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Gouy phase in nonclassical paths in a triple-slit interference experiment
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22112 Oakmeadow Place, Bedford, Texas 76021, USA

3Curso de Fı́sica, Universidade Federal do Tocantins, Caixa Postal 132, CEP 77804-970, Araguaı́na, Tocantins, Brazil
4Departamento de Fı́sica, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Caixa Postal 702, CEP 30161-970,

Belo Horizonte, Minas Gerais, Brazil
(Received 14 October 2015; published 14 March 2016)

We propose a simple model to study the Gouy phase effect in the triple-slit experiment in which we consider
a nonclassical path. The Gouy phase differs for classical and nonclassical paths as it depends on the propagation
time. In this case the Gouy phase difference changes the Sorkin parameter κ used to estimate the nonclassical path
contribution in a nontrivial way, shedding some light on the implementation of experiments to detect nonclassical
path contributions.
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I. INTRODUCTION

The Gouy phase shift in light optics was theoretically
studied and experimentally observed by Gouy in 1890 [1,2].
The physical origin of this phase was studied in [3–10]. The
Gouy phase shift appears in any kind of wave that is submitted
to transverse spatial confinement, either by focusing or by
diffraction through small apertures. When a wave is focused
[5], the Gouy phase shift is associated with the propagation
from −∞ to +∞ and is equal to π/2 for cylindrical waves
(line focus) and π for spherical waves (point focus). In the
case of diffraction by a slit it was shown that the Gouy phase
shift is π/4, and it is dependent on the slit width and the
propagation times before and after the slit [11]. The Gouy
phase shift has been observed in different kinds of waves such
as water waves [12]; acoustic [13], surface plasmon-polariton
[14], and phonon-polariton [15] pulses; and, recently, matter
waves [16–18].

Applications of the Gouy phase in light optics opening the
possibility of development of optical systems has been the
subject of many studies and increasing interest. For instance,
the Gouy phase has to be taken into account to determine
the resonant frequencies in laser cavities [19] or the phase
matching in high-order-harmonic generation (HHG) [20] and
to describe the spatial variation of the carrier-envelope phase
of ultrashort pulses in a laser focus [21]. Moreover, the Gouy
phase plays an important role in the evolution of optical
vortex beams [22] as well as electron beams which acquire
an additional Gouy phase dependent on the absolute value of
the orbital angular momentum [17]. Gravity-wave-detection
antennas are based on precision measurements using laser
interferometry in which the Gouy phase is crucial [23].

In the nonrelativistic matter-wave context the Gouy phase
was explored first in [24,25], followed by experimental
realizations with Bose-Einstein condensates [16], electron
vortex beams [17], and astigmatic electron matter waves
using in-line holography [18]. Recently, it was shown that
the Beteman-Hillion solutions to the Klein-Gordon equation
present a Gouy phase that includes relativistic effects [26].
Matter-wave Gouy phases have interesting applications as
well. For instance, they serve as mode conversers important
in quantum information [25], in the development of singular

electron optics [18], and in studying the Zitterbewegung
phenomenon [26], and now we investigate how important
it can be in the study of nonclassical paths in interference
experiments such as less likely, more exotic looping paths, as
we shall explain below. From the theoretical viewpoint, the
contribution of such exotic trajectories amounts to saying that
the superposition principle is usually incorrectly applied in
interference experiments.

A theoretical treatment of the nonclassical path in the dou-
ble slit was studied in [27]. The authors estimated a nonlinear
interference term to test a deviation from the superposition
principle in the double-slit experiment. They used the Feynman
path-integral approach [28] with inclusion of paths looping
along the slits, i.e., nonclassical paths. Experimental access
to such tiny deviations was discussed by Sorkin [29] in a
work where higher-order phenomena incorporate the usual
prescription of interference when three or more paths interfere.
However, only recently was a quantification of the nonclassical
paths in interference experiments for a triple slit proposed
[30–33].

