles obtained from T = 0 DMRG calcula-
tions for U = 26J and � = 0 (top) or � = 6.5J (bottom). From left
to right: blue, red, and black curves refer to tubes with N = 20, 55, 96
atoms, respectively. The shaded areas represent the regions with
noninteger filling where the superfluid (top) becomes Bose glass
(bottom). Data taken from Supplemental Material of Ref. [15].

(black, solid curves). Conversely, for large U (right panels),
the thermal broadening is much less relevant.

T = 0 DMRG computations are also used to better un-
derstand the effect of inhomogeneity. The coexistence of
different phases due to the trapping potential can be clearly
observed in the density profiles. For example, Fig. 7 shows
the density profiles computed numerically with DMRG at
T = 0 for the strong-interaction regime and for 1D tubes with
different atom numbers N . For this regime of strong interaction
and in the absence of disorder (top), the profiles show the
typical wedding cake structure, where the commensurate
Mott domains (integer n) are separated by incommensurate
superfluid regions (noninteger n). Adding disorder (bottom),
the Mott regions progressively shrink and the smooth density
profiles of the incommensurate regions become strongly
irregular, as expected in the case of a Bose glass. Note that
the dashed line in Figs. 6 and 2 delimits the region where
Mott-insulating domains appear at T = 0. These domains are

quantitatively defined by the condition that, in the T = 0
DMRG density profiles for the three representative tubes with
N = 20, 55, 96 atoms, there are at least three consecutive sites
with integer filling.

B. Phenomenological approach and elementary
interpretation of the coherence diagram

A natural source for the broadening of the momentum
distribution P (k) is the temperature. Let us now address its
effect for the whole U -� diagram based on the phenomenolog-
ical approach explained in Sec. IV C. The phenomenological
approach has the advantages of simplicity and of a direct con-
nection to the described T = 0 results with TF distribution of
atoms among tubes, yielding a first elementary interpretation
for temperature effects.

For each point in the diagram, we systematically fitted
the experimental distribution P (k) with the phenomenological
ansatz resulting from Eq. (5), leaving the effective thermal
correlation length ξT as a single fit parameter. Some typical
fits (red, dashed curves) are shown in side panels of Fig. 8.
The main part of the figure shows the rms width � of the
phenomenological momentum distribution across the whole
U -� diagram. This should be compared to the corresponding
experimental diagram in Fig. 2. The obtained � values are
similar across the whole diagram, except for the large-U and
small-� regions, where the fits are not good. As explained
in the next section, this discrepancy is due to the completely
different thermal response of the coexisting superfluid and
Mott-insulating components.

A rough interpretation of the diagram is that the inverse total
correlation length, denoted by ξ (T ), is approximately given
by the sum of the inverses of an intrinsic (T = 0) correlation
length, denoted by ξ0, and the thermal correlation length ξT ;
namely,

1

ξ (T )
= 1

ξ0
+ 1

ξT

. (7)

The zero-temperature correlation length ξ0 is finite in the local-
ized Mott-insulating and Bose-glass regimes. In homogeneous

FIG. 8. U -� diagram for the rms width � of the phenomenological P (k) (red, dashed). The T = 0 momentum distribution (blue, dotted-
dashed) is thermally broadened in such a way that the phenomenological P (k) fits the experimental one (black, solid). The thermal correlation
length ξT is the fitting parameter that phenomenologically accounts for thermal effects according to the ansatz (5). The full diagram is generated
by interpolation from the same U -� points as in Fig. 2. Data taken from Ref. [15].
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FIG. 9. U -� diagram of the thermal correlation length ξT

resulting from the phenomenological ansatz (5) by fitting it to the
experimental momentum distribution P (k). Thermal effects are sig-
nificantly more relevant for small U . Data taken from Supplemental
Material of Ref. [15].

systems, ξ0 diverges in the superfluid regime and ξ (T ) would
then be identical to the effective thermal correlation length ξT .
For our inhomogeneous systems, ξ0 is large in the superfluid
regime, but remains finite.

We can interpret ξT as a quantification of the thermal broad-
ening which is obtained, according to Eq. (5), by convolving
the theoretical zero-temperature momentum distribution P (k)
of width 1/ξ0 with a Lorentzian distribution of width 1/ξT .
Depending on the point in the diagram, one may then separate
the intrinsic zero-temperature and the thermal contributions
to the observed broadening. Remember that both ξ0 and ξT

are effective correlation lengths appearing after averaging over
many inhomogeneous tubes and are in principle not directly
related to the correlation lengths for a homogeneous system,
although they are expected to follow the same trends with
interaction and disorder.

