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We theoretically and numerically study spin wave turbulence in spin-1 ferromagnetic spinor Bose-Einstein
condensates, finding direct and inverse cascades with power-law behavior. To derive these power exponents
analytically, the conventional weak wave turbulence theory is applied to the spin-1 spinor Gross-Pitaevskii
equation. Thus we obtain the −7/3 and −5/3 power laws in the transverse spin correlation function for the direct
and inverse cascades, respectively. To confirm these power laws, numerical calculations are performed that obtain
results consistent with these power laws.
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I. INTRODUCTION

Ultracold atomic gases give us an excellent stage to study
various nonequilibrium phenomena such as dynamical phase
transitions, thermalization in isolated quantum systems [1],
and quantum hydrodynamics [2]. Actually, experimental
studies of the Kibble-Zurek mechanism [3–6], thermalization
in isolated one-dimensional systems [7,8], and quantum
turbulence (QT) [9–12] are widely performed, revealing novel
nonequilibrium phenomena.

Quantum turbulence has recently become an active area
in the field of atomic Bose-Einstein condensates (BECs).
Such systems can provide access to topics not addressable
in superfluid helium systems [13–15], e.g., QT in two-
dimensional systems and in multicomponent BECs, thereby
opening new directions in QT research. At present, in
experimental studies of one-component atomic BECs, both
three- and two-dimensional QT with many quantized vortices
can be generated, and have been investigated in terms of
anomalous expansion [9], vortex distribution [10,11], and
vortex decay [12]. Similarly, theoretical and numerical studies
also address such QT, providing discussion of features char-
acteristic of quantized vortices such as the Kolmogorov −5/3
power law [16,17], direct and inverse cascades [18–21], non-
thermal fixed points [22–24], the probability density function
for superfuild velocity [25], vortex distributions [26–28], and
vortex decay [29]. Furthermore, QT in multicomponent BECs
has also been theoretically and numerically studied, giving
nontrivial results for correlation functions of the wave function,
the spin-density vector, and the velocity field [30–35].

Apart from such hydrodynamic turbulence with many
quantized vortices, there is another kind of turbulence: weak
wave turbulence (WWT), dominated by weakly interacting
waves [36,37]. Ultracold gas is a superclean system with
many kinds of quantum fluids such as binary BECs [38],
spinor BECs [39,40], and dipolar BECs [41,42], and it is
possible to observe local quantities, e.g., the density profile
and the spin-density vector, so ultracold gases represent one
of the most suitable systems for investigating nonlinear and
nonequilibrium wave dynamics such as WWT.

However, there have apparently been only a few WWT stud-
ies in atomic BECs [43–48] where the Kolmogorov-Zakharov

(KZ) spectrum [36,37] has been discussed analytically and
numerically in one-component atomic BECs. For instance,
Proment et al. [47] investigated the connection between three-
and four-wave turbulence from the viewpoint of the growth of
the condensate, studying the change of power exponents in
a correlation function for a macroscopic wave function. Our
recent work [48] focused on an observable density profile,
and we discussed the experimental observation of the direct
cascade related to the KZ spectrum.

In this paper, we focus on WWT in a spin-1 ferromagnetic
spinor BEC dominated by spin waves, which we call spin-wave
turbulence (SWT). Applying WWT theory [36,37] to a spin-1
spinor Gross-Pitaevskii (GP) equation, we analytically find the
−7/3 and −5/3 power laws in the transverse spin correlation
function for direct and inverse cascades, respectively. To con-
firm these laws, we perform numerical calculations, obtaining
results consistent with these power exponents. In this paper,
we report details of these analytical and numerical results.

Before proceeding to the next section, we note that
such a nonequilibrium phenomenon for the spin waves has
already been studied in solid state physics [49–51]. Previous
experiments have focused on spin waves in yttrium iron garnet
(YIG), where parametric instability, chaos, SWT, etc. were
investigated. The distribution of spin waves in SWT, as far
as we know, has been addressed only in a single theoretical
study [52]. In magnetic materials such as YIG, the equation of
motion for the spin wave is very complicated because many
effects such as anisotropic fields, dipolar interactions, and
thermal baths exist [49,50]. Thus, the dynamics of spin waves
observed in previous studies is difficult to understand. Also,
the experimental methods are based on the absorption of the
pump energy and thus do not access the spatial distribution of
the spin.