The theoretical analysis to support these experiments is
based on path integrals in the presence of slits with different
weights for classical and nonclassical paths; namely, the
propagator is written as

K(�r1,�r2) =
∫

D[�x(s)] exp

[
ik

∫
ds

]
,

where s is the contour length along �x(s), with the classical
limit being k → ∞, where paths near the straight line linking
�r1 to �r2 contribute via the stationary phase. Paths away from
the classical path contribute a rapidly oscillating phase. All
paths from source to detector should be considered, excluding
those that would cross the opaque walls along the slits.

Reference [30] introduced the Sorkin factor κ , which
gauges the deviation of the Born rule for probabilities
in quantum mechanics, i.e., to estimate contributions from
nonclassical paths. κ = 0 if only classical paths contribute
to the final interference pattern in the detector, and κ �= 0
if, beyond the usual classical paths, nonclassical paths are
considered in the calculations and contribute to the final result.
Although the effect of nonclassical paths can also appear
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for the usual double-slit experiment, until the present time
no deviation from a null value of κ was detected in this
setup. However, new experiments with three slits proposed
in [33] using matter waves or low-frequency photons were
analytically described, enabling us to set an upper bound on
the Sorkin factor |κmax | ≈ 0.003λ3/2/(d1/2w), in which λ is the
wavelength, d is the center-to-center distance between the slits,
and w is the width of the slit. Those experiments confirmed
that κ is very sensitive to the experimental setup.

Triple-slit (path) experiments have become a useful testing
ground for checking Born’s rule in quantum mechanics
[29,30,34,35]. In Ref. [32] the nonclassical contributions for
triple-slit matter-wave diffraction were evaluated using the
Feynman path-integral approach with a free propagator given
by K(�r,�r ′) = k

2πi
1

|�r−�r ′ | eik|�r−�r ′ | (which satisfies the Helmholtz
equation away from �r = �r ′ and the Fresnel-Huygens princi-
ple). In the Fraunhofer regime this leads to integrals which
are evaluated numerically using stationary phase approx-
imation. As a result they obtain κ ≈ 10−8 for electron
waves [32].

The guiding purpose of this paper is to incorporate the effect
of the Gouy phase into parameter κ and indicate this effect on
the pattern of interference as well in κ for matter waves. As
we shall see, the Sorkin factor for triple-slit interference is
dependent on the Gouy phase difference between classical
and nonclassical paths. The effect of the Gouy phase of
matter waves has recently earned prominence with its inclusion
in electron beams, which are used in [32,33] to estimate
κ ≈ 10−8. In order to analytically evaluate the interference
pattern we establish a procedure similar to that presented in
[11,36] using nonrelativistic propagators for a free-particle
Gaussian wave packet adapted to triple-slit interference with
nonclassical paths. This framework allows for exact integration
and analytical expressions which depend on the geometry of
the experimental setup and source parameters. Moreover, we
make explicit the Gouy phase in the wave functions for a
triple-slit apparatus ψ1, ψ2, ψ3, and ψnc (the corresponding
wave function for nonclassical path) and derive an expression
for κ which is of the order of 10−8 for electron waves.
Our nonrelativistic propagator, which satisfies the Schrödinger
equation accurately, describes matter-wave interferometry in
this experimental regime [37,38], and Gaussian apertures
allow for direct analytical integration. Moreover, the Gouy
phase has a simple analytical expression. Therefore we have
used the three-slit experimental setup in order to compare the
order of magnitude of our κ parameter with the one obtained
in [32] for the same input data and verified that they agree for
electron waves.

This contribution is organized as follows: in Sec. II we
obtain analytical expressions for the wave functions for
classical and nonclassical paths and calculate the intensity.
We estimate the deviations produced by nonclassical path
through the Sorkin parameter κ . In Sec. III we analyze the
effect of the Gouy phase on the Sorkin parameter for electron
waves, and we estimate the percentage error in this parameter
when we neglect the Gouy phase difference of classical and
nonclassical paths in order to get some insight into the relative
importance of such effects in the interference pattern. We draw
some concluding remarks in Sec. IV.

