
PHYSICAL REVIEW A 93, 033634 (2016)

Degenerate Bose gases with uniform loss
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We theoretically investigate a weakly interacting degenerate Bose gas coupled to an empty Markovian bath.
We show that in the universal phononic limit the system evolves towards an asymptotic state where an emergent
temperature is set by the quantum noise of the outcoupling process. For situations typically encountered in
experiments, this mechanism leads to significant cooling. Such dissipative cooling supplements conventional
evaporative cooling and dominates in settings where thermalization is highly suppressed, such as in a one-
dimensional quasicondensate.
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I. INTRODUCTION

Engineering dissipation and driving protocols in interacting
quantum many-body systems is an important emerging area
of out-of-equilibrium physics. On the theoretical side, it
has unveiled a series of novel quantum phenomena, from
topological states of fermions [1] and the establishment of
long-range order of a Bose-Einstein condensate (BEC) in an
optical lattice [2] to the dissipative preparation of entangled
states [3] and dissipative quantum computations [4]. On the
experimental side, dissipation, for instance, has been used to
create strongly correlated states of matter [5] and to study the
dynamics of open quantum systems [6].

In the present article we develop a general model for
dissipative ultracold bosonic gas, where the dissipation is
based on spatially uniform and coherent atomic loss from a
BEC into a continuum of free single-particle modes. In contrast
to existing studies of atom lasers [7,8], in the present work we
concentrate not on the coherence properties of the outcoupled
atoms, but on the dissipation-driven evolution of the remaining
ones. Our model is also different from conventional driven-
dissipative models discussed in the literature [9,10] as in our
case there is no driving; consequently, there is no steady state:
the system asymptotically approaches the true vacuum. We are
interested in the out-of-equilibrium transient dynamics during
the evolution to this trivial final state.

A specific realization of dissipation that we will concentrate
on is a one-dimensional (1D) degenerate Bose gas, where
trapped atoms are coupled to an untrapped state with a
radio-frequency or microwave transition, Fig. 1. This is
closely related to a recent experimental study of cooling in
a 1D quantum gas [11]. Although reminiscent of standard
evaporative cooling [12–14], the process observed there is

*pjotrs.grisins@unige.ch
†Present address: JILA, University of Colorado and NIST, 440

University Ave, Boulder, Colorado 80309, USA.

Published by the American Physical Society under the terms of the
Creative Commons Attribution 3.0 License. Further distribution of
this work must maintain attribution to the author(s) and the published
article’s title, journal citation, and DOI.

distinctly different in that it neither relies on energy-selective
outcoupling nor conventional rethermalization.

The paper is organized as follows: in Sec. II we introduce
the model and derive an effective stochastic Gross-Pitaevskii
equation in the Markovian approximation. In Sec. III we
linearize it and focus on the experimentally relevant quasista-
tionary dissipation process in the low-energy phononic limit. In
Sec. IV we show that in this regime the elementary excitations
are in a thermal state with a time-dependent effective temper-
ature. Finally, we obtain experimentally relevant scaling laws
for this temperature and find an asymptotic dissipative state,
which emerges at long time scales.

II. MARKOVIAN DISSIPATION

We start with a degenerate Bose gas in a trap, where the
radial confinement is orders of magnitude larger than the
longitudinal one. For instance, this situation can be realized
on atom chips [15–17]. In this case the single-particle wave
function factorizes into radial and longitudinal components
as ψ(x,y,z) = ψ⊥(x,y) ψ‖(z). Due to the strong transversal
confinement, the gas is in the radial ground state, which is
represented by a Gaussian wave function

ψ⊥(x,y) = 1√
πσ

e−(x2+y2)/2σ 2
, (1)

where σ = 1/
√

mω⊥ is the width of the ground state, m is the
mass of bosonic particles, ω⊥ is the fundamental frequency of
the radial trapping potential, and we set � = kB = 1. The linear
density of atoms n is assumed to be small enough (nas � 1,

where as is the scattering length), so that we can neglect the
mean-field broadening [18].

