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Hamiltonian dynamics of two same-sign point vortices
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We have studied numerically the Hamiltonian dynamics of two same-sign point vortices in an effectively
two-dimensional, harmonically trapped Bose-Einstein condensate. We have found in the phase space of the system
an impenetrable wall that divides the dynamics into two distinct and exhaustive types. In the two-dimensional
position-coordinate space, the first type corresponds to intersecting single-vortex orbits and the second type
to orbits that have no points in common. The two types are also easily distinguished in the two-dimensional
space spanned by the radial and angular velocities of the vortices: In the first type, both single-vortex orbits are
the same simple loop in this two-dimensional space, whereas in the second type the two orbits constitute two
nonintersecting loops. The phase-space-dividing wall is distinct from the bifurcation curve of rigidly rotating
states found by Navarro et al. [Phys. Rev. Lett. 110, 225301 (2013)].
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I. INTRODUCTION

The mathematical underpinnings of the dynamics of
pointlike vortices in classical fluids were established in the
nineteenth century [1–5]. In the 1940s, Lars Onsager realized
that the equations of motion describing such vortices in
two dimensions are mathematically equivalent to Hamilton’s
equations of motion for particles moving in one spatial
dimension and that a large collection of them could be
treated with the machinery of statistical mechanics [6,7]. His
motivation was to develop understanding of fluid turbulence
by describing the statistical properties of the turbulent fluid
in terms of a collection of point-vortex particles. He predicted
that in turbulent two-dimensional (2D) fluid flows, the vortices,
rather than being randomly distributed throughout the fluid,
should arrange into giant clusters of the order of the size of
the system [6]. Although such Onsager vortices appear to be
prevalent in many classical fluid flows ranging from large-scale
ocean currents and planetary atmospheric flows [8] to thin
liquid films [9,10], in the classical context the point-vortex
model is often dismissed as an oversimplified description of
real fluids.

In the context of quantum mechanics, vortex-filament
models in three-dimensional (3D) systems [11] and the
corresponding point-vortex models in two dimensions have
been applied extensively to superfluid helium, where the
quantization of circulation provides justification for treating
them within the point-vortex approximation, as already noted
by Onsager [6]. However, quantitative comparisons of vortex
dynamics with experiments have been difficult to achieve due
to the considerable challenges of imaging individual vortex
lines with Ångström-scale core sizes [12,13]. A renewed
interest in the point-vortex models [14–17] has emerged in
superfluids of ultracold atomic gases [18–24] where the vortex
cores can be sufficiently large to be resolved optically even
in situ [25] and their circulation direction might be detected
using, e.g., the vortex gyroscope imaging technique [26].

Recent experiments [18–22] have shown that the vortices in
the superfluid gases are amenable to the point-vortex approach,
opening up further possibilities for quantitative studies of vor-
tex dynamics such as Kelvin waves [27–31], Crow instabilities

[32–34], and Tkachenko vortex waves [34–44]. Understanding
such few-vortex phenomena forms the basis for solving more
complex problems involving vortices; a topical example is
quantum turbulence in 2D systems [45–55] and the emergence
of Onsager vortices and negative Boltzmann temperatures for
vortices in disk-shaped traps [53,56].

In 2D superfluids, strong turbulence is tantamount to
chaotic dynamics of the quantized vortices in the system.
For three or more vortices in an effectively 2D Bose-Einstein
condensate (BEC) confined by a cylindrically symmetric,
highly oblate harmonic trap, the vortex dynamics can become
chaotic. However, a two-vortex problem is integrable due
to two conservation laws related to the energy and angular
momentum of the system. As a precursor to studying the
onset of turbulence, we focus here on the problem of two
vortices of the same circulation. Our work is motivated by
recent BEC experiments that discovered a bifurcation of rigidly
rotating stationary states in the two-vortex case [21]. Here we
find that the phase space of the two-vortex system is divided
into two topologically distinct regions corresponding to two
radically different types of two-vortex motion: In one region
the individual orbits of the two vortices overlap, whereas in
the other region the orbits never cross each other.

Figure 1 summarizes the main findings. The wall that
divides the two-vortex phase space is shown in Fig. 1(a),
indicating a sharp transition between the two types of motion as
the initial vortex positions are varied. This transition boundary
is impenetrable in the sense that any two-vortex state not
located on the boundary at any one time will always remain
at that side of the boundary as the system evolves in time.
Furthermore, we find that the asymmetric rigidly rotating states
investigated in Ref. [21] and shown here in Fig. 1(b) are not
related to this change in the topology of the accessible phase
space.