In distinction from solid state physics, the atomic BEC
is a superclean system without any impurities and is highly
controllable, so that it is a suitable system for studying spin-
wave dynamics. Actually, the dispersion relation and dynamics
of spin waves in the spinor BEC have been experimentally and
theoretically studied [53–58]. Furthermore, because the spatial
profile of the spin-density vector is observable [3,40,59], it is
possible to investigate the distribution of spin waves and the
spin correlation function, which is advantageous in research
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on spin-wave dynamics. Therefore, atomic BECs provide an
excellent stage for studying spin waves.

Finally, let us comment on the difference between this work
and our previous one [35]. The previous work focused on
spin turbulence that is strongly excited by the counterflow
instability, where the spin-density vector points in various
directions and domain walls and vortices are nucleated. In
contrast to this spin turbulence, in this paper we address weakly
excited turbulence with a small-amplitude spin wave. Thus
SWT is another type of turbulence that is distinct from the
spin turbulence addressed in our previous paper.

This article is organized as follows. Section II describes the
formulation, where we introduce the spin-1 spinor GP equation
and spin hydrodynamic equation. In Sec. III, we apply WWT
theory to the GP equation, deriving the power laws for the
transverse spin correlation function. In Sec. IV, we show our
numerical results for SWT. The experimental observation of
these power laws is commented upon in Sec. V. Finally, we
summarize this work in Sec. VI.

II. FORMULATION

Our model for studying SWT in spinor BECs is introduced.
First, we explain the spin-1 spinor GP equation describing
the dynamics of the spin-1 spinor BECs at zero temperature.
Second, we give the spin hydrodynamic equation equivalent to
the GP equation, which is useful for the application of WWT
theory.

A. Spin-1 spinor GP equation

We consider a uniform system without a magnetic field
comprised of N -particle spin-1 bosons at zero temperature,
which is well described by the macroscopic wave functions ψm

(m = 1,0,−1) obeying the spin-1 spinor GP equations [60,61]

i�
∂

∂t
ψm = − �

2

2M
∇2ψm + c0ρψm + c1 F · (F̂)mnψn. (1)

In this paper, roman indices appear twice, being summed
over −1, 0, and 1, and, in the same way, greek indices are
summed over x, y, and z. The total density and the spin-density
vector are given by ρ = ψ∗

mψm and Fμ = ψ∗
m(F̂μ)mnψn (μ =

x,y,z), respectively, where (F̂μ)mn are the spin-1 matrices.
The parameters M , c0, and c1 refer to the particle mass
and the spin-independent and spin-dependent interactions,
respectively. The sign of the coefficients c1 plays an important
role in the spin dynamics. In this paper, we consider only the
ferromagnetic interaction c1 < 0.

B. Spin hydrodynamic equation

To prepare for the following sections, we introduce the spin
hydrodynamic equation derived from Eq. (1). This kind of
equation has been discussed in some papers [62–65]. Here,
we use the hydrodynamic equation derived by Yukawa and
Ueda [65]. This equation is composed of the equations of
the total density ρ, the superfluid velocity v, the spin vector
fμ = Fμ/ρ, and the nematic tensor nμν = ψ∗

m(N̂μν)mnψn/ρ,

with (N̂μν)mn = [(F̂μ)ml(F̂ν)ln + (F̂ν)ml(F̂μ)ln]/2 and v =
�(ψ∗

m∇ψm − ψm∇ψ∗
m)/2Mi.

In this paper, we consider the ferromagnetic interaction, so
that the macroscopic wave functions can be assumed to be
expressed by the fully spin-polarized state. Hence, the spin
vector and the nematic tensor satisfy the relation

nμν = δμν + fμfν

2
. (2)

This assumption is valid if the interaction c1 is negative and the
excitation to the system is not very strong. Then, by eliminating
the nematic tensor in the hydrodynamic equations of [65], we
obtain

∂

∂t
ρ + ∇ · ρv = 0, (3)

∂

∂t
ρfμ + ∇ · ρvμ = 0, (4)

vμ = fμv − �

2M
εμνλfν(∇fλ), (5)

∂

∂t
vμ + vν∇νvμ − �

2

2M2
∇μ

∇2
ν

√
ρ

ρ

+ �
2

4M2ρ
∇νρ{(∇μfλ)(∇νfλ) − fλ(∇μ∇νfλ)}

= − 1

M
{c0(∇μρ) + c1fν(∇μρfν)}. (6)

In the next section, we use these equations to investigate SWT
analytically.

