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We investigate the multiple stable macroscopic quantum states of a Bose-Einstein condensate in an
optomechanical cavity with pump-cavity field detuning and atom-photon interaction following the experimental
realization of the quantum phase transition [Nature (London) 464, 1301 (2010)]. The spin-coherent-state
variational method is useful in exploring the multistability since it has the advantage of including both normal
and inverted pseudospin states. In the blue detuning regime the usual transition from normal to superradiant
phases still exists, however, when the atom-field coupling increases to a certain value, called the turning point,
the superradiant phase collapses due to the resonant damping of the mechanical oscillator. As a consequence,
the system undergoes at this point an additional phase transition to the normal phase of the atomic population
inversion state. In particular, the superradiant phase disappears completely at strong photon-phonon interaction,
resulting in the direct atomic population transfer between two atomic levels. Moreover, the coupling-induced
collapse and revival of the superradiant state are also found in the red detuning region.
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I. INTRODUCTION

The realization of a Bose-Einstein condensate (BEC) in
a dilute atomic gas [1,2] opened a new avenue of research
in quantum many-body physics with the unique opportunity
to simulate quantum optical and condensed matter phenom-
ena [3,4]. Theoretical investigations have extended to BECs in
the optical cavity [5] and the optical lattice [6–8] with spin-
orbit coupling as well [9,10]. An ultracold atomic ensemble
interacting with high-finesse cavity modes is a typical system
of cavity quantum electrodynamics, which has witnessed sig-
nificant development [11,12] in both quantum optics and cold-
atom physics. Theoretically, the collective phenomenon in the
light-matter system [13,14] was investigated long ago with
the well-known Dicke model [15]. The fascinating quantum
phase transition (QPT) from a normal phase to the superradiant
phase has attracted particular interest in recent years, since it
has a wide range of applications [16]. The existence of the
coherent superradiant state at zero temperature [17] is consid-
ered an intriguing many-body phenomenon resulting from the
collective effects. The experimental observation [13,18–21]
of the QPT being a milestone in the cavity BEC has triggered
active studies including experiments in an open cavity [22,23],
which leads to theoretical explanations of the nonequilibrium
QPT [24–27].

On the other hand, with a cavity mode being strongly cou-
pled to a high-quality mechanical oscillator through radiation
pressure [28–33], a new frontier known as cavity optome-
chanics [28,29] has been achieved with the recent technical
progress [34–39] in exploring the coherent coupling between
electromagnetic and mechanical degrees of freedom [40] in the
quantum domain [41–50]. The optomechanical cavity provides
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many interesting phenomena such as optical cooling [36,51–
54], optical bistability [55] in the optical domain, confinement
[56–58] of the element, optical nonlinearity [55,59], and
squeezing [41,50]. The cavity optomechanical sensor has also
been developed in the strong-coupling [48] and quantum-
coherent coupling [60] regimes.

The QPT in the Dicke model through mechanical vibra-
tions [61] has been explored theoretically and the multistability
of the BEC was found in the optomechanical cavity [62]. The
measurement of the photon number [63,64] in a Fabry-Pérot
cavity [65,66] provides a possibility to observe the QPT, which
is no doubt of conceptual and technical importance for the
BEC in an optomechanical cavity. Recently, the ground-state
property of a BEC in an optomechanical cavity was investi-
gated theoretically [67] by means of the Holstein-Primakoff
transformation in the thermodynamic limit (N → ∞). Since
the nonlinear atom-photon interaction [23,68] is required in
the actual experiment to realize the QPT, in the present paper
we study theoretically the QPT with this interaction for a BEC
in the optomechanical cavity. The variation of the nonlinear
interaction in a wide range along with the pump-cavity field
detuning can change the effective frequency of the cavity mode
from positive to negative values. Thus, multiple stable states
become possible [69]. It is certainly of interest to explore the
effect of the mechanical oscillator on the multistability and
related QPT.

The spin-coherent-state (SCS) variational method has the
advantage of including both the normal ⇓ and inverted ⇑
pseudospin states, which are necessary for multistability.
The inverted pseudospin state was first demonstrated in a
dynamic study to reveal the multiple steady states in the
nonequilibrium [24–27] QPT. Indeed, the inverted pseudospin
⇑ leads to the stable state of atomic population inversion and
the inverted QPT in the presence of a nonlinear atom-photon
interaction [69]. Based on the SCS variational method, in
the present paper we study multistability for the BEC in
the optomechanical cavity. The oscillator-induced collapse
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of the superradiant phase is a central effect of the system
considered. As a consequence, multiple QPTs appear in the
experimentally accessible parameter region. In particular,
the superradiant phase can be suppressed completely at a
certain high value of photon-phonon coupling and we find
the direct population transfer between the two atomic levels.
Moreover, the coupling-induced collapse and revival of the
superradiant states are also an observation different from the
BEC in an optical cavity [69] in the absence of mechanical
oscillator. Finally, it may be worthwhile to remark that the
SCS method is actually valid for an arbitrary atomic number N

unlike the usual variation method with the Holstein-Primakoff
transformation, which requires a large-N limit.