The remainder of this article is organized as follows.
In Sec. II, we outline the point-vortex model we use for
describing the effectively 2D dynamics of vortices in a highly
oblate harmonically trapped BEC. Section III presents our
results using two complementary descriptions: the position-
space representation and the velocity-space representation.
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FIG. 1. Phase-space-dividing wall (a) and the curve of rigidly rotating states (a) and (b). In (a), the full three-dimensional parameter space
(φ,L,θ21) of possible two-vortex configurations is shown. Above the surface, the individual orbits of the two vortices never cross each other,
whereas below it the orbits intersect. Here φ = tan−1(r2/r1), L = r2

1 + r2
2 , and θ21 = θ2 − θ1, with {(rk,θk)} denoting the polar coordinates of

the vortices. The (blue) solid curve corresponding to rigidly rotating states lies in the plane θ21 = π shown in (b); see also Fig. 9. The (red)
dashed line marks the unstable rigidly rotating states occurring for L > Lcr ≈ 0.273 R2. Panel (b) corresponds to Fig. 1(c) in Ref. [21]. Notice
that the rigidly rotating states trace a one-dimensional curve in the three-dimensional parameter space (a), whereas the red curves are the
boundary curves of the two-dimensional phase-space-dividing wall for θ21 = π . As in Ref. [21], all results are for �int/�0 = 0.1 [Eqs. (1)].

These are used for revealing the phase-space boundary
that separates the system dynamics into two topologically
distinct classes. The paper is concluded with a discussion in
Sec. IV.

II. POINT-VORTEX MODEL

We restrict our attention to effectively 2D dynamics where
quantized vortices in a harmonically trapped BEC can be
modeled as point particles moving in the xy plane. We
take the velocity of each vortex to be the sum of two
independent contributions: (i) solitary orbital motion due to
an axisymmetric harmonic trap, and (ii) motion in the flow
field of all other vortices. Thus, we consider the following
system of N coupled ordinary differential equations [20–23]:

−iżk = R2�0
skzk

R2 − |zk|2 + R2�int

N∑
l (�=k)

sl

zk − zl

|zk − zl|2 , (1)

where zk = xk + iyk , (xk,yk) are the position coordinates
of the kth vortex, sk ∈ Z is its circulation number, and
k ∈ {1, . . . ,N}. The vortices are constrained to move within
the Thomas-Fermi radius of the condensate, R > |zk|. Fur-
thermore, �0 is the orbital angular frequency of a solitary
unit-strength vortex infinitesimally close to the trap center
[18,57], and �int is an angular frequency determining the
effective strength of the vortex-vortex interaction [21].

Equations (1) are equivalent to Hamilton’s equations of
motion,

skẋk = ∂H

∂yk

, skẏk = −∂H

∂xk

, (2)

corresponding to the Hamiltonian

H = R2�0

2

N∑
k=1

s2
k ln

(
1 − |zk|2

R2

)

−R2�int

N∑
k=1

N∑
l (>k)

sksl ln
|zk − zl|

R
. (3)

Therefore, the point-vortex model has the peculiar feature that
the coordinate space {(xk,yk)} can also be interpreted as the
Hamiltonian phase space of the system. In addition to H , the
model also has another integral of motion, L = ∑

k sk|zk|2,
due to the underlying rotational symmetry. In analogy to point
particles, this quantity is referred to as the point-vortex angular
momentum; note, however, that it should not be confused
with the orbital angular momentum that the vortex induces
in the flow of the surrounding superfluid. In fact, whereas
the point-vortex angular momentum sk|zk|2 of a single vortex
increases as the vortex moves away from the symmetry axis,
the angular momentum of the superfluid decreases under such
circumstances.

By denoting zk = rk exp (iθk), we obtain the radial and
angular vortex velocities ṙk and θ̇k , respectively, from the
Cartesian velocities as[

ṙk

rkθ̇k

]
=

[
cosθk sinθk

−sinθk cosθk

][
ẋk

ẏk

]
. (4)

The velocity space {(ṙk,θ̇k)} turns out the be extremely useful
for representing the vortex dynamics in subsequent analysis
(Sec. III B).