FIG. 1. Sketch of triple-slit experiment. Gaussian wave packet of
transverse width σ0 produced in the source S propagates a time t

before attaining the triple slit and a time τ from the triple slit to the
detector D. The slit apertures are taken to be Gaussian of width β

separated by a distance d . Paths 1, 2, and 3 are classical paths, and
the path 123 is one of the several possible nonclassical paths.

II. NONCLASSICAL PATHS IN THE TRIPLE-SLIT
EXPERIMENT

In this section we obtain analytical results for the wave
functions of classical and nonclassical paths in the triple-slit
experiment while keeping track of phases in order to assess
their role in the interference pattern. For the purpose of this
paper we suppose a one-dimensional model in which quantum
effects are manifested only in the x direction, as depicted in
Fig. 1. A coherent Gaussian wave packet of initial transverse
width σ0 is produced in the source S and propagates during a
time t before arriving at a triple slit with Gaussian apertures
from which Gaussian wave packets propagate. After crossing
the grid the wave packets propagate during a time τ before
arriving at detector D in the detection screen, giving rise to an
interference pattern as a function of the transverse coordinate
x. Quantum effects are realized only in the x direction as
we consider that the energy associated with the momentum
of the particles in the z direction is very high, such that the
momentum component pz is sharply defined, i.e., 	pz � pz.
Then we can consider a classical movement in this direction
at velocity vz. Because the propagation is free, the x, y,
and z dimensions decouple for a given longitudinal location,
and thus, we may write z = vzt . As vz is assumed to be a
well-defined velocity, we can neglect statistical fluctuations in
the time of flight, i.e., 	t � t . Such an approximation leaves
the Schrödinger equation analogous to the optical paraxial
Helmholtz equation [38,39]. For a more general treatment one
can follow the model studied in Ref. [40]. The summation over
all possible trajectories allows for exotic paths such as the one
depicted in Fig. 1. Although there are several possibilities
of nonclassical paths for the triple slits, we focus on the
windy path 123 in Fig. 1. We calculate the corresponding
wave function for this path in order to analyze its effect in the
interference pattern.

The wave functions corresponding to classical paths (gray
lines) 1 and 3 read (

∫ +∞
−∞ · · · ∫ +∞

−∞ dx1 · · · dxn ≡ ∫
x1...xn

)

ψ1,3(x,t,τ ) =
∫

xj ,x0

Kτ (x,t + τ ; xj ,t)F (xj ± d)

×Kt (xj ,t ; x0,0)ψ0(x0), (1)
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whereas for classical path 2

ψ2(x,t,τ ) =
∫

xj ,x0

Kτ (x,t + τ ; xj ,t)F (xj )

×Kt (xj ,t ; x0,0)ψ0(x0), (2)

with

K(xj ,tj ; x0,t0) =
√

m

2πi�(tj − t0)
exp

[
im(xj − x0)2

2�(tj − t0)

]
, (3)

F (xj ) = exp

[
− (xj )2

2β2

]
, (4)

and

ψ0(x0) = 1√
σ0

√
π

exp

(
− x2

0

2σ 2
0

)
. (5)

The kernels Kt (xj ,t ; x0,0) and Kτ (x,t + τ ; xj ,t) are the free
propagators for the particle, and the functions F (xj ) describe
the slit transmission functions, which are taken to be Gaussian
of width β separated by a distance d; σ0 is the effective width of
the wave packet emitted from the source S, m is the mass of the
particle, and t (τ ) is the time of flight from the source (triple
slit) to the triple slit (screen). The wave function associated
with nonclassical path 123 (red line) is given by

ψnc(x,t,τ ) =
∫

x0,x1,x2,x3

Kτ (x,τ + t̃ ; x3,t̃)

×F (x3 + d)F (x2)K(1 → 2; 2 → 3)

×F (x1 − d)Kt (x1,t + η; x0,0)ψ0(x0), (6)

where t̃ = t + 2(ε + η) and

K(1 → 2; 2 → 3) =
√

m

4πi�(ε + η)