II. HAMILTONIAN AND VARIATIONAL-METHOD
SOLUTIONS

Following the experiment in [23], we consider a four-level
atomic ensemble in a high-finesse optical cavity of frequency
ωf with a transverse pumping [70,71] of frequency ωp as
depicted in Fig. 1. A high-quality mechanical oscillator is
coupled to the cavity mode via radiation pressure [28–33].
The ultracold atoms coherently scatter pump light into the
cavity mode with a position-dependent phase. An effective
two-level system is obtained by eliminating adiabatically two
excited states of atoms with a large frequency detuning of the
pump laser [27,72]. In the optical cavity all ultracold atoms
are assumed to couple identically to the single-mode field
and we have an extended Dicke model, which is coupled to
the mechanical oscillator. The corresponding Hamiltonian is
expressed as

H = ωa†a + ω0Sz + U

N
Sza

†a + g

2
√

N
(a† + a)(S+ + S−)

+ ς√
N

(b† + b)a†a + ωbb
†b, (1)

where ω0 is the effective two-level atom frequency, which
is twice the recoil energy; a† (a) is the photon creation
(annihilation) operator; g denotes the collective atom-field
coupling strength; b† (b) is the creation (annihilation) operator
of the mechanical resonator with frequency ωb; and S+, S−, and

z

y x

Pump

BEC

b

FIG. 1. Proposed experimental setup for a BEC trapped in an
optomechanical cavity with a pump laser of frequency ωp to realize
the QPT. Here ωb is the mechanical-resonator frequency and ωf is
the frequency of the cavity mode.

Sz are the collective spin operators. The third term denotes the
nonlinear atom-photon interaction resulting from the disper-
sive shift of the cavity frequency [23]. The effective two atomic
momentum states may be denoted by |0〉 = |0,0〉 and |1〉 =
| ± k, ± k〉. The atom-photon interaction takes place only for
atoms of nonzero momentum state |1〉 and the interaction term
is seen to be U0Ma†an1 with U0 = g2/(ωp − ωa), where ωa

denotes the atomic transition frequency and M = 3/4 is a
matrix element according to the experiment [23]. In addition,
n1 and n0 denote the collective atomic number operators in
the atomic states |1〉 and |0〉, respectively. With the definition
of the pseudospin operator Sz = (n1 − n0)/2 and the relation
n1 + n0 = N , we obtain the nonlinear atom-photon interaction
term of Eq. (1), in which the interaction constant is defined by
U = MU0. The effective cavity frequency is found as [69]

ω = �c + U (1 + 1/M)/2 = �c + 7U/6,

which can be modulated by tuning the atom-photon interaction
strength U and the pump-cavity field detuning �c = ωf − ωp.
We call the detuning blue detuning for ωf < ωp and red
detuning for ωf > ωp. In addition, ς is the nonlinear photon-
phonon interaction strength, which indicates the coupling
between the cavity mode and mechanical oscillator via
radiation pressure [28–33]. In the absence of an oscillator,
the above Hamiltonian reduces to that for the BEC-cavity
system [23,69].

In this paper we provide analytic solutions for the macro-
scopic quantum states (coherent states) in terms of the
recently developed SCS variational method [69], which has the
advantage that both normal ⇓ and inverted ⇑ pseudospin states
can be taken into account. As a result, multiple steady states are
obtained, in agreement with previous observations [24,26,27].
To this end, we begin with the partial average of the system
Hamiltonian H̄ = 〈ψ |H |ψ〉 in the trial wave function

|ψ〉 = |α〉|β〉, (2)

which is considered as the product of boson coherent states
of the cavity mode (photon) and quantum oscillator (phonon)
such that a|α〉 = α|α〉 and b|β〉 = β|β〉 for our aim to study
the macroscopic quantum states. The partial average becomes
an effective Hamiltonian of the pseudospin operators only,