To be able to derive general analytical results, we neglect the
interactions of trapped atoms with the atoms in the untrapped
state, therefore assuming that the eigenfunctions of the latter
are plane waves in the x and y dimensions. This is justified in
1D by the fact that outcoupled particles leave the condensate
region at a short time scale ∼1/ω⊥. Mean-field repulsion
from the condensate creates a potential peak at the center
of the trap, which additionally accelerates the outcoupled
particles. However this effect does not change the physics
qualitatively [7]. We also neglect gravity, which would render
the transversal eigenfunctions in the direction of free fall to be
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FIG. 1. Schematic of the considered setup. Interacting degenerate
bosonic atoms in the transversal ground state of a harmonic trap |g〉
are outcoupled to a continuum of free modes |k〉 using a microwave or
an rf field with a Rabi frequency � and detuning �ω. The interactions
between the atoms in |g〉 are manifested in the mean-field shift μ ≡
g〈�̂†�̂〉, where g = const is the self-interaction strength. The mean-
field shift is still considerably smaller than the energy of the first
transversally excited level |e〉. The kinetic energy in the longitudinal
direction (inside the plane of the paper), represented by the fine
structure of the bands, is much smaller than any other relevant energy
scale.

Airy functions. Both before-mentioned effects can be easily
taken into account numerically when analyzing particular
experimental implementations.

The 1D field operators for trapped and untrapped atoms
having the momentum (kx,ky) in the radial directions are, re-
spectively, �̂ = �̂(z,t) and 	̂kx,ky

= 	̂kx,ky
(z,t). The coupled

set of equations for them reads

i
∂

∂t
�̂ = − 1

2m

∂2

∂z2
�̂ + g�̂†�̂�̂

+
∑
kx ,ky

κ∗
kx ,ky

	̂kx ,ky
, (2a)

i
∂

∂t
	̂kx ,ky

=
(

k2
x + k2

y

2m
− �ω

)
	̂kx,ky

− 1

2m

∂2

∂z2
	̂kx,ky

+ κkx,ky
�̂, (2b)

where g is the self-interaction strength.
Here the coupling between the trapped and untrapped fields

is given by the overlap of the respective single-particle wave
functions

κkx,ky
= �√

A

∫
dx

∫
dy e−ikxx−ikyyψ⊥(x,y), (3)

where A is the quantization area in the (x,y) plane, and � is
the Rabi frequency of the microwave- or rf-driven transition.

The detuning is denoted by �ω (see Fig. 1 for the energy level
diagram).

Since (2b) is linear, we may express 	̂kx,ky
(t) through the

formal solution

	̂kx,ky
(t) = e

it[�ω+ 1
2m

( ∂2

∂z2 −k2
x−k2

y )]
	̂kx,ky

(0)

− iκkx,ky

∫ t

0
dt ′ ei(t−t ′)[�ω+ 1

2m
( ∂2

∂z2 −k2
x−k2

y )]
�̂(t ′),

(4)

where 	̂kx,ky
(0) are the initial conditions for 	̂kx,ky

at t = 0.
Substituting (4) into (2a), we obtain

i
∂

∂t
�̂ = − 1

2m

∂2

∂z2
�̂ + g�̂†�̂�̂

− i

∫ t

0
dt ′ F (t − t ′) e

i(t−t ′)(�ω+ 1
2m

∂2

∂z2 )
�̂(t ′) + ς̂ (t),

(5)

where the quantum noise term is given by

ς̂ (t) =
∑
kx ,ky

κ∗
kx ,ky

e
it[�ω+ 1

2m
( ∂2

∂z2 −k2
x−k2

y )]
	̂kx,ky

(0), (6)

and the kernel of the integral term is

F (τ ) =
∑
kx ,ky

∣∣κkx,ky

∣∣2
e− i(k2

x+k2
y )τ

2m

≡ A

∫
dkx

2π

∫
dky

2π

∣∣κkx,ky

∣∣2
e− i(k2

x+k2
y )τ

2m . (7)

We explicitly indicate the time argument of the fields �̂ and
	̂ky,kz

in Eqs. (5) and (6), respectively, when it differs from t .
Assuming that the atomic interactions do not affect strongly
the transverse profile of the trapped atomic cloud and that the
latter remains Gaussian, from (1) and (3) we obtain