When is the point-vortex model applicable? In 3D BECs,
vortex filaments can be described as point particles as long
as they remain straight and parallel to one another, rendering
their dynamics effectively 2D. Hence, the validity of Eqs. (1)–
(4) extends beyond the regime of quasi-2D BECs confined
extremely tightly in the z direction. For instance, although
the BECs of Refs. [18,20,21] were 3D, very good agreement
with the point-vortex description was obtained, likely because
the trapping along the z axis was strong enough to limit
vortex motion to the xy plane and suppress vortex bending
and tilting away from the z direction. Aspects of condensate
dimensionality in regards to vortices and Kelvin waves were
studied theoretically in Ref. [58], further indicating that
sufficiently oblate yet still 3D BECs may be considered 2D as
far as vortex dynamics and quantum turbulence are concerned.

From here on, we focus on a system of two vortices with
equal circulations, setting N = 2 and s1 = s2 = 1. We measure

033649-2



HAMILTONIAN DYNAMICS OF TWO SAME-SIGN POINT . . . PHYSICAL REVIEW A 93, 033649 (2016)

lengths in units of R and time in units of �−1
0 . Up to a rotation of

the coordinate system, all possible two-vortex configurations
are spanned by three variables: the angle φ = tan−1(r2/r1),
the point-vortex angular momentum L = r2

1 + r2
2 , and the

azimuthal angle θ21 = θ2 − θ1 between the two vortices.
Recently, Navarro et al. [21] investigated this system both
theoretically and experimentally for two-vortex configurations
with θ21 = π . They demonstrated that when �int/�0 = 0.1 (a
value that we adopt throughout this work), the system exhibits
a pitchfork bifurcation at L = Lcr ≈ 0.273 R2 that induces
the emergence and stabilization of asymmetric (r1 �= r2)
rigidly rotating vortex configurations and the destabilization
of symmetric (r1 = r2, i.e., φ = π/4) rigidly rotating states at
L > Lcr.

We have solved Eqs. (1) numerically using the ode113
function in MATLAB with a relative tolerance of 10−13,
absolute tolerance of 10−15, and a variable time step. As the
initial conditions (φ,L,θ21) we consider 20 equidistant values
from φ = 0.238 π to φ = 0.466 π and from L = 0.1 R2 to
L = 0.955 R2 and 10 equidistant values from θ21 = 0.1 π to
θ21 = π . For trajectories that have exactly symmetric initial
conditions (φ = π/4 and θ21 = π ) and exhibit stable rigid-
body rotation (L < Lcr), our simulations show deviations from
the initial radius rk(0), initial Hamiltonian energy H , and initial
L of at most 10−6 in the respective units of each over time
intervals under consideration.

III. RESULTS

In this section, we present our numerical results on the
dynamics of two same-sign point vortices and, in particular,
describe the emergence of the two distinct classes of motion in
the system. To relate our results to the findings of Ref. [21], we
limit the specific examples to the case θ21 = π corresponding
to vortices that are initially located on opposite sides of the
center of the harmonic trap. However, we emphasize that
the two distinct phase-space regions persist for all values
of θ21 [Fig. 1(a)]. We first consider the position-coordinate
representation (Sec. III A) in order to provide a physically
intuitive picture but subsequently switch to using the radial
and angular velocities as our coordinates (Sec. III B) because
the emergence of the two types of motion is most apparent in
this representation.

A. Position-space representation

Consider first two same-sign vortices placed at equal
distances on opposite sides of the trap center, i.e., φ =
π/4 and θ21 = π , in terms of their position coordinates
(xk,yk) ∈ R2, rk < R. These states lie on the solid vertical line
segment in Fig. 1(b). As long as L < Lcr ≈ 0.273 R2 [21],
the resulting motion will consist of stable rigid-body rotation
as exemplified in Fig. 2(a). The dynamics of this state show
no major divergence from rigid rotation over time scales of
∼4000�−1

0 and satisfy |rk(t) − rk(0)|/R < 10−10 during the
entire simulation.