The behavior of ξT as extracted from the fits is shown
in Fig. 9 for the whole U -� diagram. For U < 10J , ξT is
rather short, d � ξT � 2d, showing that thermal broadening is
important for the superfluid and weakly interacting Bose-glass
regimes. Moreover, ξT does not strongly vary as a function of
�. This shows that the overall increase of � with increasing
� in Fig. 8 is essentially due to a decrease of the intrinsic
correlation length ξ0. In this context, it is important to note that,
when increasing �, the localization length in the considered
quasiperiodic model (1) can reach values much smaller than the
lattice spacing d more rapidly than in the case of true random
potentials [10]. This is favorable for the experiment, which
then probes the strongly localized Bose-glass regime. In the
superfluid region, the thermal contribution to the broadening
is clearly dominating and the observed small values of ξT

correspond to a gas with short-range quantum coherence.
Let us now discuss the large-U regime. There, the obtained

ξT are significantly larger, suggesting that the strongly cor-
related phases are only weakly affected by finite-temperature
effects. For large U in the Mott phase, ξ0 can get much smaller
than d. Here, the rms width is dominated by the intrinsic T = 0
width, as confirmed directly by the fits in the side panels of
Fig. 8. Importantly, this shows that the observed reentrance

of the localization in the experimental diagram is driven by
interactions and disorder, and not by thermal effects.

VI. EFFECT OF TEMPERATURE ON THE CORRELATION
LENGTH FROM EXACT DIAGONALIZATION

As the effective thermal correlation lengths ξT in the
phenomenological approach are found to be relatively short
with respect to the system size, one can gain a first understand-
ing of the temperature dependence of the correlation length
ξ (T ) from exact diagonalization calculations for small-sized
systems, as described in Sec. IV D. Let us stress that the validity
of this analysis is limited to the regions of the phase diagram,
where the correlation length ξ (T ) is sufficiently shorter than
the considered system sizes L ∈ [8d,12d].

A. Thermal broadening for weak interactions

Figure 10 shows the temperature dependence of the inverse
correlation length ξ−1(T ) at U = 2J (superfluid regime) for
several densities below n = 1. The data show a crossover from
a low-temperature regime kBT � J to a high-temperature
regime kBT � J . When U is not too large, a natural energy
scale is set by the bandwidth 4J that controls this crossover.
With exact diagonalization, we cannot investigate the low-
temperature regime due to finite-size effects, but let us recall
that, according to the Luttinger liquid field theory [33], a linear
behavior ξ−1 ∼ kBT /(Jd) is expected, with a prefactor that
depends on density and interactions. In the opposite regime
of high T , we are able to determine the correct scaling of
the correlation length from exact diagonalization. In the range
2J � kBT � 100J , which is also the range of experimental
interest, the numerical results are very well fitted by the

FIG. 10. Temperature dependence of the inverse correlation
length 1/ξ (T ), calculated by exact diagonalization for a small system
(L = 12d) in the superfluid regime (� = 0, U = 2J ), for various site
occupancies n (increasing from top to bottom). The dashed line is a fit
of the numerical high-T data with Eq. (8). Inset: density dependence
of 1/ξ (T ). As shown in the main panel, the change of density n can
be taken into account by a scaling factor such that, when ξ (T ) is
plotted versus kBT /(Jn1/2), all curves overlap for kBT � 2J . Data
taken from Supplemental Material of Ref. [15].
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FIG. 11. Temperature dependence of the inverse correlation
length 1/ξ (T ), calculated by exact diagonalization and derived from
a Lorentzian fit of P (k) for a weakly interacting system (U = 2.3J )
with L = 13d and n = 0.46, for three values of the disorder strength:
� = 0, 6J, 16J .

relation

ξ−1(T ) � d−1arcsinh

(
kBT

cJ
√

n

)
(8)

with c = 2.50(5) being a fit parameter, valid for the relevant
range of densities and interaction U = 2J . This formula is
inspired by the one given in Ref. [34] for free fermions,
ξ (T ) � d/arcsinh(kBT /J ). For high temperatures, ξ−1(T ) is
thus logarithmic in T , corresponding to a “classical” limit of
the lattice model and is attributed to the finite bandwidth. We
do not have a theoretical argument for the observed

√
n scaling;

so, it should be taken as an ansatz that describes the data for
the given values of U and n, but not as a general formula.