× exp

[
im[(x2 − x1)2 + (x3 − x2)2]

4�(ε + η)

]

(7)

is the free propagator which propagates from slit 1 to slit
2 and from slit 2 to slit 3. The parameter η → 0 is an
auxiliary interslit time parameter, and ε is the time spent
from one to the next slit and is determined by the momentum
uncertainty in the x direction, i.e., ε = d

	vx
(	vx = 	px/m),

where 	px = √〈p̂2
x〉 − 〈p̂x〉2, with p̂x being the momentum

operator in the x direction. The time ε is a statistical fluctuation
of the time for the movement in the x direction which has
to attain a minimum value d/	vx in order to guarantee the
existence of a nonclassical path. This estimation is compatible
with the propagation which builds the nonclassical trajectory.
A similar argument was used in [41], where nonclassical
dynamics based on the uncertainty principle are considered
in an interferometer. Trajectories winding around the slits
evidently contribute less and less to the interference pattern.

After some lengthy algebraic manipulations, we obtain

ψ1(x,t,τ ) = A exp(−C1x
2 − C2x + C3)

× exp(iαx2 − iγ x − iθc + iμc), (8)

ψ2(x,t,τ ) = A exp(−C1x
2) exp(iαx2 + iμc), (9)

ψ3(x,t,τ ) = A exp(−C1x
2 + C2x + C3)

× exp(iαx2 + iγ x − iθc + iμc), (10)

and

ψnc(x,t,τ ) = Anc exp(−C1ncx
2 + C2ncx + C3nc)

× exp(iαncx
2 + iγncx − iθnc + iμnc), (11)

where the nontrivial Gouy phase μnc is given by

μnc(t,τ ) = 1

2
arctan

(
zI

zR

)
. (12)

All the coefficients present in Eqs. (8)–(12) are written out in
Appendixes A and B for the sake of clarity. The indices R

and I stand for the real and imaginary parts of the complex
numbers that appear in the solutions. As discussed in [11],
μnc(t,τ ) and θnc(t,τ ) are phases that do not depend on the
transverse position x. Different from the Gouy phase, θnc(t,τ )
is one phase that appears as we displace the slit from a given
distance from the origin, which is dependent on the parameter
d.

The intensity at the screen including the nonclassical path
reads

Inc = |ψ1 + ψ2 + ψ3 + ψnc|2
= Ic + |ψnc|2 + 2|ψ1||ψnc| cos φ1nc

+ 2|ψ2||ψnc| cos φ2nc + 2|ψ3||ψnc| cos φ3nc, (13)

where

φ1nc = (α − αnc)x2 − (γ + γnc)x − (θc − θnc) + (μc − μnc),
(14)

φ2nc = (α − αnc)x2 − γncx + θnc + (μc − μnc), (15)

and

φ3nc = (α − αnc)x2 + (γ − γnc)x − (θc − θnc) + (μc − μnc)
(16)

are the relative phases of ψ1 and ψnc, ψ2 and ψnc, and ψ3 and
ψnc, respectively, which implies that the interference is a result
of two paths, as observed in [34]. Ic is the intensity when only
classical paths are taken into account.

To quantify the deviations in the intensity produced by the
existence of nonclassical paths we use the Sorkin parameter
as defined in Refs. [32,33], i.e.,

κI0 = Inc − Ic

= |ψnc|2 + 2|ψ1||ψnc| cos φ1nc

+ 2|ψ2||ψnc| cos φ2nc + 2|ψ3||ψnc| cos φ3nc, (17)

where I0 is the intensity at the central maximum. As we can
observe, the parameter κ used to estimate the existence of the
nonclassical path in the triple-slit interference is dependent on
the Gouy phase difference between classical and nonclassical
paths.
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III. SORKIN PARAMETER AND GOUY PHASE FOR
ELECTRON WAVES