On the other hand, it was recently found by Navarro
et al. [21] that when L > Lcr, the symmetric rigidly rotating
states with θ21 = π and φ = π/4 are dynamically unstable
due to a symmetry-breaking pitchfork bifurcation, and stable
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FIG. 2. Dynamics of rigidly rotating configurations of two same-
sign point vortices. (a) Symmetric rigidly rotating configuration
with the initial conditions φ/π = 0.25, L = 0.235R2, and θ21 = π ,
corresponding to panel B17 in Fig. 9. In this and all other figures,
the total simulation time is 60�−1

0 . (b) Asymmetric rigidly rotating
state with L = 0.28R2, φ/π = 0.298, and θ21 = π (panel F16). The
initial and final position of each vortex are denoted by square and
circular markers, respectively. The orbit of vortex 1 is shown in dark
(blue) color and that of vortex 2 in light (green) color. In panel (a),
the individual orbits of the two vortices are the same.

rigid-body rotation is instead exhibited by asymmetric states
with θ21 = π and φ = π/4 ± δ, where the specific value of
δ is determined by L. In Fig. 1(b), the stable rigidly rotating
two-vortex states lie on the solid curve, whereas the unstable
symmetric rigidly rotating states are indicated by the dashed
line segment. An example of an asymmetric rigidly rotating
state is shown in Fig. 2(b). Figure 3, in turn, illustrates the
destabilization of the symmetric configuration for L > Lcr:
The initial configuration is perfectly symmetric, but after a
sufficiently long simulation time, the state becomes nonrigidly
rotating since even the smallest numerical deviation pushes the
vortices out of the rigidly rotating trajectories.
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FIG. 3. Simulated dynamics of an unstable symmetric rigidly
rotating two-vortex configuration with the initial conditions φ/π =
0.25, L = 0.955R2, and θ21 = π , corresponding to panel B1 in Fig. 9.
Although in theory the configuration rotates rigidly, the instability
causes even the smallest numerical errors to result in large deviations
from the rigid rotation.
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FIG. 4. (a) Two-vortex dynamics with overlapping orbits and ini-
tial conditions φ/π = 0.274, L = 0.235R2, and θ21 = π (panel D17
in Fig. 9). (b) Dynamics for which the vortex orbits never intersect;
here φ/π = 0.274, L = 0.64 R2, and θ21 = π (panel D8).

Next, we turn to the general case of two-vortex dynamics
with any φ, L, and θ21, considering the full 3D configuration
space [Fig. 1(a)]. Two possible types of general stable
dynamics in the nonrigidly rotating configurations are ob-
served. Figure 4(a) shows the first type, in which the vortices
trace out orbits that are confined to the same spatial region
of the trap and intersect each other at different times. If
we define the closed intervals Ik := [mint rk(t), maxt rk(t)],
which describe the smallest annuli inside which each vortex
moves, the first type of motion is characterized by I1 = I2.
Figure 4(b), in turn, is an example of the other general type of
dynamics, in which the two vortices are confined to separate
spatial regions and their orbits never intersect. In this case,
I1 ∩ I2 = ∅. The equivalence of the coordinate space {(xk,yk)}
to the Hamiltonian phase space of the system [Eq. (2)] suggests
that this difference between shared and separate trap regions
represents a change in the topology of the system’s accessible
phase space.

The mixing of two time scales due to the orbital and relative
motion of the vortices makes it difficult to quantify the periodic
motion of the vortices. To elucidate the relative motion of the
vortices, we can transform to a rotating frame of reference. In
this frame, the coordinate axes x ′ and y ′ are rotating relative to
the laboratory frame with the time-dependent angular velocity
(θ̇1 + θ̇2)/2, i.e., the instantaneous average angular velocity of
the two vortices.

The fixed and rotating frames of reference are compared
for the case of intersecting orbits in Fig. 5 and for noncrossing
orbits in Fig. 6 (here again both examples start with θ12 = π ).
When the orbits cross in the laboratory frame [Fig. 5(a)],
they form similarly shaped closed curves in the rotating
frame [Fig. 5(b)], which are centered at equal distances
but at opposite sides of the trap center. For noncrossing
orbits in the laboratory frame [Fig. 6(a)], the rotating frame
yields two closed curves that have different shapes and are
located at different distances from the trap center [Fig. 6(b)].
We conclude that whereas the overall vortex motion always
reduces to relatively simple orbits in the rotating frame [20],
distinguishing between the two general classes of dynamics is
not particularly simple. In addition, the small numerical errors
in determining the correct frame-rotation frequency are prone
to accumulate for long simulation times, leading to deviations
from the simple closed curves.
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FIG. 5. Comparison of laboratory- and rotating-frame perspec-
tives with the initial conditions φ/π = 0.358, L = 0.1 R2, and
θ21 = π , corresponding to panel K20 in Fig. 9. (a) Laboratory-frame
representation showing intersecting single-vortex orbits. (b) Rotating-
frame view of the same dynamics showing orbits that are the same
shape but at opposite sides of the trap. The coordinate axes x ′ and
y ′ rotate with the instantaneous average angular velocity of the two
vortices.