Additional computations performed in the presence of dis-
order (see Fig. 11) confirm the previous results of strong ther-
mal effects for small U . For disordered systems, fluctuations
of the local density and hence of the correlation functions are
much more relevant. Thus, in small-sized systems, trying to fit
the exponential decay of the real-space correlations proves to
be difficult. We hence determine the inverse correlation length
ξ−1(T ) from a Lorentzian fit of the momentum distribution
P (k). ξ−1(T ) starts to increase at rather small T , showing that
there is a non-negligible impact of thermal fluctuations already
at low temperatures. This explains the short ξT observed in the
analysis of the experimental data for weak interactions and is in
agreement with the experimentally observed increase of 1/ξexpt

with entropy [Fig. 4(a)]. It is, however, interesting to point
out that, according to recent studies on transport properties
of the same system, the broadening of P (k) with T is not
accompanied by a change of the system mobility [15]. Further
investigations of this persisting insulating behavior at finite T

might establish a link with the many-body localization problem
[16,35,36].

FIG. 12. Temperature dependence of the inverse correlation
length, calculated by exact diagonalization for a strongly interacting
system with U = 44J , disorder strength � = 10J , and for both the
commensurate case of a Mott insulator (n = 1) and the incommensu-
rate case of a Bose glass (n = 0.46). The system lengths are L = 9d

and 13d , respectively. Arrows indicate the crossover temperatures T0

below which ξ−1(T ) is rather constant before starting increasing.

B. Quantum-normal crossover temperature
for strong interactions

Let us now discuss the temperature dependence of the
correlation length for strong interactions (U > 10J ). As
shown in Fig. 12, ξ (T ) is only weakly dependent on T at
low temperatures while a relevant broadening sets in above a
crossover temperature T0, which is determined as the position
of the maximum of the derivative of 1/ξ (T ). This effect can
be seen clearly not only for the Mott phase, for which it occurs
when the thermal energy becomes comparable with the energy
gap U [17], but also for the gapless Bose glass.

Figure 13 shows the computed crossover temperature T0

as a function of the disorder strength � for a representative
interaction strength and for both a commensurate and an
incommensurate density. Due to the finite number of tem-
perature values for which simulations of 1/ξ (T ) have been
performed (see Fig. 12), the crossover temperature has an
error bar that is as large as the difference in temperature
between the 1/ξ (T ) point at T0 and the neighboring ones.
For the commensurate density and � = 0, we obtain kBT0 =
0.23(6)U , which is comparable to the Mott-insulator “melting”
temperature kBT � 0.2U , predicted for higher-dimensional
systems [17]. As � increases, T0 decreases, which is consistent
with a reduction of the gap due to the disorder. For the Bose
glass (incommensurate density), the crossover temperature
shows instead a linear increase with �, i.e., kBT0 ∝ �. This
result, already observed in numerical simulations at small
disorder strengths [37], can be intuitively justified with the
following reasoning. The energies of the lowest levels that
the fermionized bosons can occupy increase with the disorder
strength. So the larger �, the higher the effective Fermi energy
that sets the temperature scale for the existence of the quantum
phase (the Bose glass).
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FIG. 13. Crossover temperature T0 as a function of the disorder
strength �, calculated by exact diagonalization for a strongly
interacting system with U = 44J , for both the commensurate case of
a Mott insulator (n = 1) and the incommensurate case of a Bose glass
(n = 0.46). The system lengths are L = 9d and 13d , respectively.
The error bars for T0 are related to the finite number of simulations
performed for 1/ξ (T ) in proximity of the crossover temperature.

It is important to note that the existence of a crossover
temperature is consistent with the experimental data for 1/ξexpt

as a function of entropy, shown in Fig. 4(b). Both the theoretical
and experimental results suggest that signatures of quantum
phases like the Bose glass, which strictly speaking are only
defined at T = 0, can survive in the finite-T experiment for
sufficiently small-T and large-� values.

Moreover, the exact-diagonalization results confirm those
obtained in Sec. V with the phenomenological approach. We
showed in Fig. 12 that for sufficiently large �, ξ (T ) is not
affected by small finite temperatures. The corresponding large
ξT obtained phenomenologically (see Fig. 9 at large U ) are
consistent with an experimental temperature below T0.