H̄ (α,β) =
(

ω + 2ς√
N

ρ cos φ

)
γ 2 + ωbρ

2 + Hsp(γ,θ ), (3)

with the effective spin operator given by

Hsp(γ,θ ) =
(

ω0 + U

N
γ 2

)
Sz + g√

N
γ cos θ (S+ + S−),

where we assume that the complex eigenvalues of the boson
annihilation operators have the usual form α = γ eiθ and β =
ρeiφ , respectively. The spin operator Hsp(γ,θ ) as well as the
total effective Hamiltonian can be directly diagonalized by
means of the SCS. The four real variation parameters γ , θ , ρ,
and φ in the trail wave function |ψ〉 are going to be determined
by the variation condition. Thus we will be able to obtain the
analytic stationary states and the related energies as well.
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A. Spin-coherent-state variational method

Different from the usual variation procedure, in which the
pseudospin operators are converted into a one-mode boson
operator by means of the Holstein-Primakoff transformation,
we start from the two eigenstates, namely, the SCSs, of the
effective spin operator Hsp(γ,θ ) such that

Hsp(γ,θ )| ∓ n〉 = E∓
sp(γ,θ )| ∓ n〉. (4)

The two states | ∓ n〉, called the SCSs of south- and north-
pole gauges or normal ⇓ and inverted ⇑ spin states, are
in fact the eigenstates of the spin operator S · n with the
corresponding eigenvalues ∓s,where s = N/2. We assume
that n = (sin ξ cos η, sin ξ sin η, cos ξ ) is the unit vector of the
direction angles ξ and η. Thus the SCSs | ∓ n〉 can be generated
from the maximum Dicke states |s, ∓ s〉 by a rotation operator

R(n) = e(ξ/2)(S+eiη−S−e−iη)

such that

| ∓ n〉 = R(n)|s, ∓ s〉. (5)

We also call | ∓ n〉 the macroscopic quantum states, in
which the minimum-uncertainty relation �S+�S− = 〈Sz〉/2
is satisfied. It is obvious that these two macroscopic quantum
states are orthogonal 〈+n| − n〉 = 0. By applying the rotation
operator R(n) to the spin operators Sz,S+,S− [25,73,74] we
have

H̃sp| ∓ s〉 = E∓
sp(γ,θ )| ∓ s〉, (6)

where

H̃sp = R†(n)Hsp(γ,θ )R(n) = ASz + BS+ + CS−, (7)

with

A(γ,θ ; η,ξ ) =
(

ω0 + U

N
γ 2

)
cos ξ − 2g√

N
γ cos θ cos η sin ξ,

B(γ,θ ; η,ξ ) =
(

ω0

2
+ U

2N
γ 2

)
e−iη sin ξ

+ g√
N

γ cos θ

(
cos2 ξ

2
− e−2iη sin2 ξ

2

)
,

C(γ,θ ; η,ξ ) =
(

ω0

2
+ U

2N
γ 2

)
eiη sin ξ

+ g√
N

γ cos θ

(
cos2 ξ

2
− e2iη sin2 ξ

2

)
.

If the conditions

B(γ,θ ; η,ξ ) = 0, C(γ,θ ; η,ξ ) = 0, (8)

are satisfied the effective spin Hamiltonian Hsp(γ,θ ) can be
diagonalized in the SCSs | ∓ n〉 with the eigenvalues given by

E∓
sp = ∓N

2
A(γ,θ ; η,ξ ), (9)

in which the parameters ξ and η can be determined from
Eq. (8). After tedious but straightforward algebra we ob-
tain [69]

A(γ ) =
√(

ω0 + U

N
γ 2

)2

+ 4g2

N
γ 2. (10)

The average energy function in the full trail wave function

|�∓〉 = |ψ〉| ∓ n〉 (11)

is found finally as

E∓ = 〈�∓|H |�∓〉 =
(

ω − 2ς√
N

ρ

)
γ 2 + ωbρ

2 + E∓
sp,

(12)

with the variational parameters γ and ρ to be determined from
the extremum condition. The isolated phase parameter φ is
fixed as cos φ = −1 in terms of the extremum condition with
respect to φ for ς > 0. The solutions of the macroscopic many-
particle quantum state are found from the usual extremum
conditions of the energy function

∂E∓
∂γ

= γ

[
2

(
ω − 2ςρ√

N

)
∓ F (γ )

]
= 0 (13)

with

F (γ ) = N

2

∂A(γ )

γ ∂γ
= U

(
ω0 + Uγ 2

N

) + 2g2

A(γ )

and

∂E∓
∂ρ

= − 2ς√
N

γ 2 + 2ωbρ = 0. (14)

These conditions (13) and (14) have a trivial solution

γ = 0, ρ = 0.