B. Velocity-space representation

The two types of dynamics of the two-vortex system
become particularly evident when one inspects the motion
in terms of the radial and angular velocities {(ṙk,θ̇k)} [Eq. (4)].
This method is invariant under the rotation of the vortex
configuration about the trap center, and we refer to it as
the velocity-space representation. The two general types of
two-vortex dynamics are illustrated using this representation
in Fig. 7. Figure 7(a) shows the orbits that the vortices trace out
in the 2D velocity space (ṙ ,θ̇ ) in the case where their individual
real-space orbits intersect and I1 = I2. We observe that in this
case both vortices always trace identical simple loops in the
velocity space (for stable symmetric rigidly rotating states this
loop contracts into a single point). Since the conservation of
H and L guarantee that (ṙ1,θ̇1) �= (ṙ2,θ̇2) whenever ṙk �= 0,
the vortices traverse the joint velocity-space loop out of
phase. The other type of general two-vortex motion, where
their coordinate-space orbits never cross and I1 ∩ I2 = ∅, is
illustrated in the velocity space in Fig. 7(b). In this case, the
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FIG. 6. Comparison of laboratory- and rotating-frame perspec-
tives for the initial conditions φ/π = 0.442, L = 0.37 R2, and
θ21 = π , corresponding to panel R14 in Fig. 9. (a) Laboratory-frame
representation showing vortices moving in separate regions of the
trap. (b) Rotating-frame view of the same dynamics showing orbits
that are of different shape and at different distances from the trap
center.
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FIG. 7. Two-vortex dynamics in the velocity-space representa-
tion. (a) Overlaid orbits showing that each vortex has exactly the same
dynamic, albeit out of phase from the other. The initial conditions
are φ/π = 0.358, L = 0.1R2, and θ21 = π , corresponding to Fig. 5
(panel K20 in Fig. 9). (b) Vortex orbits for the initial conditions
φ/π = 0.442, L = 0.37R2, and θ21 = π (Fig. 6 and panel R14 in
Fig. 9) showing that the two vortices trace separate loops in the polar
velocity space.

two vortices trace separate loops in the velocity space that do
not intersect each other.

Let us next consider in detail what happens in the velocity-
space when one crosses over from one type of motion to the
other, i.e., crosses over the separating boundary in the initial
configuration space (L,φ,θ21) [Fig. 1(a)]. We stress that such
a crossover can never occur during the dynamics; instead, one
should think of varying the parameters (φ,L,θ21) manually.
Again, we consider the case θ21 = π , due to its relevance to
Ref. [21].

At sufficiently low L values, the motion corresponds to
overlapping orbits, and the single velocity-space loop traced
by both vortices encloses a convex area [Fig. 7(a)]. In the
rotating coordinate-space representation, the individual orbits
are identically shaped ellipses as in Fig. 5(b). The change
induced in the dynamics when the initial point-vortex angular
momentum L is gradually increased is illustrated in Fig. 8.
As L is increased, the closed velocity-space orbit deforms and
becomes concave, with the single minimum in the angular
velocity splitting into two minima, each with the same angular
velocity and opposite radial velocities [Fig. 8(a)]. In the
rotating coordinate space, this corresponds to the development
of a sharp point in the vortex paths near the edge of the trap,
deforming the ellipses into droplets with their tips pointing
away from the trap center. On further increasing L, this
sharp point develops into a second loop in the path, creating
a figure-eight curve in the rotating-frame coordinate space.
In the velocity-space representation, the figure-eight stage
corresponds to concave closed curves of the type shown in
Fig. 8(b). Eventually, a critical value of L is reached at which
the single loop in the velocity space self-intersects at zero radial
velocity and a finite value of angular velocity, and subsequently
separates into two nonintersecting simple loops [Fig. 8(c)].
Depending on the values of L and φ, one of the separated
loops may lie inside the other [Fig. 8(c)], or they may not
enclose any points in common [Fig. 8(d)].