III. APPLICATION OF WWT THEORY TO THE SPIN
HYDRODYNAMIC EQUATION

We apply WWT theory [36,37] to the spin hydrodynamic
equation, obtaining two power laws in the transverse spin
correlation function for the direct and inverse cascades,
respectively. In this derivation, we make use of the previous
result obtained in Ref. [52].

First, we derive the equation of motion for fluctuations of
the spin vector. Second, neglect of the spin-velocity and spin-
density interactions is shown to make Eq. (4) the Heisenberg
ferromagnetic equation, and we find that our SWT is equivalent
to the previous one [52]. Finally, we derive the power laws for
the transverse spin correlation function, which can be observed
experimentally.

A. Approximation of the spin hydrodynamic equation

In our SWT, there are weak fluctuations that cause the
ferromagnetic ground state to deviate from being a fully spin-
polarized state. To address these fluctuations, we decompose
the spin vector, total density, and velocity field into their
spatially averaged values and fluctuations as follows:

ρ = ρ̄ + δρ, (7)

fμ = f̄μ + δfμ, (8)

v = δv. (9)

Here, the spatially averaged values are defined by ρ̄ = 〈ρ〉V =
N/V and f̄μ = 〈fμ〉V , with the spatially averaged operation
〈· · · 〉V = ∫ · · · dV/V , total particle number N , and system
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volume V . These averaged quantities are independent of time
owing to the symmetry of the Hamiltonian for the spin-1 spinor
GP equation (1). In our case, the ground state is assumed to
be the fully spin-polarized state in the z direction, having
f̄μ = δμz.

Substituting these fluctuations into the spin hydrodynamic
equations (3)–(5) and retaining the spin-spin, spin-density, and
spin-velocity interaction terms, we obtain

∂

∂t
δfμ = I (s)

μ + I (ss)
μ + I (sd)

μ + I (sv)
μ , (10)

I (s)
μ = �

2M
εμνλf̄ν	δfλ, (11)

I (ss)
μ = �

2M
εμνλδfν	δfλ, (12)

I (sd)
μ =

[
�

2Mρ
εμνλfν(∇δfλ) · ∇

]
δρ, (13)

I (sv)
μ = −(δv · ∇)δfμ, (14)

where the terms I (a)
μ (a = s, ss, sd, and sv) are the spin-

linear, spin-spin interaction, spin-density interaction, and spin-
velocity interaction terms.

At present, we do not sufficiently understand which inter-
actions are dominant. This issue should depend on the initial
state, interaction parameters, and methods of excitation of the
system. However, in our SWT, we expect that the spin-spin
interaction is stronger than other interactions because (I) the
density fluctuation seems to be weak since the excitation to
the system is not very strong and the inequality c0 � |c1| is
satisfied, and (II) the velocity fluctuation is also expected to be
weak since the spin and density fluctuations are weak. Hence,
we may neglect the spin-density and spin-velocity interaction
terms in SWT. However, this is speculation; therefore, in
numerical calculations, we must confirm whether or not this
situation is satisfied.

Based on this speculation, we can neglect the spin-density
and spin-velocity interactions, deriving the equation of motion
for the spin vector fμ:

∂

∂t
fμ = �

2M
εμνλfν	fλ. (15)

Here, we use Eq. (8), changing the variable δfμ to fμ. This
equation is the same as the Heisenberg ferromagnetic or the
Landau-Lifshitz equation, which was originally used in solid
state physics [66].

In the previous study [52] WWT theory was applied to
Eq. (15) to study SWT in magnetic substances, allowing
investigation of the distribution of the spin wave and finding
the two power laws for the direct and inverse cascades.