If the zero-photon-number solutions are stable with a positive
second-order derivative of the energy function, namely,

∂2E∓
∂γ 2

(γ ∓
n = 0) > 0, (15)

they are called the normal-phase state denoted by N∓ in the
phase diagram. Substituting ρ = ς√

Nωb

γ 2 obtained from the
extremum condition (14) into Eq. (13), the nonzero-photon-
number (as well as nonzero-phonon-number) solutions are
found from the equation

P∓(γ 2) = 2

(
ω − 2ς2γ 2

Nωb

)
∓ F (γ ) = 0, (16)

which, being a quartic equation of variable γ 2, can be solved
graphically (see the Appendix).

The second-order derivative of the energy function [cor-
responding to the slope of the P∓(γ 2) curve plotted in the
Appendix] has the analytic form

∂2E∓
∂γ 2

= 2

(
ω − 2ς2γ 2

Nωb

)
∓ F (γ ) + γ

[
−8ς2γ

Nωb

∓ ∂F (γ )

∂γ

]
,

(17)

with

∂F (γ )

∂γ
= γ

{
2U 2A2(γ ) − 2

[(
ω0 + Uγ 2

N

)
U + 2g2

]2}
NA3(γ )

,

which serves as a stability condition that ∂2E∓/∂γ 2 > 0 for
the stable state and is unstable otherwise. From the graphic
solutions of the extremum (16) we obtain multiple stable
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quantum states S∓ of the nonzero-photon and zero-photon
states N∓. We will see that the multiple states result in multiple
QPTs.

B. Average energy, mean photon number, and atomic
population difference

From the energy function (12) we can obtain the average
energy ε∓ = E∓(γ )/N , which in the normal phase is

ε∓(γ ∓
n = 0) = ∓ω0

2
and in the superradiant phase is evaluated (with the solutions
γ ∓

s ) with

ε∓ = E∓(γ ∓
s )

N
. (18)

The mean photon number is obtained as the usual average of
the photon-number operator in the full trial wave function (11)
with the bosonic part |ψ〉 = |α〉|β〉 defined in Eq. (2). For the
stable solution γs∓ obtained from Eq. (16) we have

n∓
p = 〈�∓|a†a|�∓〉

N
= γ̄ 2

s∓, (19)

with γ̄ 2
s∓ = γ 2

s∓/N . The QPT in the Dicke model is charac-
terized by the average photon number np, which serves as an
order parameter, with np > 0 for the superradiant phase and
np = 0 for the normal phase. The atom population difference
is calculated in the state |�∓〉 with the SCSs | ∓ n〉 given by
Eq. (5),

�n∓
a = 〈s, ∓ s|R†(n)SzR(n)|s, ∓ s〉

N
= ∓1

2

ω0 + Uγ̄ 2
s∓

A(γ̄s∓)
,

(20)

which reduces to the typical value in the normal phase with
γ̄n∓ = 0 that

�n∓
a (γ̄n∓ = 0) = ∓ 1

2 . (21)

III. MULTISTABILITY AND THE PHASE DIAGRAM

From the graphical solutions of the extremum (16) along
with the stability condition (17) we are able to provide
the phase diagram in the U -g plane for fixed photon-
phonon coupling ς and pump-cavity field detuning �c. In
the numerical calculation we have used the experimentally
realizable parameters with the atom frequency ω0 = 1 MHz.
The coupling constants and energies are all measured in the
unit of ω0 throughout the paper, except the photon-phonon
coupling ς . The nonlinear interaction U can vary in a wide
region between ±80 according to the experiment [23]. The
reason for the use of parameter magnitudes in the actual
experiment is based on the hope that the phenomena predicted
in this paper can be detected experimentally by measuring
the photon number. Figure 2 shows the phase diagram of
blue detuning �c = −24 with the photon-phonon interaction
strength ς = 0.2ωb [Fig. 2(a)], ς = 1.0ωb [Fig. 2(b)], ς =
2.0ωb [Fig. 2(c)], and ς = 4.0ωb [Fig. 2(d)]. The mechanical
oscillator frequency is chosen as [75] ωb = 2π × 32.3 MHz.
As a comparison, the phase diagram of the red detuning
�c = 24 is presented in Fig. 3 with ς = 0.2ωb [Fig. 3(a)],

FIG. 2. Variation of the phase diagram in blue detuning �c =
−24 with respect to the photon-phonon interaction ς . The super-
radiant state S− is suppressed by the increase of ς seen in (a)
ς = 0.2ωb, (b) ς = 1.0ωb, and (c) ς = 2.0ωb and disappears when
(d) ς = 4.0ωb. Here NPbi(N−,N+) (pink region) denotes bistable
zero-photon states of N∓, with N− being the ground state and
SPco(S−,N+) (sea green region) means the superradiant state S−
(ground state) coexisting with the state N+. The turning point line
g−

t induced by the oscillator is a new phase boundary between
SPco(S−,N+) and NP(N+). Here Nus denotes unstable zero-photon
state (γ = 0).