∣∣κkx,ky

∣∣2 = 2π�2

Amω⊥
e
− k2

x+k2
y

mω⊥ , (8)

and substituting (8) into (7) we arrive at

F (τ ) = �2

1 + iω⊥τ/2
. (9)

In general the dissipation and noise terms are explicitly
non-Markovian and nonlocal. However, we can simplify them
by considering times t � 1/ω⊥, the characteristic time scale
set by (9). We assume that all the relevant energy scales of
the system, given by the temperature, the chemical potential,
and the Rabi frequency � are well below ω⊥. This allows us
to pull �̂(t ′) out of the integral in the right-hand side (RHS)
of (5), replacing t ′ by t , and to neglect the small kinetic energy
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in the longitudinal direction

e
i(t−t ′ )

2m
∂2

∂x2 ≈ 1, (10)

which is an analog of the Thomas-Fermi approximation. The
long-time condition t � 1/ω⊥ allows us to substitute the upper
limit of the time integral in the RHS of (5) by ∞. The imaginary
part of

∫ t

0 dτ F (τ ) exp(i�ωτ ) renormalizes the energy of the
trapped state and can be incorporated into �ω. The real part
determines the loss rate

γ = �2 Re
∫ t

0
dτ

exp(i�ωτ )

1 + iω⊥τ/2

≈ 2π�2

ω⊥
exp

(
−2�ω

ω⊥

)
�(�ω), (11)

where �(�ω) is Heaviside’s step function, and in the last line
we took t � 1/�ω. Hence the non-Markovianity time of our
system is given by τM ∼ max(1/ω⊥,1/�ω).

As a result we arrived at a local and Markovian constant
dissipation term at t > τM , assuming that the detuning �ω

is positive and is held constant with respect to the decaying
chemical potential of the remaining atoms.

Concerning the dissipation-induced noise, we consider an
empty bosonic bath, so we have only vacuum fluctuations of
the untrapped-atom field:〈

	̂
†
k′
x ,k

′
z
(z′,0) 	̂kx ,ky

(z,0)
〉 = 0,

(12)〈
	̂kx,ky

(z,0) 	̂
†
k′
x ,k

′
y
(z′,0)

〉 = δkx k′
x
δky k′

y
δ(z − z′).

Then from (6), (11), and (12) we obtain the correlators for the
quantum noise,

〈ς̂ †(z′,t ′) ς̂ (z,t)〉 = 0, (13)

〈ς̂ (z,t) ς̂ †(z′,t ′)〉 = δ(z − z′)
�2 exp[i�ω(t − t ′)]
1 + iω⊥(t − t ′)/2

. (14)

The fluctuation-dissipation theorem manifests itself in the
relation between the noise corellator and the dissipation rate
γ according to∫ ∞

−∞
dt ′ 〈ς̂ (z,t)ς̂ †(z′,t ′)〉 = 2γ δ(z − z′). (15)

Again assuming that the non-Markovianity time τM is
smaller than any relevant time scale of the system, we can
approximate the Lorentzian of (14) with a δ function

〈ς̂ (z,t)ς̂ †(z′,t ′)〉 = 2γ δ(z − z′) δ(t − t ′). (16)

Physically the assumed Markovianity is due to the fact
that after a microwave- or rf-induced transfer to the untrapped
state the atom quickly leaves the trap [cf. the free evolution
of a Gaussian (1)], so after the time t ∼ 1/ω⊥ it is on average
too far from the trap and has basically no probability to absorb
another photon and return to the condensate [19].

As a result we obtain the Markovian and local dissipative
equation of motion for the trapped-atom field operator

i
∂

∂t
�̂ = − 1

2m

∂2

∂z2
�̂ + g�̂†�̂�̂ − iγ �̂ + ς̂ , (17)

which is the starting point for all derivations of the next
sections.

For reference, in the mean-field aproximation (17) becomes
the standard Gross-Pitaevskii equation with an additional
dissipative term

i
∂

∂t
�mf = − 1

2m

∂2

∂z2
�mf + g|�mf|2�mf − iγ�mf, (18)

where the mean-field treatment amounts to solving (17) for
expectation values of field operators, �̂(z,t) → 〈�̂(x,t)〉 =
�mf(z,t), and neglecting the quantum noise term ς̂ → 〈ς̂〉 =
0.