Finally, the fact that for small disorder and strong inter-
action the crossover temperatures in the incommensurate and
commensurate cases are different, clarifies why in the phe-
nomenological approach the fit of the momentum distribution
with a single ξT is not working properly in this regime, as
previously mentioned. In particular, in this large-U small-�
region, where the Mott insulator and the superfluid coexist,
the superfluid component broadens significantly with T , while
the weakly disordered Mott-insulating component does not
for T < T0. As a consequence, considering a single thermal
broadening for the two phases leads to a net overestimation
of the derived �. In fact, the phenomenological distribution
[Fig. 8(d)] will not reproduce the experimental P (k) well in
cases where the central region of P (k) is dominated by the
superfluid component while the tails are dominated by the
Mott-insulating component.

VII. THERMOMETRY WITH FINITE-T DMRG

A standard procedure for obtaining the temperature of a
quasicondensate in a harmonic trap is to use the linear relation
T = �

2n/(0.64kBmξexptd) between the temperature T and the

half-width half-maximum ξ−1
expt of the Lorentzian function

that fits the experimental momentum distribution [25,26].
However, so far, there exists no formula for the temperature
in the interacting disordered or clean lattice systems. Here,
we perform ab initio finite-T DMRG computations of P (k) to
estimate T , both in the superfluid and Mott-insulating regimes.

We note that in Ref. [15] we actually provided a rough
estimate for the temperature T � 3J/kB for the superfluid at
U � 2J , � = 0. The value was obtained by inverting Eq. (8)
for the approximate temperature dependence of the correlation
length ξ (T ) and replacing ξ (T ) by the effective thermal corre-
lation length ξT obtained with the phenomenological approach.
[According to Eq. (7), in the superfluid regime ξ (T ) ≈ ξT as
ξ0 is considerably larger than ξT .] In this simplified approach,
the inhomogeneity of the system was taken into account by
performing a local density approximation (LDA). The more
precise finite-T DMRG analysis, described in the following,
yields a temperature in the superfluid regime that is twice as
large as the old estimate.

As described in Sec. IV E, using finite-T DMRG, we can
perform ab initio calculations to obtain P (k). This allows for
a proper thermometry of the system and also for testing the
validity of the phenomenological approach. After quasiexact
simulation of the system for different temperatures, the
resulting momentum distributions P (k) are compared with the
experimental data to estimate the experimental temperature.
We restrict the analysis to two points on the � = 0 axis of the
diagram: one for U = 3.5J , corresponding to the superfluid
regime, and another one for U = 21J , which is deeply in
the strong-interaction regime. Let us recall the general trends
for the rms width � of P (k): � typically increases with
the interaction strength U and the temperature T , and also
when the number of particles Nν in a tube is decreased. As
the momentum distribution is normalized to P (k = 0) = 1,
low-filled tubes display flat tails while highly filled ones yield
a more peaked momentum distribution. Lastly, one should
keep in mind that the exact distribution of atoms among the
tubes in the experiment is not known. We therefore study both
the Thomas-Fermi (TF) and grand-canonical (GC) hypotheses
as described in Sec. IV B.

A. In the superfluid regime

In Fig. 14 we show the results for the superfluid regime. To
estimate the temperature from experimental data we compute
several theoretical P (k) curves for different temperatures and
select the one that best matches the experimental P (k). For
the chosen interaction strength U = 3.5J , a good estimate for
the temperature is found to be T = 5.3J/kB assuming the
GC distribution for particles among tubes (bold orange curve
in Fig. 14). The theoretical result matches the experimental
data rather well, except for some oscillations in the tails that
are due to correlated noise from the apparatus. Figure 14 also
shows the theoretical P (k) under the hypothesis of the TF
distribution of the particles with temperatures T = 5.3J/kB

and 8J/kB . The former is more peaked and hence less wider
than the GC curve for the same temperature. The latter is
the best fit of the experimental data under the TF hypothesis.
With the TF hypothesis we thus obtain larger temperature
estimates than with the GC one. This is consistent with the
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FIG. 14. Thermometry in the superfluid regime (U = 3.5J ) from
finite-T DMRG calculations for both the hypotheses of a grand-
canonical (GC) or Thomas-Fermi (TF) distribution of the particles
among the tubes. In the legend, “GC distr. @ kBT = X” indicates that
the GC distribution for temperature X was used (also in Figs. 16–18).
The TF distribution does not depend on temperature. See Sec. IV B.