ς = 0.4ωb [Fig. 3(b)], ς = 0.6ωb [Fig. 3(c)], and ς = 1.0ωb

[Fig. 3(d)]. From the energy extremum (16), by setting γ = 0
we can find the phase-boundary equations between normal and
superradiant phases

g∓
c =

√
ω0

(
± ω − U

2

)
, (22)

which are independent of the photon-phonon coupling ς .
The two phase-boundary lines g−

c = √−24 + 2U/3 and g+
c =√

24 − 5U/3 are displayed in Fig. 2 for two spin states with
the blue detuning �c = −24. It is easy to check from the
stability condition (15) that the state N+ is located in the whole
region above the phase boundary g+

c and N− is restricted
to the left-hand area of the boundary line g−

c , where we
have the bistable normal phase denoted by the phase notation
NPbi(N−,N+), with N− being the ground state (pink region).
The superradiant phase of state S− coexisting with the inverted
spin state N+ denoted by the phase notation SPco(S−,N+) is
found in the area between the phase boundary g−

c and turning
point line g−

t [sea green region in Figs. 2(a)–2(c)]. This area
is identified as the superradiant phase since the superradiant
state S− has a lower energy (ground state). The region of
superradiant state S− is suppressed with the increase of photon-
phonon coupling ς by the damping of the mechanical oscillator
[Figs. 2(a)–2(c)] and quenched completely when ς = 4.0ωb

as shown in Fig. 2(d). The turning point line is therefore a
phase boundary between the superradiant phase and the normal
phase of state N+ with the phase notation NP(N+) (yellow
region). Thus we have two QPTs at the critical point g−

c and
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FIG. 3. Phase diagram of red detuning �c = 24. The two phase
boundary lines g∓

c cross at the point g−
c = g+

c , forming an overlap
region in which NPco(N−,S+) [orange region, labeled (1)] is located.
The state S+ extends to the region below the two boundary lines g∓

c

[green region, labeled (3)] and becomes a ground state SP(S+). The
total area of state S+ with the lower boundary line g+

t is suppressed
continuously with the increase of (a) ς = 0.2ωb, (b) 0.4ωb, (c) 0.6ωb,
and (d) 1.0ωb. Correspondingly, the area of NP(N−) [apple green
region, labeled (2)] increases.

turning point g−
t , respectively. In addition, the photon-phonon

coupling results in a dynamically unstable macroscopic state
S−

us not appearing in the phase diagram. For the red detuning
�c = 24 the two phase-boundary lines g−

c = √
24 + 2U/3

and g+
c = √−24 − 5U/3 shown in Fig. 3 cross at the point

g−
c = g+

c (U = −144/7), forming an overlap region with
richer structure. In the overlap area, the normal-phase notation
NPco(N−,S+) [orange region, labeled (1)] means the ground
state N− of zero photon coexisting with the superradiant state
S+. This region decreases with the increase of photon-phonon
coupling ς due to the mechanical-oscillator-induced collapse
of the superradiant state S+ [Figs. 3(a)–3(c)]. The area left
over [apple green, labeled (2)] becomes a simple normal phase
NP(N−) [Figs. 3(b) and 3(c)], which finally occupies the whole
overlap region because of the complete quenching of state S+
when ς = 1.0ωb [Fig. 3(d)]. The state S+ extending away
from the overlap area becomes a simple superradiant phase
SP(S+) as shown in Figs. 3(a)and 3(b) [green region, labeled
(3)]. Here Nus denotes unstable zero-phonon states, which
are solutions of both extremum equations P∓(γ 2 = 0) = 0
with the negative second-order derivative ∂2E∓/∂γ 2(γ =
0) < 0. We will see that the convex phase-boundary line g+

t ,
particularly in Fig. 3(b), is responsible for the collapse and
revival of the superradiant state S+.