III. LINEARIZED ANALYSIS

A. Bogoliubov theory

We start with the phase–density representation [20,21] of
the field operator

�̂(z,t) = eiθ̂ (z,t)
√

n(t) + δn̂(z,t), (19)

where θ̂ = θ̂ (z,t) is the phase operator, δn̂ = δn̂(z,t) is the
density fluctuation operator, and n = n(t) = n0 e−2γ t is an
exponentially decaying mean density. Substituting the field
operator (19) into the equation of motion (17), and linearizing
the latter with respect to the small density fluctuations and
phase gradients, we acquire the equations of motion for the
phase and density operators

∂

∂t
θ̂ = −

(
g − 1

4mn

∂2

∂z2

)
δn̂ + ŝ + ŝ†

2
√

n
,

(20)
∂

∂t
δn̂ = − n

m

∂2

∂z2
θ̂ − 2γ δn̂ + i

√
n(ŝ − ŝ†),

where

ŝ = ŝ(z,t) = ς̂ (z,t) e−iθ̂(z,t), (21)

and we take into account that ς̂ and θ̂ commute.
We note that the phase-density representation is valid for

1D, 2D, and 3D degenerate bosonic gases in both regimes of
a true BEC and a quasi-BEC. In the case of a true BEC the
phase fluctuations are also suppressed, so the former equations
can be further simplified by expanding the phase exponential
eiθ̂ ≈ 1 + iθ̂ . However, we do not make this approximation to
keep the discussion applicable to lower dimensions, where the
phase fluctuations may be strong.

To find the elementary excitations of the system we
first perform an instantaneous unitary transformation to an
emergent bosonic basis [20],

ϕ̂ = δn̂

2
√

n
+ i

√
n θ̂, δn̂ = √

n(ϕ̂ + ϕ̂†),

(22)
ϕ̂† = δn̂

2
√

n
− i

√
n θ̂, θ̂ = 1

2i
√

n
(ϕ̂ − ϕ̂†),

which leads to

i ∂t ϕ̂ + 1

2m
∂zzϕ̂ − gn(ϕ̂ + ϕ̂†) + iγ ϕ̂ + ŝ = 0. (23)

In the following we concentrate on the 1D case in a box
of length L with periodic boundary conditions. Later we will
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use the local density approximation to infer the properties of
a trapped gas from the untrapped one.

After the Fourier transformation

f (z) = 1√
L

∑
k

fke
ikz,

(24)

f (z)† = 1√
L

∑
k

f
†
k e−ikz = 1√

L

∑
k

f
†
−ke

ikz,

Eq. (23) reads

i ∂t ϕ̂k − k2ϕ̂k

2m
− gn(ϕ̂k + ϕ̂

†
−k) + iγ ϕ̂k + ŝk = 0,

(25)

i ∂t ϕ̂
†
−k + k2ϕ̂

†
−k

2m
+ gn(ϕ̂k + ϕ̂

†
−k) + iγ ϕ̂−k − ŝ

†
−k = 0,

or in vector form

i∂t	 − H	 + iγ	 + S = 0, (26)

where

	 =
(

ϕ̂k

ϕ̂
†
−k

)
, S =

(
ŝk

−ŝ
†
−k

)
,

(27)

H =
(

k2/2m + gn gn

−gn −k2/2m − gn

)
.

The Hamiltonian H can be diagonalized using the standard
Bogoliubov rotation (we set u,v = uk,vk to be real for
convenience), given by

	 = PX,

X =
(

χ̂k

χ̂
†
−k

)
, P =

(
u −v

−v u

)
, P −1 =

(
u v

v u

)
,

D = P −1HP =
(

εk 0
0 −εk

)
, εk =

√
Ek(Ek + 2μ),

μ = gn, Ek = k2

2m
,

u2 − v2 = 1, u2,v2 = 1

2εk

(±εk + Ek + μ),

u ± v =
(

Ek

εk

)∓/12

, 2uv = μ

εk

, u2 + v2 = Ek + μ

εk

,

(28)

where χ̂k are Bogoliubov modes, and μ is the time-dependent
mean-field shift (chemical potential). This leads to

i(P −1∂tP )X + i∂tX − DX + iγX + P −1S = 0, (29)

and to the equation of motion for the components,

i(v∂tu − u∂tv)χ̂ †
−k + i∂t χ̂k − εkχ̂k

+ iγ χ̂k + ukŝk − vkŝ
†
−k = 0, (30)

where we used u∂tu − v∂tv = 0.
Analyzing (30) we see that it differs from the standard

equation of motion for Bogoliubov quasiparticles i∂t χ̂k =
εkχ̂k in three important aspects, as it includes