B. Power laws in the spin-wave distribution

We briefly review some of the results obtained in [52],
wherein SWT in three-dimensional systems was theoretically
studied by applying WWT theory to Eq. (15). For this
application, it is necessary to transform Eq. (15) to the
canonical form. Then, the new complex variable a is usually

introduced as follows [36]:

f+ = fx + ify = a
√

2 − a∗a, (16)

f− = fx − ify = a∗√2 − a∗a, (17)

fz = 1 − a∗a, (18)

which is the classical version of the Holstein-Primakoff
transformation. These are the canonical variables obeying

i�
∂

∂t
a = δW

δa∗ , (19)

W = �
2

4M

∫
(∇μfν)2dV. (20)

In SWT, the amplitude of |a|2 is much smaller than unity,
so we can expand W with the power of the canonical variable
a. Retaining the leading interaction between the spin waves,
we obtain

W = W0 + W1, (21)

W0 = �
2

2M

∫
|∇a|2dV, (22)

W1 = �
2

8M

∫
[a2(∇a∗)2 + (a∗)2(∇a)2]dV. (23)

To consider the dynamics in wave-number space, we per-
form a Fourier transformation on the canonical equation (19),
obtaining

i�
∂

∂t
â(k) = ∂H

∂â∗(k)
, (24)

with the Fourier component â(k) = F[a](k) = ∫
a(r)

exp(−ik · r)dV/V . The Hamiltonian of the spin wave is given
by

H = H0 + H1, (25)

H0 =
∑

k1

ε(k1)|â(k1)|2, (26)

H1 = 1

2

∑
k1,k2,k3,k4

W
1,2
3,4 δ

1,2
3,4 â

∗(k1)â∗(k2)â(k3)â(k4), (27)

W
1,2
3,4 = − �

2

4M
[(k1 · k2) + (k3 · k4)], (28)

where δ
1,2
3,4 = δ(k1 + k2 − k3 − k4) and ε(k) = �

2k2/2M are
the Kronecker δ and the excitation energy for the spin wave,
respectively.

We focus on the distribution of the spin wave, which is
defined by

n(k) =
(

L

2π

)d

〈|â(k)|2〉en, (29)

with system size L and system dimension d = 3. Here the
angular brackets 〈· · · 〉en mean the ensemble average. Using
WWT theory, we derive the kinetic equation of the spin wave
as

∂

∂t
n(k) =

∫
Rk,1

2,3dk1dk2dk3, (30)
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Rk,1
2,3 = 4π

∣∣Wk,1
2,3

∣∣2
δd

(
ε

k,1
2,3

)
δd

k,1
2,3

× n(k1)n(k2)n(k3)n(k)

×
(

1

n(k)
+ 1

n(k1)
− 1

n(k2)
− 1

n(k3)

)
. (31)

Here, the abbreviations for the Dirac delta function δd

are defined by δd
k,1
2,3 = δd(k + k1 − k2 − k3) and δd(εk,1

2,3 ) =
δd(ε(k) + ε(k1) − ε(k2) − ε(k3)).

In the previous study [52] this equation was utilized to
obtain two power laws in three-dimensional SWT:

n(k) ∝
{
k−13/3 (direct cascade),
k−11/3 (inverse cascade).

(32)

In SWT, the interaction between the spin waves is a four-
wave interaction, so the action of the spin wave is conserved.
Thus, the usual Fjørtoft argument [36,37,67] described in the
Appendix leads to the direct cascade for the spin-wave energy
and the inverse cascade for the action of the spin wave.

We can easily extend this result to SWT in the two-
dimensional system, obtaining

n(k) ∝
{
k−4/3−d (direct cascade),
k−2/3−d (inverse cascade),

(33)

with d = 2,3. The locality of these power laws can be
confirmed by the result of [68].

C. Power laws in the transverse spin correlation function

In experiments, the spin-density vector can be observed by
the phase-contrast imaging method [3,40,59]. Thus, we focus
on the correlation function of the spin-density vector in SWT,
defining the transverse spin correlation function:

C(s)
xy (k) = 1

	k

∑
k−	k/2�|k1|<k+	k/2

〈|F̂x(k1)|2 + |F̂y(k1)|2〉en,

(34)

with 	k = 2π/L and the Fourier component F̂μ(k)=
F[Fμ](k)(μ=x,y,+,−). In our case, F̂+(k) ∼ √

2ρ̄â(k) is
approximately satisfied, which leads to

F̂+(k)F̂−(k) ∝ |â(k)|2. (35)

Thus, we obtain

C(s)
xy (k) ∝

{
k−7/3 (direct cascade),
k−5/3 (inverse cascade).