To see the area variation of state S+ with respect to �c

and ς , we present the phase diagrams in Fig. 4 for red
detuning �c = 30 [Figs. 4(a) and 4(b)] and �c = 18 [Figs. 4(c)
and 4(d)] with ς = 0.4ωb [Figs. 4(a) and 4(c)] and ς = 0.6ωb

[Figs. 4(b) and 4(d)]. It can be seen that the area of state S+ in
NPco(N−,S+) and SP(S+) increases with the detuning �c and
decreases with the photon-phonon coupling ς by comparing
Figs. 4(a)and 4(c) and Figs. 4(b) and 4(d) with Figs. 4(a)

FIG. 4. Variation of the phase diagram with respect to red
detuning (a) and (b) �c = 30 and (c) and (d) �c = 18 and photon-
phonon interaction (a) and (c) ς = 0.4ωb and (b) and (d) ς = 0.6ωb.
The area of state S+ in NPco(N−,S+) and SP(S+) increases with the
detuning �c and decreases with the photon-phonon coupling ς . (d)
The state S+ even disappears completely when �c = 18 at a lower
value of photon-phonon coupling ς = 0.6ωb.

and 4(b) and Figs. 4(c) and 4(d). The state S+ even disappears
completely when �c = 18 at a lower value of photon-phonon
coupling ς = 0.6ωb [Fig. 4(d)].

The additional phase boundary g∓
t induced by the collapse

of superradiant states S∓ is an observation that, different
from the BEC-cavity system [69], results in multiple QPTs
in the experimentally accessible coupling-constant region
g ∈ [0,10].

IV. MULTIPLE QUANTUM PHASE TRANSITIONS
AND THE ATOMIC POPULATION TRANSFER

To show clearly the multistability and multiple QPTs
we present in Fig. 5 the variation curves of the average
photon number np [Figs. 5(a1)–5(c1)], the atomic population
difference �na [Figs. 5(a2)–5(c2)], and the average energy
ε [Figs. 5(a3)–5(c3)] with respect to the coupling constant
g for blue detuning �c = −24 and the positive atom-photon
interaction U = 65. The curves are plotted in different photon-
phonon interaction values ς = 1.0ωb [Figs. 5(a1)–5(a3)],
ς = 2.0ωb [Figs. 5(b1)–5(b3)], ς = 4.0ωb [Figs. 5(c1)–5(c3)]
in order to demonstrate the effect of oscillator on the QPT.

For the lower value of ς [Figs. 5(a1)–5(a3)], we have
bistable normal-phase states N− (black solid line) and N+
(red dashed line) below the critical value g−

c (pink region
in Fig. 2). Here N− is the ground state with lowest energy
[Fig. 5(a3)] and atomic population as well [Fig. 5(a2)]. In
addition, there exists an unstable state S−

us (blue dotted line) in
this region corresponding to the unstable solution γ −

us in Fig. 7.
The QPT from NPbi(N−,N+) to SPco(S−,N+) takes place at
the critical point g−

c = 4.3970 evaluated from the boundary
line (22). The superradiant state S− (black solid line), i.e.,
the stable solution γ −

s in Fig. 7, and zero-photon state N+
along with the unstable state S−

us are located in the region (sea
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FIG. 5. Mean photon number np , atom population difference
�na , and average energy ε vs atom-field coupling strength g in the
blue detuning �c = −24 and positive atom-photon interaction U =
65. The effect of photon-phonon interaction on the multiple QPTs is
displayed in (a) ς = 1.0ωb, (b) ς = 2.0ωb, and (c) ς = 4.0ωb. The
increase of ς from (a) to (c) does not affect the critical point g−

c of the
usual QPT [in fact, NP(N−) → SP(S−)]. (c) However, the transition
point g−

t of the inverted QPT SP(S−) → NP(N+) shifts back and
finally coincides with g−

c , resulting in the atomic population transfer
between two states N− and N+. With the decrease of ζ the region
of SP(S−) increases and extends to infinity when ζ = 0. Thus the
QPT reduces to that of the normal Dicke model. Here S−

us denotes
the dynamically unstable state of normal spin ⇓ corresponding
to the unstable nonzero-photon-number solution γ −

us shown in
Fig. 7.

green in the phase diagram in Fig. 2) between critical point
g−

c and turning point g−
t ≈ 8.4 [see also Fig. 7(c)], where the

superradiant state S− collapses and the photon-number curve
np of state S− turns back, joining with the blue dotted line
of state S−

us [Fig. 5(a1)]. The system undergoes the second
QPT from SPco(S−,N+) to NP(N+) at g−

t . The inverted spin
state N+ becomes the ground state in this region due to the
collapse of S−. The position of the turning point g−

t shifts
toward the lower value direction of g with the increase of
the photon-phonon interaction ς [see Figs. 5(a) and 5(b)] and
coincides with the critical point g−

c at ς = 4.0ωb [Fig. 5(c)].
In this case the superradiant phase disappears completely by
resonant damping of the mechanical oscillator, resulting in the
coupling-induced population transfer from N− (⇓) to N+ (⇑)
(i.e., the spin flip) in the vacuum (np = 0). Since the atomic
population inversion plays an important role in laser physics,
the manipulation of population transfer may have technical
applications.