general dependence of P (k) on the particle number N and
the particle-number distributions. As shown in Fig. 5, the GC
distribution has more particles in outer low-filled tubes and
less in the higher-filled inner ones, when compared to the
TF distribution. To show that thermal broadening is certainly
relevant in the considered parameter regime, Fig. 14 also shows
the narrow P (k), obtained from T = 0 DMRG data for both
the TF distribution and the GC one for T = 5.3J/kB .
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FIG. 15. Temperature dependence of the rms width � of P (k) in
the superfluid regime from finite-T DMRG calculations under both
the GC and TF assumptions. In the former case, the effect of varying
Ntot is also shown.
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FIG. 16. Testing the phenomenological approach (5) for U =
3.5J and T = 5.3J/kB . To this purpose, T = 0 DMRG data for the
momentum distribution are folded with a Lorentzian that corresponds
to the effective thermal correlation length ξT = d/0.65. The results
are compared with the quasiexact finite-T DMRG data.

In Fig. 15, we report the rms width � of the momentum
distribution P (k) as a function of temperature, as obtained
by finite-T DMRG computations, for both the GC and TF
distributions. It shows that, for temperature estimates, the
knowledge about atom distribution is more important than
the present 15% fluctuations in the number of atoms Ntot. As
the GC approach takes into account a possible redistribution of
the atoms among tubes during the slow ramping of the lattice
potentials, we consider it to be more realistic and reliable than
the TF one, which, in a sense, freezes the particle distribution
to that in the initial 3D trap.

As already mentioned, the temperatures obtained with T -
DMRG (T = 5.3J/kB with the GC approach and T = 8J/kB

with the TF one) are higher with respect to the rough estimate
(T � 3J/kB) presented in Ref. [15], where we performed
exact diagonalization calculations with a LDA. Yet, the order
of magnitude is the same. The finite-T DMRG approach is in
principle much more reliable as it is basically approximation
free and takes into account the actual system sizes and trapping
potentials. While exact diagonalization results, combined with
LDA, do not take into account properly the system inhomo-
geneity, they can nevertheless easily provide the general trend
of the correlation length with temperature.

With the exact finite-T calculations, we can also test the
phenomenological approach discussed for the full coherence
diagram in Sec. V. For both the TF and GC hypotheses, in
Fig. 16, we show the data for T = 0 DMRG (blue) and for
the phenomenological approach with ξ−1

T = 0.65d (red). The
latter curves are compared to actual T = 5.3J/kB finite-T
DMRG data under the GC hypothesis (black). The agreement
is rather good for both the TF and GC distributions since the
corresponding T = 0 curves for P (k) are already similar. It
is interesting to note that, despite the inhomogeneity of the
system, assuming a single effective thermal correlation length
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FIG. 17. Thermometry in the strong-interaction regime (U =
21J ) from finite-T DMRG calculations, for both the hypotheses of a
GC or TF distribution of the particles among the tubes.

ξT in the phenomenological approach [Eq. (5)] works nicely
in the superfluid regime, where the rms width � is dominated
by thermal broadening.

While the phenomenological approach, based on T = 0
DMRG data and on the effective thermal correlation length
ξT , here yields the correct functional form for the thermal
P (k), it does not allow to determine the temperature precisely.
The temperature dependence of ξT can be obtained rather
well from exact diagonalization for homogeneous systems
as long as T is not too low (cf. Sec. VI A). However, its
dependence on the atom distribution is not so easy to predict.
So, for the phenomenological approach, the difficulty lies in
the fact that very similar P (k) can be obtained with the two
considered particle distributions at quite different temperatures
as documented by the exact results in Fig. 14.

B. In the Mott-insulating regime

Similar comparisons are carried out for the strong-
interaction regime with U = 21J . The data are shown in
Figs. 17 and 18. For larger-U values, the momentum distribu-
tions P (k) for a single tube are typically wider. Yet, for such a
tube with T = 0, the rms width is not a monotonous function of
the number of particles because of the wedding cake structure.
For instance, particles added to a Mott plateau in the bulk will
eventually form a superfluid dome that will contribute with a
narrower signal to the P (k) curve of the tube. Consequently, at
low temperatures, this regime is more sensitive to the particle
distribution than the superfluid one. This is already visible in
the T = 0 data for the TF and GC hypotheses. Contrary to the
superfluid regime, the matching of the theoretical curves (GC
and TF) with the experimental one is not very convincing since
one cannot account equally well for the central dome and the
tails of the momentum distribution at the same time. As a rough
estimate for the temperature we obtain T ≈ 2J/kB under the
GC hypothesis. As in the superfluid case, this is smaller than
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FIG. 18. Testing the phenomenological approach (5) for U = 21J

and T = 2J/kB . To this purpose, T = 0 DMRG data for the
momentum distribution are folded with a Lorentzian that corresponds
to thermal correlation lengths ξT = d/0.4 and d/0.5, respectively, for
the GC and TF cases. The results are compared with the quasiexact
finite-T DMRG data.