(1) a nonadiabatic contribution (v∂tu − u∂tv) due to the
decreasing mean density n and corresponding change in the
mode energy εk and Bogoliubov coefficients uk,vk;

(2) an adiabatic loss term iγ χ̂k , leading to exponential
decay of the number of elementary excitations in each
momentum mode;

(3) and a squeezed quantum noise term (ukŝk − vkŝ
†
−k),

where the squeezing is due to the transformation from the real
particle basis into the Bogoliubov basis.

Equation (30) cannot be analytically solved in full gen-
erality; however it can be conveniently analyzed in the
experimentally relevant limits.

B. Nonadiabatic corrections

Let us first consider nonadiabatic corrections. After some
algebra we get v∂tu − u∂tv = γ

2+Ek/μ(t) = γ̃k(t)
2 , which is a

monotonically decaying function of time [recall that μ(t)
decays exponentially], bounded from above by γ̃k(t) ≤ γ ,
which becomes an equality in the phononic limit Ek � μ(t).

Considering for a moment the mean-field theory and
disregarding the quantum noise terms in (30), we see that
the nonadiabatic terms mix ±k field components:

i∂t

(
χ̂k

χ̂
†
−k

)
=

(
εk(t) − iγ −iγ̃k(t)/2

−iγ̃k(t)/2 −εk(t) − iγ

)(
χ̂k

χ̂
†
−k

)
+ · · · ,

(31)

where (· · · ) represents the omitted noise terms. Assuming
that the dissipation is slow enough that |εk(t)| is almost
constant during one period of oscillation τk = 2π/εk , we can
diagonalize again this “dissipation-dressed Hamiltonian” by
applying a quasistationary approximation. The instantaneous
spectrum acquires a diffusive part, the complex energies
being

ε̃k(t) = ±
√

εk(t)2 − 1
4 γ̃ 2

k (t) − iγ . (32)

The solutions to (32) are plotted in Fig. 2 for t = 0. At low
dissipation rates γ � μ we recover the standard Bogoliubov
dispersion relation with a small imaginary component, which
corresponds to a finite lifetime of the quasiparticles. In this
limit the quasiparticle mode occupation numbers decay at the
same rate as the mean density.

In the opposite limit of strong dissipation the modes
become nonpropagating (Re ε̃k = 0), but diffusive. When the
probed length scales are dominated by diffusive modes, any
local perturbation will not lead to a light-cone-like spread of
correlations [22], but will smoothly decay similarly to the
solutions of the heat equation.

We note that the diffusive modes may not be easily
accessible in a purely dissipative system, as at large γ the
mean density may decay too quickly for any observable
effects. However, these modes may become observable if
one designs a pumping scheme to counterbalance the density
loss, in a similar spirit as is done with exciton-polariton
condensates [23,24].

In any case, in current 1D quasicondensate experiments [11]
the dissipation rate is γ ∼ 10−3μ, and for experimentally
accessible momenta k � 1/L � 0.1mc (here L is the length
of the cloud and c = √

μ/m is the speed of sound) the
contribution of the nonadiabatic term is negligibly small. So
in the following we consider dissipation to be adiabatic.