V. COLLAPSE AND REVIVAL OF THE SUPERRADIANT
STATE AND INVERTED QUANTUM PHASE TRANSITION

To reveal the phenomena in the red detuning and negative
atom-photon coupling we plot the curves of np, �na , and ε

in Figs. 6(a)–6(c), respectively, for �c = 24 and U = −27
corresponding to the graphical solutions of Fig. 9. Below
the turning point g+

t,1 ≈ 1.42, we have NPco(N−,S+) [orange
region in the phase diagram of Fig. 3(b)]. The ground state
N− (black solid line) coexists with the superradiant state
S+ (red dashed line) and the unstable state S+

us (blue dotted

FIG. 6. The np , �na , and ε curves in red detuning �c = 24
with negative atom-photon interaction U = −27 and ς = 0.4ωb. The
superradiant state S+ collapses at the turning point g+

t,1 and revives at
g+

t,2. Here g+
c is the critical point of the inverted QPT from SP(S+) to

NP(N+). There is no stable state in the region (blank area in the phase
diagram) between g−

c and g+
t,2, but there is an unstable zero-photon

state Nus. Here S+
us denotes the unstable state of inverted spin ⇑

corresponding to the unstable nonzero-photon-number solution γ +
us

shown in Fig. 9.

line). The superradiant state S+ collapses at the turning point
g+

t,1 and the single normal-phase state N− remains alone,
denoted by NP(N−) (apple green in the overlap region of phase
diagram). Here NP(N−) extends continuously to the critical
point g−

c = 2.4495. Since the turning point line g+
t is a convex

curve in the phase diagram in Fig. 3(b), the horizontal line of
U = −27 crosses the curved line at two points g+

t,1 within the
overlap region and g+

t,2 outside it. Between the critical point
g−

c and turning point g+
t,2 ≈ 3.6 there is no stable state but

there is an unstable zero-photon state Nus, which can also
be seen from the phase diagram in Fig. 3 (blank region).
Beyond the turning point g+

t,2 the superradiant state S+ is
revived and becomes a ground state (red solid line) identified
by the phase notation SP(S+). We also see a short branch
of the unstable state S+

us (blue dotted line), which, however,
turns to the right, which is different from the behavior at the
turning point g+

t,1. An inverted QPT from SP(S+) to NP(N+)
is observed at the critical point g+

c = 4.5826. This transition
is in the opposite direction compared with the usual QPT
in the Dicke model. The inverted transition may be due to
the negative effective frequency (ω < 0) in the red detuning
case [69].

VI. CONCLUSION AND DISCUSSION

The SCS variational method provides a possibility to study
multiple stable macroscopic quantum states generated by the
variation of the atom-photon interaction U and pump-cavity
field detuning �c. The SP(S+) and NP(N+) resulting from
the inverted pseudospin exist in the red detuning region with
the negative atom-photon interaction (U < 0). The inverted
QPT from SP(S+) to NP(N+) is observed with an increase of
the atom-field coupling constant g. The mechanical oscillator
does not have any effect in the field vacuum, but can greatly
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affect the superradiant phase since it is coupled to the cavity
mode through the radiation pressure. In particular, the radiation
field in the states S∓ can be damped to zero when the
atom-field coupling g increases to a certain value called the
turning points g∓

t , which depend also on the photon-phonon
coupling strength ς . This behavior is quite different from
the Dicke model, in which the photon number increases with
the coupling g. The collapse of superradiant states S− leads to
the second QPT actually from SP(S−) to NP(N+) at the turning
point g−

t . The multiple QPTs are the key observation, which,
not existing in the BEC-cavity system [69], has conceptual
importance in the cavity optomechanics. The superradiant state
S− disappears at higher value of the photon-phonon coupling,
for example, ς = 4.0ωb in the case considered in Fig. 5(c).
We find the direct population transfer from N− to N+ in the
vacuum, i.e., the spin flip from the normal ⇓ to the inverted ⇑
pseudospin states [26,69]. Since the atom population inversion
plays a important role in laser physics, the manipulation of
atomic population transfer (or spin flip) may have technical
applications.