the value (4.6J/kB ) obtained under the TF hypothesis. In
any case, experimental temperatures in the Mott regime are
apparently lower than those in the superfluid regime. This
is consistent with the fact that the entropy measured in the
strong-interaction regime is smaller than that found for weak
interaction (Fig. 3).

The discrepancy between theory and experiment should be
mainly due to thermalization issues. In the inhomogeneous
system, experimental temperatures could vary spatially since
the insulating components, which are less susceptible to
heating because of the Mott gap, do not thermalize with the
superfluid components [38,39].

Thermometry on the basis of finite-T DMRG in principle
allows to also determine the system temperature in the
presence of disorder. However, to get reliable temperature
estimates, one should ensure that the experimental system is in
thermal equilibrium. As discussed previously, thermalization
is hampered by localization in the Mott-insulator and Bose-
glass phases.

As done in the superfluid case, we can again use finite-T
DMRG to test the phenomenological approach (cf. Fig. 18).
The phenomenological ansatz for the momentum distribution,
corresponding to Eq. (5), is fitted to exact DMRG data for
T = 2J/kB . The effective thermal correlation lengths ξT

are chosen to best fit the central dome of the exact curve,
although this results in considerable deviations in the tails.
Such deviations are, however, in agreement with the fact that,
as already explained in Sec. VI B, the commensurate compo-
nent of the Mott insulator thermally broadens less than the
incommensurate superfluid one, leading to an overestimation
in the phenomenological broadening of the tails.

An additional complication originates from the fact that
finite-size systems are more sensitive to temperature. At
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FIG. 19. DMRG density profile in a tube at T = 0 and at the
estimated experimental temperature for U = 21J . Comparison with
the classical model is also given.

T = 2J/kB , the shortest Mott plateaus, like for example those
shown in Fig. 19, have almost completely melted despite the
fact that the aforementioned estimate T � 0.2U/kB for the
melting temperature yields 4J/kB at this interaction strength.
This means that the T = 0 correlation functions, employed for
the phenomenological approach, differ qualitatively from the
actual finite-T correlations.

VIII. CONCLUSIONS

The behavior of quantum matter in the presence of disorder
and interaction is a very complex subject, especially when
one studies experimental systems which, aside from being
inhomogeneous due to the trap confinement, are necessarily at
finite temperature. Starting from a recent study on the quantum
phases observed in 1D bosonic disordered systems [15], in this
paper we provided a careful examination of the effects of finite
temperature. To this purpose, two different DMRG schemes
have been employed: (i) a direct simulation of the thermal

density matrix in the form of a matrix-product purification, and
(ii) a less costly phenomenological method based on DMRG
ground-state data that are extended to finite temperatures
by introducing an effective thermal correlation length. This
analysis of our inhomogeneous system is corroborated by
exact diagonalization studies for small-sized systems without
trapping potential. While in the weak-interaction regime
thermal effects can be rather strong, they are significantly less
relevant in the strong-interaction one. There, the scaling of the
correlation length with T shows a weak dependence below a
crossover temperature, indicating that the strongly correlated
quantum phases predicted by the T = 0 theory can persist at
the finite temperatures of our experiment. Furthermore, the
theoretical results are consistent with experimental measure-
ments of the correlation length as a function of entropy.

Finally, by using quasiexact finite-T DMRG simulations,
we provided a temperature estimate for a superfluid in a lattice,
the main source of uncertainty being the actual distribution of
atoms among several quasi-1D systems in the experiment.
Experimentally, a possible way to reduce this uncertainty is
to use a flat-top beam shaper providing homogeneous trapped
systems [40–43]. The latter modification would, for example,
also allow for a better discrimination of the features of the Bose
glass and the Mott insulator in the strong-interaction regime.