In this section we analyze the Gouy phase effect in the
quantity κ for electron waves. First, we observe the behavior of
the normalized intensity and the parameter κ as a function of x

while fixing the values of t and τ . We observe a displacement
in the behavior of κ as an effect of the Gouy phase, which
makes clear the role of this phase in the exact estimation of κ .
The selected path 123 of Fig. 1 produces an asymmetric aspect
for κ . But as we observe next, the symmetric aspect is restored
if path 321 is also included. Second, we observe the behavior
of the parameter κ as a function of x and τ while fixing the
value of t , from which we can observe an upper bound for a
given value of x and τ . Third, we consider the position x = 0
and observe the behavior of the parameter κ as a function of
τ for t fixed. For x = 0 the Gouy phase effect is most evident
since some other phases disappear in the interference, as we
can see in Eqs. (14)–(16). As a matter of fact we can study the
effect of all phases that appear with the nonclassical path since
we know the analytic expression for them, but we analyze here
only the Gouy phase effect, which can be measured for matter
waves. Moreover, it is possible to tune parameters t and τ , σ0,
β, and d in order to study a specific phase contribution.

To construct the graphic of the intensity and the Sorkin
parameter κ we consider an electron wave of wavelength
λ ≈ 50 pm and adopt the following parameters: m = 9.11 ×
10−31 kg, d = 650 nm, β = 62 nm, σ0 = 62 nm, t = 18 ns,
τ = 15 ns. For this value of wavelength the propagation
velocity in the z direction is vz ≈ 1.46 × 107 m/s, which
corresponds to propagation distances much larger than the
wavelength, i.e., zt ≈ 26.3 cm and zτ ≈ 21.9 cm, respectively,
before and after the triple slit. Using these parameters as input,
we find ε = 0.492 ns. In Fig. 2(a) we show the normalized
intensity In as a function of x, which shows the shape of
the intensity at the far field or Fraunhofer theory, as similarly
observed in [31,32]. In Fig. 2(b) we show the Sorkin parameter
κ as a function of x in which we consider (solid line) and
we do not consider (dotted line) the Gouy phase effect. In
accordance with [32] we find that the quantity κ is of the
order of 10−8, which corroborates our simplified analysis.
Moreover, we verify numerically that the factor |ψnc(x,t,τ )|2
does not change the parameter κ significantly, with the main

FIG. 2. (a) Normalized intensity as a function of x. (b) Sorkin
parameter κ as a function of x. For the solid line we consider and for
the dotted line we do not consider the Gouy phase difference.

FIG. 3. Sorkin parameter κ as a function of x for two selected
nonclassical paths, i.e., paths 123 and 321. As we can observe, κ is
symmetric with respect to the change x by −x.

contributions coming from the crossed terms which contain
the Gouy phase.

The asymmetric aspect of the factor κ shown in Fig. 2(b) is
a consequence of the fact that we take only one nonclassical
path, i.e., path 123 as presented in Fig. 1. If we also
added nonclassical path 321, the symmetric aspect would be
obtained, as we can observe in Fig. 3. Notice that the Sorkin
parameter increases slightly with this additional contribution,
as it should. Moreover, the parity symmetry is restored by
adding such a complementary contribution.

In Fig. 4 we show the behavior of |κ| as a function of x

and τ for the nonclassical path shown in Fig. 1. We observe
that it has a maximum for a given value of x and τ . The
existence of a maximum enables us to choose a set of values
of parameters that produce a value of κ which can be more
accessible to being measured. The existence of a maximum
value for this parameter as a function of the quantities involved
in the experimental apparatus was previously observed in [33].
As we can see, this maximum occurs around x = 0. Next we
will explore the Gouy phase effect to estimate the parameter
κ for x = 0 since for this position some phases disappear,
making the Gouy phase effect most evident.

FIG. 4. Absolute value of Sorkin parameter κ as a function of τ

and x for fixed t . It presents a maximum value for a given value of x

and τ .
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FIG. 5. (a) Gouy phase difference as a function of τ and fixed t .
(b) Absolute value of the Sorkin parameter κ as a function of τ at
x = 0 and fixed t . For solid line we consider and for dotted line we
do not consider the Gouy phase difference.