033634-4



DEGENERATE BOSE GASES WITH UNIFORM LOSS PHYSICAL REVIEW A 93, 033634 (2016)

0.0 0.5 1.0 1.5 2.0
− 2.5

− 2.0

− 1.5

− 1.0

− 0.5

0.0

k/mc

Im
k/

(b)

= 0
= 0.2
= 0.5
= 1.0
= 2.0

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5
R
e

k/

(a)

FIG. 2. Approximate dispersion curves for a one-dimensional
dissipative quasicondensate. The panels show real (a) and imaginary
(b) parts of the quasiparticle energy ε̃k (in units of the chemical
potenial μ) as a function of momentum (in units of the inverse healing
length 1/ξ = mc) and the dissipation strength. The quasiparticle
decay rate is the negative imaginary part of the energy. Diffusive
modes appear when the real part of the dispersion touches zero. The
two diffusive modes, densitylike and phaselike, have different decay
rates, which is represented by two branches in (b). Note that γ is the
dissipation rate of the order parameter, and not of the density, namely,
n(t) = n0 e−2γ t .

C. Quantum noise

In the adiabatic limit, where γ is much less than any other
relevant energy scale, Eq. (30) reads

i∂t χ̂k − εkχ̂k + iγ χ̂k + ukŝk − vkŝ
†
−k = 0, (33)

and has the solution

χ̂k(t) = e−(iεk+γ )t χ̂k(0) + i

∫ t

0
e−(iεk+γ )(t−t ′)

× [ukŝk(t ′) − vkŝ
†
−k(t ′)] dt ′. (34)

Equal-time normal nk(t) = 〈χ̂k(t)†χ̂k(t)〉 and anomalous
mk(t) = 〈χ̂k(t) χ̂−k(t)〉 correlators evolve according to

nk(t) = e−2γ tnk(0) +
∫∫ t

0
v2

k 〈ŝ−k(t ′′)ŝ†−k(t ′)〉

× e−2γ t+iεk (t ′−t ′′)+γ (t ′+t ′′) dt ′ dt ′′,

mk(t) = e−2(iεk+γ )tmk(0) +
∫∫ t

0
ukvk 〈ŝk(t ′′)ŝ†k(t ′)〉

× e−2(iεk+γ )t+(iεk+γ )(t ′+t ′′) dt ′ dt ′′, (35)

where we have taken into account that

〈ŝ†k(t ′′)ŝk′(t ′)〉 = 0, (36)

〈ŝk(t ′′)ŝ†k′(t ′)〉 = 0 for k �= k′. (37)

Noticing the statistical independence of ς̂ and θ̂ , and using (21)
and (16), we get the remaining quantum noise correlator

〈ŝk(t)ŝ†k(t ′)〉 = 1

L

∫∫
dz dz′ 〈ς̂ (z,t)ς̂(z′,t ′)〉

× 〈e−iθ̂ (z,t)+iθ̂ (z′,t ′)〉e−ik(z−z′)

= 2γ δ(t − t ′). (38)

In this derivation the Markovianity and locality of the
noise were essential to ensure that 〈e−iθ̂ (z,t)+iθ̂ (z′,t ′)〉 = 1. If
there exists residual non-Markovianity, the phase fluctuations
in space and time, which are especially strong in 1D, will
reduce this correlator. So we may expect that the quantum
noise influence is reduced in a general non-Markovian case.

Substituting (38) into (35) we get

nk(t) =e−2γ tnk(0) + 2γ

∫ t

0
v2

k (t ′) e−2γ (t−t ′) dt ′,

mk(t) =e−2(iεk+γ )tmk(0)

+ 2γ

∫ t

0
uk(t ′)vk(t ′) e−2(iεk+γ )(t−t ′) dt ′. (39)

Numerical solutions to (39) for the experimental parameters
of [11] are presented in Fig. 3, with the assumption of
independence of Bogoliubov modes, and setting the initial
state to be a true thermal equilibrium at a temperature T0 = μ0.
The initial conditions for the correlators are

nk(0) = (eεk/T0 − 1)−1,
(40)

mk(0) = 0.

In Fig. 3 we see that, although the quasiparticle occupation
numbers deviate strongly from the predictions of the ther-
mal Bose-Einstein distribution for high-momenta particlelike
states, the low-energy phononic excitations agree very well
with the Rayleigh-Jeans classical equipartition, which allows
us to introduce an effective temperature Teff(t) = εk(t) nk(t).
This emergence of a temperature will be explained in the next
section.