In the insulating regimes, the Mott insulator and the
Bose glass, experimental thermalization issues prevent precise
temperature estimates. A mixture with an atomic species in a
selective potential [44] working as a thermal bath could be
employed to guarantee thermalization of the species under
investigation. Another open question is whether the persistence
of the insulating behavior for the disordered system with
weak interactions could be related to the proposed many-body
localization phenomenon [16,35,36].
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Fischer, R. Vosk, E. Altman, U. Schneider, and I. Bloch, Science
349, 842 (2015).

[37] N. Nessi and A. Iucci, Phys. Rev. A 84, 063614 (2011).
[38] J. Zakrzewski and D. Delande, Phys. Rev. A 80, 013602 (2009).
[39] J.-S. Bernier, G. Roux, and C. Kollath, Phys. Rev. Lett. 106,

200601 (2011); J.-S. Bernier, D. Poletti, P. Barmettler, G. Roux,
and C. Kollath, Phys. Rev. A 85, 033641 (2012).

[40] W. B. Veldkamp, Appl. Opt. 21, 3209 (1982).
[41] J. A. Hoffnagle and C. M. Jefferson, Appl. Opt. 39, 5488

(2000).
[42] J. Liang, R. N. Kohn Jr., M. F. Becker, D. J. Heinzen et al.,

Appl. Opt. 48, 1955 (2009).
[43] A. L. Gaunt, T. F. Schmidutz, I. Gotlibovych, R. P. Smith, and

Z. Hadzibabic, Phys. Rev. Lett. 110, 200406 (2013).
[44] J. Catani, G. Lamporesi, D. Naik, M. Gring, M. Inguscio, F.

Minardi, A. Kantian, and T. Giamarchi, Phys. Rev. A 85, 023623
(2012).