(36)

In contrast to Eq. (33), these are independent of the system
dimension d because of the integration over the solid angle.

IV. NUMERICAL CALCULATION FOR SWT

We now present our numerical results for SWT in a
two-dimensional uniform system using the GP equation. Our
numerical calculations are performed for the direct and inverse
cascades in SWT, respectively. In the calculation for the inverse
cascade, to induce the mode transfer from the high-wave-
number to the low-wave-number region, we use the initial
state where the energy is injected into the high-wave-number
region. In contrast, in the calculation for the direct cascade, the

state into which the energy is injected in the low-wave-number
region is adopted as the initial state.

A. SWT for the inverse cascade

1. Numerical conditions and method

Our calculation addresses the ferromagnetic spin-1 spinor
BEC in a two-dimensional system whose system size L × L is
256ξ × 256ξ with ξ = �/

√
2Mc0ρ̄. We set the spatial resolu-

tion as dx/ξ = 1. The time resolution is dt/τ = 2 × 10−3 with
τ = �/c0ρ̄. The interaction parameters are taken to be c0 > 0,
c1 < 0, and |c0/c1| = 20. In this situation, we numerically
solve the GP equation (1) by using the pseudospectral method.

We describe how to prepare the initial state. To confirm
the inverse cascade, the energy should be injected into the
initial state in the high-wave-number region. Then we adopt
the following state as the initial state:

⎛
⎜⎝

ψ1(r)

ψ0(r)

ψ−1(r)

⎞
⎟⎠ = √

ρ̄eiφ(r)

⎛
⎜⎜⎝

e−iα(r)cos2 β(r)
2

1√
2
sinβ(r)

eiα(r)sin2 β(r)
2

⎞
⎟⎟⎠, (37)

F[α](k) = p1(R1 + iR2)exp[−{(kξ − 0.4)/0.2}2], (38)

F[β](k) = p2(R3 + iR4)exp[−{(kξ − 0.4)/0.2}2], (39)

φ(r) = α(r), (40)

where Ri (i = 1–4) are random numbers in the range
[−0.5,0.5). The functions α and β denote the azimuthal and
elevation angles, respectively, for the spin-density vector, and
φ is the phase of the wave function. Because of spin-gauge
symmetry in the ferromagnetic state, φ also contains an
angle related to the rotation around the spin-density-vector
axis. The parameters p1 and p2 are set to be 〈fz〉V ∼ 0.95,
max [α] ∼ 180, and min [α] ∼ −180.

Let us comment on Eq. (40). In the ferromagnetic state, the
superfluid velocity is expressed by

v = �

M
[∇φ − cosβ∇α], (41)

from which we find that the gradients of α and φ induce the
velocity field. Thus, if the relation of Eq. (40) is not satisfied,
the system has a large velocity field, which can cause strong
spin-density and spin-velocity interactions. This can disturb
the assumption used to derive the power laws of Eq. (36).
Hence, to reduce these interactions, we choose Eq. (40).

2. Numerical results

Figure 1 shows the time development of the spin-density
vector F. Figure 1(a) is for the x component of the spin-
density vector in the initial state and shows that Fx has the
spatially finer structure corresponding to the energy injection
in the high-wave-number region. As time passes, large-scale
structure [Figs. 1(b) and 1(c)] appears, which reflects the
inverse cascade. In Fig. 1(d), we plot the spin-density vector
corresponding to Fig. 1(c), from which the spin-density vector
is found to point in the z direction and fluctuate around it.

We numerically calculate the transverse spin correlation
functions, showing their time development in Fig. 2. In the
initial state, the correlation function has a large value in
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(a) t/τ = 0

(c) t/τ = 19000

(b) t/τ = 9000

−0.60

0.60

Fx/ρ̄

x

y

(d) t/τ = 19000

xy
z

FIG. 1. Time development of the spin-density vector F in SWT
for the inverse cascade. We plot the spatial distribution of Fx at
t/τ = (a) 0, (b) 9000, and (c) 19 000. (d) is the spatial profile of F
corresponding to (c). The size of the figures is 256ξ × 256ξ . These
figures show that a larger structure appears as time passes, which
reflects the inverse cascade.

the wave-number region near kξ = 0.4, whose wavelength
is comparable to the characteristic size of Fx in Fig. 1(a).
In the early stage of the dynamics, the inverse cascade leads
to the growth of C(s)

xy in the wave-number region lower than
kξ = 0.4, and the −5/3 power law appears only in the region
near kξ = 0.4. As sufficient time passes, the scaling region
with the −5/3 power law becomes wide and finally reaches
0.08 � kξ � 0.6. This behavior is consistent with Eq. (36) for
the inverse cascade predicted by WWT theory.