In Fig. 5(a) we show the Gouy phase of the classical path
(dashed line) and the nonclassical path in Fig. 1 (solid line)
as a function of τ for the same parameters used above. We
can observe that the absolute value of the Gouy phase for the
classical path decreases, whereas for the nonclassical path it
increases as the time propagation τ grows. This change affects
the parameter κ . To observe such an effect, in Fig. 5(b) we show
the absolute value of the parameter κ for the nonclassical path
in Fig. 1 as a function of τ for x = 0. For the solid line we
consider and for the dotted line we do not consider the Gouy
phase difference.

The behavior of the parameter κ as a function of τ is
similar to that obtained as a function of the distance of the
triple slit to the screen in Ref. [33]. For a given value of
τ it has a peak as in Ref. [33]. It is noteworthy that an
exact solution for κ depends on the Gouy phase. In order
to evaluate the effect of the Gouy phase on the absolute value
of the parameter κ for the nonclassical path in Fig. 1, we
calculate for point x = 0 the percentage error, which is defined
by (||κ| − |κ ′||/|κ|) × 100%, where for |κ| we consider the
Gouy phase difference which corresponds to the exact value
and for |κ ′| we neglect the Gouy phase difference. Choosing
τ = 2 ns, the percentage error is 51.5%. Therefore if the Gouy
phase is neglected, the parameter κ is misestimated. As we
can observe in Fig. 5(a) for τ = 2 ns, the Gouy phase of the
classical path tends to zero, and the Gouy phase difference
is due to the phase of the nonclassical path contribution, i.e.,
μc − μnc ≈ |μnc| ≈ 0.719 rad. If one uses these parameters,
one measures the Gouy phase difference as a signature of the
nonclassical path contributions.

We observe that the effect of nonclassical paths in multislit
matter-wave interferometry can be assessed by measuring the
quantity κ as well as the Gouy phase corresponding to the wave
function for this exotic trajectory, i.e., μnc. That is because,
for a certain class of parameters, the Gouy phase difference is
exactly (or approximately) the Gouy phase of the nonclassical
path. Therefore the measurement of the Gouy phase difference
amounts to the Gouy phase of nonclassical paths only from
which the κ parameter may be inferred. On the other hand, in
order to measure the Gouy phase using a multislit apparatus,
a useful approach is proposed in Ref. [11], in which the Gouy
phase is estimated by measuring the relative intensity and the
fringe visibility, which are accessible quantities independent
of the size of κ .

IV. CONCLUDING REMARKS

We studied the effects of a selected nonclassical path in the
interference pattern in a triple-slit experiment. We solved ex-
actly a one-dimensional model of propagation through a triple
slit and found analytical expressions for the wave functions
of classical and nonclassical paths. We obtained an exactly
solution for the Sorkin parameter κ used to estimate the effect
of the nonclassical path. The value of κ for electron waves is
consistent with other results previously obtained for it, which
makes our model reasonably good for studying the existence of
the nonclassical path. We used the uncertainty in momentum
to estimate the interslit propagation linking the existence of
the nonclassical path with the uncertainty principle which
is intuitive because of Feynman’s path-integral formalism.
The Gouy phases of classical and nonclassical paths are
different, which contributes significantly to the value of κ .
We observed the changing behavior of κ as a consequence of
the Gouy phase difference for electron waves. We estimated
the percentage error in the absolute value of parameter κ

as a consequence of the Gouy phase difference for x = 0,
t = 18 ns, and τ = 2 ns and found 51.5%. We conclude,
from the enormous discrepancy found, that the Gouy phase
difference cannot be neglected in the three-slit interference
if nonclassical paths are present. We expect that our results
which connect the Sorkin parameter and Gouy phase will be
useful for detecting the nonclassical path’s effect by measuring
the Gouy phase.
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APPENDIX A: FORMULAS FOR INTERFERENCE PARAMETERS

In the following we display the complete expressions for terms in Eqs. (8), (2), (10), and (11):