033650-14

http://dx.doi.org/10.1103/PhysRevLett.113.095301
http://dx.doi.org/10.1103/PhysRevLett.113.095301
http://dx.doi.org/10.1103/PhysRevLett.113.095301
http://dx.doi.org/10.1103/PhysRevLett.113.095301
http://dx.doi.org/10.1103/PhysRevLett.113.045304
http://dx.doi.org/10.1103/PhysRevLett.113.045304
http://dx.doi.org/10.1103/PhysRevLett.113.045304
http://dx.doi.org/10.1103/PhysRevLett.113.045304
http://dx.doi.org/10.1103/PhysRevLett.99.120405
http://dx.doi.org/10.1103/PhysRevLett.99.120405
http://dx.doi.org/10.1103/PhysRevLett.99.120405
http://dx.doi.org/10.1103/PhysRevLett.99.120405
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevB.48.10345
http://dx.doi.org/10.1103/PhysRevB.48.10345
http://dx.doi.org/10.1103/PhysRevB.48.10345
http://dx.doi.org/10.1103/PhysRevB.48.10345
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1103/PhysRevLett.93.207204
http://dx.doi.org/10.1103/PhysRevLett.93.207204
http://dx.doi.org/10.1103/PhysRevLett.93.207204
http://dx.doi.org/10.1103/PhysRevLett.93.207204
http://dx.doi.org/10.1103/PhysRevB.72.220401
http://dx.doi.org/10.1103/PhysRevB.72.220401
http://dx.doi.org/10.1103/PhysRevB.72.220401
http://dx.doi.org/10.1103/PhysRevB.72.220401
http://dx.doi.org/10.1103/PhysRevB.79.245101
http://dx.doi.org/10.1103/PhysRevB.79.245101
http://dx.doi.org/10.1103/PhysRevB.79.245101
http://dx.doi.org/10.1103/PhysRevB.79.245101
http://dx.doi.org/10.1103/PhysRevB.92.125119
http://dx.doi.org/10.1103/PhysRevB.92.125119
http://dx.doi.org/10.1103/PhysRevB.92.125119
http://dx.doi.org/10.1103/PhysRevB.92.125119
http://dx.doi.org/10.1103/PhysRevLett.91.010405
http://dx.doi.org/10.1103/PhysRevLett.91.010405
http://dx.doi.org/10.1103/PhysRevLett.91.010405
http://dx.doi.org/10.1103/PhysRevLett.91.010405
http://dx.doi.org/10.1051/anphys:2004002
http://dx.doi.org/10.1051/anphys:2004002
http://dx.doi.org/10.1051/anphys:2004002
http://dx.doi.org/10.1051/anphys:2004002
http://dx.doi.org/10.1103/PhysRevLett.99.010403
http://dx.doi.org/10.1103/PhysRevLett.99.010403
http://dx.doi.org/10.1103/PhysRevLett.99.010403
http://dx.doi.org/10.1103/PhysRevLett.99.010403
http://dx.doi.org/10.1103/PhysRevLett.85.3745
http://dx.doi.org/10.1103/PhysRevLett.85.3745
http://dx.doi.org/10.1103/PhysRevLett.85.3745
http://dx.doi.org/10.1103/PhysRevLett.85.3745
http://dx.doi.org/10.1103/PhysRevLett.103.140401
http://dx.doi.org/10.1103/PhysRevLett.103.140401
http://dx.doi.org/10.1103/PhysRevLett.103.140401
http://dx.doi.org/10.1103/PhysRevLett.103.140401
http://dx.doi.org/10.1103/PhysRevB.40.546
http://dx.doi.org/10.1103/PhysRevB.40.546
http://dx.doi.org/10.1103/PhysRevB.40.546
http://dx.doi.org/10.1103/PhysRevB.40.546
http://dx.doi.org/10.1038/nphys1799
http://dx.doi.org/10.1038/nphys1799
http://dx.doi.org/10.1038/nphys1799
http://dx.doi.org/10.1038/nphys1799
http://dx.doi.org/10.1103/PhysRevB.66.245102
http://dx.doi.org/10.1103/PhysRevB.66.245102
http://dx.doi.org/10.1103/PhysRevB.66.245102
http://dx.doi.org/10.1103/PhysRevB.66.245102
http://dx.doi.org/10.1038/nphys1758
http://dx.doi.org/10.1038/nphys1758
http://dx.doi.org/10.1038/nphys1758
http://dx.doi.org/10.1038/nphys1758
http://dx.doi.org/10.1126/science.aaa7432
http://dx.doi.org/10.1126/science.aaa7432
http://dx.doi.org/10.1126/science.aaa7432
http://dx.doi.org/10.1126/science.aaa7432
http://dx.doi.org/10.1103/PhysRevA.84.063614
http://dx.doi.org/10.1103/PhysRevA.84.063614
http://dx.doi.org/10.1103/PhysRevA.84.063614
http://dx.doi.org/10.1103/PhysRevA.84.063614
http://dx.doi.org/10.1103/PhysRevA.80.013602
http://dx.doi.org/10.1103/PhysRevA.80.013602
http://dx.doi.org/10.1103/PhysRevA.80.013602
http://dx.doi.org/10.1103/PhysRevA.80.013602
http://dx.doi.org/10.1103/PhysRevLett.106.200601
http://dx.doi.org/10.1103/PhysRevLett.106.200601
http://dx.doi.org/10.1103/PhysRevLett.106.200601
http://dx.doi.org/10.1103/PhysRevLett.106.200601
http://dx.doi.org/10.1103/PhysRevA.85.033641
http://dx.doi.org/10.1103/PhysRevA.85.033641
http://dx.doi.org/10.1103/PhysRevA.85.033641
http://dx.doi.org/10.1103/PhysRevA.85.033641
http://dx.doi.org/10.1364/AO.21.003209
http://dx.doi.org/10.1364/AO.21.003209
http://dx.doi.org/10.1364/AO.21.003209
http://dx.doi.org/10.1364/AO.21.003209
http://dx.doi.org/10.1364/AO.39.005488
http://dx.doi.org/10.1364/AO.39.005488
http://dx.doi.org/10.1364/AO.39.005488
http://dx.doi.org/10.1364/AO.39.005488
http://dx.doi.org/10.1364/AO.48.001955
http://dx.doi.org/10.1364/AO.48.001955
http://dx.doi.org/10.1364/AO.48.001955
http://dx.doi.org/10.1364/AO.48.001955
http://dx.doi.org/10.1103/PhysRevLett.110.200406
http://dx.doi.org/10.1103/PhysRevLett.110.200406
http://dx.doi.org/10.1103/PhysRevLett.110.200406
http://dx.doi.org/10.1103/PhysRevLett.110.200406
http://dx.doi.org/10.1103/PhysRevA.85.023623
http://dx.doi.org/10.1103/PhysRevA.85.023623
http://dx.doi.org/10.1103/PhysRevA.85.023623
http://dx.doi.org/10.1103/PhysRevA.85.023623