To investigate our SWT in detail, we check whether or
not our approximations used to derive Eq. (36) are satisfied.
The important approximations are (i) the assumption of
a ferromagnetic state, (ii) the smallness of the canonical

C
(s

)
x
y
( k

)/
ρ̄
2
ξ

10-4

10-3

10-2

10-1

100

 0.1  1

k−5/3

kξ

t/τ = 0

= 5000

= 9000

= 19000

FIG. 2. Time development of the transverse spin correlation
function in SWT for the inverse cascade. The black solid line in the
range [0.08,0.6] exhibits a k−5/3 power law. The spectra are averaged
over five calculations with different initial noise components.

0.020

0.025

0.030

0.035

0.040

0.045

0.050

 0  9000  18000  27000
0.970

0.975

0.980

0.985

0.990

0.995

1.000

 0  9000  18000  27000

t/τ

f
V

(a) (b)

t/τ

a
|2

V

FIG. 3. Time development of (a) the spatial average of the spin
amplitude, 〈| f |〉V , and (b) the spatial average of the canonical
variable, 〈|a|2〉V , which satisfy approximations (i) and (ii).

variables, and (iii) the weakness of the spin-density interaction
I sd
μ and spin-velocity interaction I sv

μ .
To confirm (i), the amplitude | f | of the spin-density vector

is calculated; it should be unity in the fully ferromagnetic state.
Figure 3(a) shows the time development of its spatial average
and indicates that the system almost becomes a ferromagnetic
state. For (ii), we calculate the amplitude |a|2 of the canonical
variables defined by Eqs. (16)–(18), confirming that its
spatially averaged value is much smaller than unity, as shown
in Fig. 3(b). To check (iii), we define the following quantities:

Aa
μ(k) = 1

	k

∑
k−	k/2�|k1|<k+	k/2

∣∣F[
I (a)
μ

]
(k1)

∣∣, (42)

with a = s, ss, sd, and sv and μ = x,y,z. Figure 4 shows
the numerical results for Aa

μ(k) at t/τ = 19 000 when the
−5/3 power law appears over a wide interval. These figures
show that the spin-density interaction I sd

μ and spin-velocity
interaction I sv

μ are slightly weaker than the spin-spin
interaction I ss

μ in the scaling region 0.08 � kξ � 0.6. In
summary, our calculation basically satisfies approximations
(i), (ii), and (iii). However, for (iii), the spin-density and
spin-velocity interactions are not very weak. At present, we
do not sufficiently understand why the influence of density
and velocity does not disturb the −5/3 power law.

In comparison with As
μ(k), Ass

μ (k) is found to be weak in the
region higher than kξ ∼ 0.15, which corresponds to smallness
of the canonical variable a. However, in the low-wave-number
region kξ � 0.15, the strength of the spin-spin interaction
term is larger than that of the spin-linear term, so WWT
becomes invalid. Actually, in this region, the −5/3 power law
seems to be disturbed, as shown in Fig. 2. Thus, we conclude
that the scaling region with the −5/3 power law is about
0.15 � kξ � 0.60.

Finally, we describe the dynamics at t/τ > 19 000. The
transferred mode accumulates in the low-wave-number region
because any dissipation mechanism is not included in our
numerical calculation. This can disturb the −5/3 power law.
Actually, in the low-wave-number region, the correlation
function is found to tend to deviate from the −5/3 power
law when sufficient time has passed.

3. Dependence on initial conditions

We describe how the −5/3 power law depends on the initial
state. In our calculation, as long as we use an initial state with
energy injection in the wave-number region 0.2 � kξ � 0.8,
the −5/3 power law appears. If we inject the energy into an
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FIG. 4. Wave-number dependence of Aa
μ (a = s, ss, sd, and sv;

μ = x,z) at t/τ = 19 000. From the rotational symmetry about the z

axis, the behavior of Aa
y is the same as that of Aa

x . These graphs show
that the spin-density and spin-velocity interaction terms are slightly
smaller than the spin-spin interaction.

initial state in the wave-number region higher than 0.9/ξ , the
numerical precision is poor, so we cannot investigate the −5/3
power law in this case.