A = m

2�

√√
πtτσ0

[(
m2

4�2tτ
− 1

4β2σ 2
0

)2

+ m2

16�2

(
1

β2t
+ 1

σ 2
0 t

+ 1

σ 2
0 τ

)2]− 1
4

, (A1)

C1 =
m2

�2τ 2 A
4[A2 + B2]

, (A2)
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C2 =
2md
�τβ2 B

4[A2 + B2]
,

A =
(

1

2β2
+ m2σ 2

0

2(�2t2 + m2σ 4
0 )

)
,

B =
(

m3σ 4
0

2�t(�2t2 + m2σ 4
0 )

− m

2�t
− m

2�τ

)
,

C3 = − d2

2β2
+ �

2τ 2d2

m2β2
C1, γ = 2d�τ

mβ2
C1, (A3)

α = m

2�τ
+ mβ2

2�τ
C2, θC = �τd

2mβ2
C2, (A4)

μc(t,τ ) = −1

2
arctan

⎡
⎣ t + τ

(
1 + σ 2

0
β2

)
τ0

(
1 − tτσ 2

0

τ 2
0 β2

)
⎤
⎦, (A5)

Anc =
√√√√ m3

√
π

16�3τ tεσ0

√
z2
R + z2

I

, (A6)

C1nc = m2z3R

4�2τ 2
(
z2

3R + z2
3I

) , (A7)

C2nc = m3dz6I

32�3β2τε2
(
z2

6R + z2
6I

) + mdz3I

2�τβ2
(
z2

3R + z2
3I

) , (A8)

C3nc = d2z1R

4β4
(
z2

1R + z2
1I

) − m2d2z4R

64β4�2ε2
(
z2

4R + z2
4I

) + m4d2z5R

45�4β4ε4
(
z2

5R + z2
5I

) + m2d2z6R

32β4ε2�2
(
z2

6R + z2
6I

) + d2z3R

4β4(z2
3R + z2

3I )
− d2

β2
,

(A9)

αnc = m

2�τ
+ m2z3I

4�2τ 2
(
z2

3R + z2
3I

) , (A10)

γnc = m3dz6R

32�3β2τε2
(
z2

6R + z2
6I

) + mdz3R

2�τβ2
(
z2

3R + z2
3I

) , (A11)

θnc = d2z1I

4β4
(
z2

1R + z2
1I

) − m2d2z4I

64β4�2ε2
(
z2

4R + z2
4I

) + m4d2z5I

45�4β4ε4
(
z2

5R + z2
5I

) + m2d2z6I

32β4ε2�2
(
z2

6R + z2
6I

) + d2z3I

4β4
(
z2

3R + z2
3I

) , (A12)

APPENDIX B: GOUY PHASE COMPONENTS

In the following we present the full expressions for the terms in Eq. (12).

zR = (z0Rz1R − z0I z1I )(z2Rz3I + z2I z3R) + (z0Rz1I + z0I z1R)(z2Rz3R − z2I z3I ), (B1)

zI = (z0Rz1R − z0I z1I )(z2Rz3R − z2I z3I ) − (z0Rz1I + z0I z1R)(z2Rz3I + z2I z3R), (B2)

z0R = 1

2σ 2
0

, z0I = − m

2�t
, (B3)

z1R = 1

2β2
+ m2z0R

4�2t2
(
z2

0R + z2
0I

) , (B4)

z1I = −
(

m

4�ε
+ m

2�t
+ m2z0I

4�2t2(z2
0R + z2

0I )

)
, (B5)

z2R = 1

2β2
+ m2z1R

16�2ε2
(
z2

1R + z2
1I

) , (B6)

z2I = −
(

m

2�ε
+ m2z1I

16�2ε2
(
z2

1R + z2
1I

)
)

, (B7)
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z3R = 1

2β2
+ m2z2R

16�2ε2
(
z2

2R + z2
2I

) , (B8)

z3I = −
(

m

2�τ
+ m

4�ε
+ m2z2I

16�2ε2(z2
2R + z2

2I )