Figure 9 demarcates the different types of two-vortex
dynamics in the parameter space (φ,L) of different initial
configurations with θ21 = π . Sampling of this (φ,L) space

−0.1 −0.05 0 0.05 0.1
1.5

2

2.5

3

3.5

Radial Velocity (R Ω
0
)

A
ng

ul
ar

 V
el

oc
ity

 (
2 

π 
Ω

0)

−0.04 −0.02 0 0.02 0.04
1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

Radial Velocity (R Ω
0
)

A
ng

ul
ar

 V
el

oc
ity

 (
2 

π 
Ω

0)

−0.02 −0.01 0 0.01 0.02
1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

Radial Velocity (R Ω
0
)

A
ng

ul
ar

 V
el

oc
ity

 (
2 

π 
Ω

0)

−0.1 −0.05 0 0.05 0.1

−2

−1

0

1

2

Radial Velocity (R Ω
0
)

A
ng

ul
ar

 V
el

oc
ity

 (
2 

π 
Ω

0)

(a) (b)

(c) (d)
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FIG. 8. Comparison of different types of observed dynamics in
the polar velocity space. (a) Shared-space dynamics far from the phase
transition with the initial conditions φ/π = 0.454 and L = 0.28 R2

(panel S16 in Fig. 9). (b) Shared-space dynamics near the transition
with φ/π = 0.418 and L = 0.325 R2 (panel P15). (c) Noncrossing
dynamics near the transition with φ/π = 0.418 and L = 0.37 R2

(panel P14). (d) Noncrossing dynamics far from the transition with
φ/π = 0.418 and L = 0.595 R2 (panel P9). In each panel, the initial
separation angle is θ21 = π .

was done by scanning the parameters on a 20-by-20 grid
of 400 initial conditions and integrating the system over
a time interval of 60�−1

0 . Each grid cell in Fig. 9 shows
the resulting dynamics in the position-coordinate space. A
zoomable high-resolution version of this diagram is provided
in the Supplemental Material [59]. The transition from a shared
velocity-space loop (shaded region in Fig. 9) to separated
loops—i.e., from I1 = I2 to I1 ∩ I2 = ∅—is represented by
the dark (red) solid line in Fig. 9. For fixed φ = φ0, values
of L above this transition point always result in distinct,
nonintersecting orbits in both the coordinate-space [Figs. 2(b),
4(b), and 6] and the velocity-space representation [Figs. 7(b),
8(c), and 8(d)]. This critical value of L increases slightly with
increasing φ.

The asymmetric rigidly rotating configurations are also
indicated in Fig. 9 (upper, blue solid curve). We note in
particular that these configurations lie inside the region of
separated-phase-space dynamics and do not occur at the
transition point between the two types except at a single
point (φ,L,θ21) = (π/4,Lcr,π ). The symmetric rigidly rotat-
ing states, and the critical value Lcr of the point-vortex angular
momentum at which the bifurcation occurs along the line
(φ,θ21) = (π/4,π ), are in agreement with previous predictions
[21]. However, the topological change in the accessible phase
space, where the vortex orbits become nonintersecting, was
not reported in Ref. [21].

The change from stable rigidly rotating states to non-
rigidly rotating ones can be understood by closely examining
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FIG. 9. Laboratory-frame views of two-vortex dynamics, posi-
tioned according to their initial conditions in the 2D parameter
space (φ,L); here the initial angle between the vortices is set to
θ21 = π . The blue solid vertical line represents stable symmetric
rigidly rotating states and the red dashed vertical line represents
unstable symmetric rigidly rotating states. The blue (upper) curve
represents the asymmetric rigidly rotating states, while the red (lower)
curve denotes the topological transition between shared and separated
phase spaces. In the shaded region below the red curve, the two
vortices exhibit shared phase spaces. This figure should be compared
with Fig. 1(c) in Ref. [21]. A high-resolution version of the diagram
is provided in the Supplemental Material [59].

the symmetric rigidly rotating state that destabilizes at the
bifurcation point Lcr. The unstable symmetric state with
L = 0.955 R2 > Lcr (Fig. 3) yields the simulated dynamics
shown in Fig. 10(a) using the velocity-space representation.
Qualitatively, it resembles the velocity-space representations
of states with φ � π/4 and L � Lcr but in the latter the orbits
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FIG. 10. Comparison of (a) an unstable symmetric rigidly ro-
tating state, with the initial conditions φ/π = 0.25, L = 0.955R2,
and θ21 = π (panel B1 in Fig. 9), and (b) an asymmetric nonrigidly
rotating state, with φ/π = 0.274, L = 0.64R2, and θ21 = π [Fig. 4(b)
and panel D8 in Fig. 9].

of the two vortices in the velocity space become separated as
shown in Fig. 10(b).