The excess energy in the large-momentum tail of the distri-
bution may lead to a Kolmogorov-like cascade if the coupling
between Bogoliubov modes is taken into account [25]. This
behavior is expected be present in 2D and 3D, leading to a
true thermalization. However in 1D the Bogoliubov theory
is believed to hold much better, so our dissipative state
becomes a realization of a generalized Gibbs ensemble, where
each mode is in a Gaussian state, but may have its own
temperature [26,27].

IV. PHONONIC LIMIT

Emergence of the effective temperature Teff can be proven
in the low-energy phononic limit, which is recovered by
considering the phase and density fluctuations on length
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FIG. 3. Log-log plot of the evolution of the Bogoliubov modes’
occupation numbers nk as a function of momentum k (in units of
the inverse healing length 1/ξ = mc) and time t (solid lines, in units
of the inverse dissipation rate 1/γ ) for initial thermal distribution
at temperature T0 = μ0. It is easy to see the two limits of the full
Bose-Einstein distribution function: the phononic Rayleigh-Jeans
limit (k � mc) and the particlelike Boltzmann limit (k � mc). The
dashed lines represent thermal distributions at temperatures, top to
bottom, Teff (t)/μ0 ≈ {1.00,0.55,0.30,0.17,0.09}, fitted to agree with
the calculated values in the phononic regime. Note that although the
time-evolved distributions are clearly nonthermal in their high-energy
tails, they however agree well with thermal predictions in the
low-energy part of the spectrum, allowing the introduction of an
effective temperature for phononic modes. Inset: time evolution of
the chemical potential μ(t) = μ0 e−2γ t , solid line, in comparison with
the fitted effective temperatures Teff (t), dots. As explained in Sec. IV,
in this special case T (t) = μ(t).

scales much larger than the condensate healing length ξ (t) =
1/mc(t), where c(t) = √

μ(t)/m is a time-dependent speed of
sound. Taking the phononic limit corresponds to neglecting the
curvature of the dispersion relation εk(t) = c(t)|k| + O(k2),
and the Bogoliubov coefficients become

u2
k(t) = v2

k (t) = uk(t) vk(t) = mc(t)

2|k| + O(k). (41)

Taking into account that the speed of sound decays expo-
nentially c(t) = c0e

−γ t , we can replace the time-dependent
Bogoliubov coefficients with their initial values, e.g., uk(t) =
uk(0) e−γ t/2, then substitute (41) into (39), perform the inte-
gration, and neglect terms of order k and higher. This leads to

nk(t) = e−2γ tnk(0) + ñk(t), (42)

mk(t) = e−2(iεk+γ )tmk(0) + m̃k(t), (43)

where the quantum noise contributions are

ñk(t) = mc0

|k| (e−γ t − e−2γ t ), (44)

m̃k(t) = mc0

|k|
(e−γ t − e−2(i|k|c(t)+γ )t )

1 + 2i
|k|c(t)

γ

. (45)

Expanding (45) in the small parameter γ , we see that the
quantum noise terms scale as | m̃k (t)

ñk (t) | ∼ γ

|k|c(t) , so the anomalous
correlator contribution can be neglected in the experimentally
relevant reigme of slow adiabatic dissipation γ � ck. This
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T0 = 2.0 0

T0 = 1.0 0

T0 = 0.5 0

T0 = 0

0.03 0.1 0.3 1 3 10
0
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2

3

t

T e
ff

(t)
/

(t)

FIG. 4. Temperature to chemical potential ratio as a function of
dimensionless time γ t for different initial values of T0/μ0 (solid
lines). Note the emergence of an asymptotic dissipative state T (t) =
μ(t) for t → ∞. For comparison, we present the classical mean-field
prediction which neglects the quantum noise (dashed lines). The scale
of the time axis is logarithmic.

means that the system during dissipation is fully described by
the modes’ occupation numbers nk(t).

Defining an effective temperature in the phononic regime
through classical equipartition Teff = |k|cnk , from (42) we get

Teff(t)

μ(t)
= T0

μ0
e−γ t + (1 − e−γ t ), (46)

where the first term on the right-hand side comes from the mean
field, and the second term represents the contribution of the
quantum noise. The initial state is assumed to be a true thermal
equilibrium (40) at temperature T0. In a special case when the
initial temperature is equal to the initial chemical potential,
the two remain equal during the subsequent evolution (inset in
Fig. 3).