)
, (B9)

z4R = z2
1Rz2R − z2

1I z2R − 2z1Rz1I z2I , (B10)

z4I = z2
1Rz2I − z2

1I z2I + 2z1Rz1I z2R, (B11)

z5R = z3R

(
z2

1Rz2
2R − z2

1Rz2
2I − z2

1I z
2
2R + z2

1I z
2
2I − 4z1Rz1I z2Rz2I

) − 2z3I

(
z2

1Rz2Rz2I − z2
1I z2Rz2I + z1Rz1I z

2
2R − z1Rz1I z

2
2I

)
,

(B12)

z5I = z3I

(
z2

1Rz2
2R − z2

1Rz2
2I − z2

1I z
2
2R + z2

1I z
2
2I − 4z1Rz1I z2Rz2I

) + 2z3R

(
z2

1Rz2Rz2I − z2
1I z2Rz2I + z1Rz1I z

2
2R − z1Rz1I z

2
2I

)
,

(B13)

z6R = z1Rz2Rz3R − z1Rz2I z3I − z1I z2Rz3I − z1I z2I z3R, (B14)

and

z6I = z1Rz2Rz3I + z1Rz2I z3R + z1I z2Rz3R − z1I z2I z3I . (B15)

[1] L. G. Gouy, C. R. Acad. Sci. Paris 110, 1251 (1890).
[2] L. G. Gouy, Ann. Chim. Phys., Ser. 6 24, 145 (1891).
[3] T. D. Visser and E. Wolf, Opt. Commun. 283, 3371 (2010).
[4] R. Simon and N. Mukunda, Phys. Rev. Lett. 70, 880 (1993).
[5] S. Feng and H. G. Winful, Opt. Lett. 26, 485 (2001).
[6] J. Yang and H. G. Winful, Opt. Lett. 31, 104 (2006).
[7] R. W. Boyd, J. Opt. Soc. Am. 70, 877 (1980).
[8] P. Hariharan and P. A. Robinson, J. Mod. Opt. 43, 219 (1996).
[9] S. Feng, H. G. Winful, and R. W. Hellwarth, Opt. Lett. 23, 385

(1998).
[10] X. Pang, T. D. Visser, and E. Wolf, Opt. Commun. 284, 5517

(2011); X. Pang, G. Gbur, and T. D. Visser, Opt. Lett. 36, 2492
(2011); X. Pang, D. G. Fischer, and T. D. Visser, J. Opt. Soc.
Am. A 29, 989 (2012); X. Pang and T. D. Visser, Opt. Express
21, 8331 (2013); X. Pang, D. G. Fischer, and T. D. Visser, Opt.
Lett. 39, 88 (2014).

[11] C. J. S. Ferreira, L. S. Marinho, T. B. Brasil, L. A. Cabral, J. G.
G. de Oliveira, Jr., M. D. R. Sampaio, and I. G. da Paz, Ann.
Phys. (NY) 362, 473 (2015).

[12] D. Chauvat, O. Emile, M. Brunel, and A. Le Floch, Am. J. Phys.
71, 1196 (2003).

[13] N. C. R. Holme, B. C. Daly, M. T. Myaing, and T. B. Norris,
Appl. Phys. Lett. 83, 392 (2003).

[14] W. Zhu, A. Agrawal, and A. Nahata, Opt. Express 15, 9995
(2007).

[15] T. Feurer, N. S. Stoyanov, D. W. Ward, and K. A. Nelson, Phys.
Rev. Lett. 88, 257402 (2002).

[16] A. Hansen, J. T. Schultz, and N. P. Bigelow, in Conference
on Coherence and Quantum Optics, M6 66 (Optical Society of
America, Rochester, New York, 2013); J. T. Schultz, A. Hansen,
and N. P. Bigelow, Opt. Lett. 39, 4271 (2014).

[17] G. Guzzinati, P. Schattschneider, K. Y. Bliokh, F. Nori, and J.
Verbeeck, Phys. Rev. Lett. 110, 093601 (2013); P. Schattschnei-
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