Near the phase-space transition, the two-vortex system may,
during its dynamics, approach the unstable rigidly rotating
configuration but is then pushed away from it by the instability
of the configuration. If the dynamics exhibits shared phase
spaces, this results in a swapping of the outside and inside
vortices. For separated phase spaces, the radial velocity of
each vortex changes sign, and the outside and inside vortices
are pushed back into their respective zones. This suggests that
at the bifurcation point (φ,L,θ21) = (π/4,Lcr,π ), the sym-
metric rigidly rotating states separate into two antisymmetric
branches of asymmetric rigidly rotating states (which belong
to the type of noncrossing orbits) and two symmetric branches
of states on the phase-space-dividing boundary. The branches
of asymmetric rigidly rotating states are antisymmetric in the
sense that the dynamics of the two rigidly rotating states with
φ = π/4 ± δ map to each by interchanging the two vortices.
The phase-space-dividing branches are symmetric in the sense
that, for values of L at and below the branches, the initial states
with φ = π/4 ± δ and same L represent essentially the same
dynamics (due to time-translation and rotational symmetry of
the model).

When the two vortices are not initially located at opposite
sides of the trap, i.e., when θ21 �= π , the rigidly rotating states
become entirely absent but the phase-space separation transi-
tion persists. This is illustrated in Fig. 1(a): The symmetric and
asymmetric rigidly rotating states form a bifurcating curve in
the 2D plane θ21 = π of the 3D parameter space (φ,L,θ21) of
possible two-vortex configurations. The phase-space-dividing
boundary, on the other hand, constitutes a 2D surface. In
the (φ,L,θ21) space, all possible two-vortex orbits are planar
curves (which may be single points) that are perpendicular
to the L axis (since L is conserved) and never penetrate the
phase-space wall.

IV. DISCUSSION

In conclusion, we have numerically studied the dynamics
of two same-sign point vortices in a harmonically trapped
superfluid. We discovered an impenetrable wall in the 3D
phase space of possible two-vortex configurations that divides
the ensuing vortex dynamics into two distinct types. In the first
type, the two vortices move inside the same annular regions in
the trap, whereas in the second type their orbits never intersect.
The two types are particularly easy to distinguish in the 2D
parameter space spanned by the angular and radial velocities
of the vortices, where the first type results in one closed
curve along which both vortices travel and the second type
yields separate loops for each vortex. This phase-space wall
is distinct from the bifurcation of rigidly rotating two-vortex
configurations found by Navarro et al. [21]. Importantly, the
phase-space wall also persists for configurations where the two
vortices are not initially at opposite sides of the trap center,
unlike the rigidly rotating states.

Introducing the velocity-space representation opens a
number of ways to extend the investigations of point-vortex
dynamics in future studies. One obvious question is how
the introduction of asymmetry between the vortices, i.e.,
s1 �= s2, would affect the transition phenomena in the phase
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space; the archetypal example of such a configuration is
the vortex-antivortex pair (s2 = −s1), which is known to
exhibit stationary solutions in the harmonically trapped system
[18–20,23]. On the other hand, increasing the number of
vortices to three in Eqs. (1) results in the emergence of chaotic
vortex dynamics in a particularly simple yet experimentally
relevant setup; in the absence of the trap [i.e., for �0 = 0 in
Eqs. (1)], chaos can reign only if N � 4. In fact, already the
two-vortex case is likely to exhibit chaotic advection [60]: If
one formally introduces a third vortex with s3 = 0, its motion
in the flow field of the two genuine vortices may be chaotic.
Chaotic advection is known to exist in the presence of three
genuine vortices for �0 = 0 [15].

Ultimately, the point-vortex model will serve as an efficient
model for 2D quantum turbulence that corresponds to highly
chaotic motion of a large number of point vortices. As such, it

shows promise in further elucidating such phenomena as the
inverse energy cascade, the emergence of Onsager vortices,
and negative absolute Boltzmann temperatures associated with
2D turbulence in superfluids.
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