The mechanical oscillator also induces the dual (nonzero
photon) solutions γ ∓

s and γ ∓
us of the energy extremum (16),

which is a quartic equation of variable γ 2 instead of the
quadratic equation in the BEC-cavity system [69]. However,
the upper-branch solutions γ ∓

us are unstable with a negative
second-order derivative of the energy function. In the red
detuning and negative U regions we observe an interesting
phenomenon of the collapse and revival of state S+ followed
by the inverted QPT of SP(S+) → NP(N+). The coupling-
induced collapse and revival may be a typical phenomenon
of the nonlinear photon-phonon interaction, since the phase
boundary line g+

t is a convex curve, which has two cross points
with the horizontal line of U = −27 in the phase diagram in
Fig. 3(b).

The QPT demonstrated by the SCS variational method is
valid for arbitrary atomic number N . In the absence of both
an atom-photon interaction (U = 0) and a photon-phonon
interaction (ς = 0) the QPT obtained in the present paper
is exactly that [17,76] in the Dicke model, however, the
thermodynamic limit (N → ∞) is not studied. In particular,
the QPT remains the same for the Rabi model with N = 1, in
agreement with recent observation [77].
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APPENDIX: GRAPHICAL SOLUTIONS OF THE
EXTREMUM EQUATION

For blue detuning and positive U only the normal spin ⇓
is possible to fulfill the extremum (16). The two nonzero-

FIG. 7. (a1)–(d1) Graphical solutions of the extremum equation
P−(γ 2) = 0 and (a2)–(d2) the corresponding average energy ε vs
the mean photon number γ̄ 2 = γ 2/N with �c = −24, ς = 1.0ωb,
and U = 65. The atom-field coupling dependence of the solution
is shown in (a) g = 2.0, (b) g = 6.0, (c) g−

t ≈ 8.4 (turning point),
and (d) g = 9.5. Here γ −

s and γ −
us denote the stable and unstable

nonzero-photon solutions.

photon-number solutions γ −
s and γ −

us are zero points of the
polynomial curve P−(γ 2) as shown in Fig. 7(b1). The lower
value solution γ −

s is stable with a positive curve slope (i.e.,
positive second-order derivative) and therefore is called the
superradiant state, denoted by S−. It corresponds to the local
energy minimum as shown in Fig. 7(b2), while the higher
value solution γ −

us is unstable with a negative curve slope
[Fig. 7(b1)]. We call the unstable nonzero-photon-number
solution the dynamically unstable macroscopic state, denoted
by S−

us, which is a local energy maximum [Fig. 7(b2)]. The two

FIG. 8. Photon-phonon interaction dependence of the graphical
solutions and the related energy with �c = −24, g = 7.0, and
U = 65 for (a) ς = 1.0ωb, (b) ς = 2.0ωb, and (c) ς = 4.0ωb. The
extremum equation P−(γ 2) = 0 does not have a nonzero-photon
solution at the higher values of ς shown in (b) and (c) due to the
resonant damping of the mechanical oscillator.
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FIG. 9. Graphical solutions of P+(γ 2) = 0 with red detuning
�c = 24, ς = 0.4ωb, and U = −27. The g dependence is displayed
in (a) g = 0.8, (b) g+

t,1 ≈ 1.42 (turning point), (c) g+
t,2 ≈ 3.6 (turning

point), and (d) g = 4.0. The solution γ +
s (superradiant state S+ in the

phase diagram) collapses at g+
t,1 and revives at g+

t,2.

solutions are close to each other when the field-atom coupling
increases and finally coincide at g−

t ≈ 8.4, where the energy
function becomes a flex point in Fig. 7(c2), which we call the
turning point. Beyond the turning point the extremum (16)
no longer has a nonzero-photon solution [Fig. 7(d)]. The
unstable solution γ −

us extends to the lower-coupling-value
region g = 2.0 below the critical point g−

c , as shown in
Fig. 7(a), where the stable solution γ −

s does not exist (see
Fig. 5 for the critical point g−

c ). Figure 8 shows the effect
of photon-phonon coupling ς that the two solutions move
toward the lower value of γ with an increase of ς for the
given g = 7.0. The stable nonzero-photon-number solution
γ −

s no longer exists when ς = 4.0ωb [Fig. 8(c)]. The situation
becomes very different for the red detuning and negative U

region, where the inverted spin ⇑ is the solution. For the lower
atom-field coupling value g = 0.8 the nonzero-photon stable
solution γ +

s of the equation P+(γ 2) = 0 in Fig. 9(a) is an
excited state denoted by S+. Between the two turning points
g+

t,1 ≈ 1.42 and g+
t,2 ≈ 3.6 [Figs. 9(b) and 9(c)] the nonzero

solution γ +
s collapses. It is revived, however, beyond the

turning point g+
t,2 ≈ 3.6 accompanying an unstable solution

γ +
us [Fig. 9(d)], which we denote by S+

us in the phase diagram.
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