The effect of dissipation at the mean-field level can thus be
understood as a removal of phonons from the system, which
in the Rayleigh-Jeans approximation is directly equivalent to
cooling. The quantum noise, on the other hand, creates new
quasiparticles and may lead to reheating. The competition
between these two trends leads the evolution of the system
towards an asymptotic state T (t) = μ(t), setting a limit on
how far the system can be cooled through uniform Markovian
dissipation (Fig. 4). At long times semiclassical theory with
Markovian quantum noise strongly deviates from the mean-
field solution (18), which would predict Teff (t)

μ(t) = T0
μ0

e−γ t and
hence Teff/μ → 0 (dashed lines in Fig. 4).

As a convenient experimental probe, we propose to measure
the temperature dependence on the chemical potential μ(t),
which in the uniform case reads

T (t)

T0
=

(
μ(t)

μ0

)3/2

+ μ0

T0

[
μ(t)

μ0
−

(
μ(t)

μ0

)3/2
]
. (47)

To test the predictions of (46) and (47) we propose the
following experiment: Prepare the quantum gas in a thermal
state with known temperature and particle number. Then turn
on the rf or mw outcoupling, wait for an unspecified time t ,
and measure the number N (t) and temperature T (t) of the
remaining particles. The temperature can be measured by
switching off the confining trap and analyzing the density
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FIG. 5. Effective temperature scaling with the time-dependent
chemical potential for different T0/μ0 ratios. The lowermost curve
represents the classical limit where the quantum noise is neglected.
The chemical potential is proportional to the mean density in the
uniform case, and to the central peak density in case of the harmonic
potential.

ripple pattern emerging in time of flight [16,28]. The chemical
potential μ(t) can be calculated from the direct measure-
ment of the total particle number N (t), as in the uniform
case N (t) ∝ μ(t), and in the harmonically trapped case in
the local density and Thomas-Fermi approximations N (t) ∝
μ3/2(t). Predictions of (47) are plotted in Fig. 5 for different
initial ratios T0/μ0, along with the mean-field prediction
(the mean-field and semiclassical results agree in the limit
T0/μ0 → ∞).

Equation (46) can also be used to derive other important
degeneracy criteria such as the scaling of the thermal coherence
length λ = 2μ

mgT
and the Penrose-Onsager mode occupation

number NPO = λN/L. Namely, the gas becomes more de-
generate during dissipation, as witnessed by the increasing
coherence length λ and the growing relative occupation of
the Penrose-Onsager mode NPO/N , as long as the initial
temperature to chemical potential ratio T0/μ0 > 1.

V. CONCLUSIONS

We developed a general theoretical description of dis-
sipative degenerate Bose gases, where uniform Markovian
dissipation is realized by outcoupling atoms from the conden-
sate. Our model is applicable for both true condensates and
quasicondensates at low temperatures as long as the Bogoli-
ubov theory remains valid and conventional thermalization is
suppressed.

In one spatial dimension, we found that during dissi-
pation the low-momentum phononic modes remain close
to the thermal equilibrium, and that at a high enough
initial temperature T0 > μ0 dissipation leads to cooling.
Due to the presence of a white quantum noise, which
stems from the Markovian outcoupling to a continuum of
empty modes, the system evolves towards an asymptotic
state with an effective temperature Teff(t) = μ(t) as t →
∞. In addition, we presented scaling laws for temperature
dynamics, which can be used as guidelines for experimental
realizations.

In higher dimensions, direct observations of the predicted
effects may be limited mainly due to two reasons: first, the
dissipative cooling may be overshadowed by the conventional
evaporative cooling due to effective thermalization; and
second, the outcoupling may be non-Markovian, e.g., as a
result of the finite particle escape time.

A recent experiment with dissipative 1D condensates [11]
measured the temperature dependence on the atom number
and showed a much better agreement with the mean-field
theory than the semiclassical one. We conjecture that it may
be accounted for by the non-Markovianity of the outcoupling
process, which can decrease the influence of the quantum
noise (see the discussion in Sec. III C). The issue of non-
Markovianity will be addressed in a following publication.
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