B. SWT for the direct cascade

1. Numerical conditions and method

The numerical setting for the direct cascade is the same as
that of the inverse cascade except for the system size, numerical
resolution, and initial state. The system size is 64ξ × 64ξ and
the resolution is given by dx/ξ = 0.25 and dt/τ = 4 × 10−3.
For the initial state, in contrast to the inverse cascade, it is
necessary for the energy to be injected into an initial state in
the low-wave-number region. Then we use Eq. (37) and the
following angles as the initial state:

F[α](k) = p1(R1 + iR2)exp[−(kξ/0.2)2], (43)

F[β](k) = p2(R3 + iR4)exp[−(kξ/0.2)2], (44)

φ(r) = α(r). (45)

The parameters p1 and p2 are set to be 〈fz〉V ∼0.95, max [α] ∼
180, and min [α] ∼ −180.

(a) t/τ = 0

(c) t/τ = 50000

(b) t/τ = 13000

−0.60

0.60

Fx/ρ̄

x

y

(d) t/τ = 50000

xy
z

FIG. 5. Time development of the spin-density vector F in SWT
for the direct cascade. We plot the spatial distribution of Fx at t/τ =
(a) 0, (b) 13 000, and (c) 50 000. (d) is the spatial profile of F
corresponding to (c). The size of the figures is 64ξ × 64ξ . These
figures show that finer structure appears as time passes, which reflects
the direct cascade.

2. Numerical results

Figure 5 shows the time development of the spin-density
vector F. As shown in Fig. 5(a), the profile of Fx in the
initial state has a spatially large structure, which reflects
the energy injection into the low-wave-number region. As
time passes, finer structure appears in Figs. 5(b) and 5(c),
which is caused by the nonlinear terms because these terms
generate interactions between different modes in the wave-
number space. In Fig. 5(d), we plot the spin-density vector
corresponding to Fig. 5(c), from which fz is found to have
values near unity.

As in the case for the inverse cascade, we numerically
calculate the transverse spin correlation function. Figure 6
shows the time development of this correlation function. In
the initial state, the correlation function has a large value only
in the low-wave-number region, which corresponds to energy
injection into the low-wave-number region. In the early stage
of the dynamics, the spin wave in the low-wave-number region
is transferred to the high-wave-number region, increasing the
high-wave-number component of C(s)

xy , which reflects the direct
cascade of the spin-wave energy. As time passes, the −7/3
power law appears in the region 1.0 � kξ � 3.0. Although
the scaling region is not wide, this behavior is consistent with
Eq. (36) for the direct cascade predicted by WWT theory.

We note the deviation from the −7/3 power law in the
low-wave-number region kξ � 1.0 in Fig. 6. We suspect that
this may be caused by the inverse cascade. As described
in the Appendix, when the spin-wave energy is transferred
into the high-wave-number region, the spin-wave action is
simultaneously transferred into the low-wave-number region.
However, in the initial state, the wave action is sufficiently
accumulated in the low-wave-number region, so that the
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FIG. 6. Time development of the transverse spin correlation
function in SWT for the direct cascade. The black solid line in the
range [0.1,3.0] exhibits a k−7/3 power law. The spectra are averaged
over five calculations with different initial noise components.

inverse cascade may be suppressed. Thus, this obstruction of
the inverse cascade may lead to deviation from the −7/3 power
law in the low-wave-number region.

In the same way as for the inverse cascade, we also confirm
the validity of the three approximations used for the derivation
of Eq. (36): (i) the assumption of a ferromagnetic state, (ii)
the smallness of canonical variables, and (iii) the weakness of
the spin-density interaction I sd

μ and spin-velocity interaction
I sv
μ . Figures 7(a) and 7(b) obviously show the validity of (i)

and (ii). For (iii), from Fig. 8, we find that the spin-density
interaction and spin-velocity interaction are weaker than the
spin-spin interaction, so approximation (iii) is satisfied. Also,
the spin-linear term is larger than the spin-spin interaction,
which means that WWT is realized.

Finally, we describe the dynamics at t/τ > 50 000. In our
numerical calculation, we do not add any dissipation terms
to Eq. (1), so that the transferred energy accumulates in the
high-wave-number region, which disturbs the −7/3 power
law. Actually, we numerically confirm that, in the high-wave-
number region, the correlation function tends to deviate from
the −7/3 power law when sufficient time has passed.

3. Dependence on initial conditions

We discuss how the −7/3 power law depends on the initial
state. When we use a larger system size and prepare the initial
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FIG. 7. Time development of (a) the spatial average of the spin
amplitude, 〈| f |〉V , and (b) the spatial average of the canonical
variable, 〈|a|2〉V . These graphs show that the system is almost in
a fully ferromagnetic state with a small spin-wave amplitude, which
satisfies approximations (i) and (ii).
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FIG. 8. Wave-number dependence of Aa
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μ = x,z) at t/τ = 50 000. From the rotational symmetry about the z

axis, the behavior of Aa
y is the same as that of Aa

x . These graphs show
that the spin-density and spin-velocity interaction terms are weaker
than the spin-spin interaction.

state with energy injection into the low-wave-number region,
the direct cascade does not appear clearly. We expect that, in
this case, because the wave number of the excited spin wave
is too low, it takes much time to transfer the mode from the
low-wave-number to the high-wave-number region. Thus, to
see the −7/3 power law for the direct cascade in numerical
calculations, it seems to be necessary to prepare the situation
described in Sec. IV B.

V. COMMENTS ON EXPERIMENTAL OBSERVATION
OF POWER LAWS IN SWT

We discuss the possibility of observing the −7/3 and −5/3
power laws for direct and inverse cascades experimentally. In
atomic BECs, in contrast to solid state physics, the spatial
distribution of the spin-density vector is observable [3,40,59].
Thus, these power laws may be observed too. However, as
noted in the following discussion, the experimental observa-
tion of Eq. (36) requires further investigation for SWT.

Essential issues for observing the power laws in SWT are
(A) a method to generate SWT, (B) the effect of inhomogeneity
induced by the trapping potential, and (C) the establishment
of a wide scaling region for the power laws.

First, we discuss the issue (A). In our numerical calculation,
we artificially prepare the initial state by using a random
number, but experiments must use some realistic method to
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excite the system. For the observation of the −5/3 power law,
it is necessary to excite the spin wave in the high-wave-number
region. In this case, a candidate for this excitation method
would be oscillation of a localized obstacle such as a Gaussian
potential with small radius. On the other hand, as for the −7/3
power law, we must excite the spin wave in the low-wave-
number region. Thus, candidates for the excitation methods
are considered to be the oscillation of the trapping potential or
the oscillation of a localized obstacle with a large radius. In
both cases, the wave number and amplitude of the spin wave
excited should depend on the frequency and amplitude of the
oscillation of the obstacle or the trapping potential, so detailed
investigation of what is caused by these excitations is required.

Second, the issue (B) is discussed. In experiments on
cold atomic gases, the atoms composing the system are
captured by a trapping potential such as a harmonic potential,
which generates an inhomogeneous density profile. Thus, this
inhomogeneity may disturb the power laws of Eq. (36) because
these are theoretically derived in a uniform system without
any trapping potential as shown in Sec. III. Currently, we
expect that, if the system size, e.g., the Thomas-Fermi radius,
is larger than the scaling region with power laws, the influence
of the inhomogeneity on these power laws may be weak. To
confirm this speculation, a numerical calculation for SWT in
the trapping potential is needed.

Third, we argue the issue (C). In the usual experiments, the
spatial resolution for the phase-contrast imaging [3,59] is of
the order of 1 μm, so that it should be much smaller than the
length scale corresponding to the scaling region with power
laws. In our numerical calculation, we use the relation λ =
2π/k and the typical coherence length ξ = 0.5 μm, finding
that the length scale for the inverse cascade is about 5.2 � λ �
20.9 μm, corresponding to the scaling region 0.15 � kξ �
0.6, and that for the direct cascade is about 1.0 � λ � 3.1 μm,
corresponding to 1 � kξ � 3. Therefore, the power law for the
inverse cascade may be experimentally observable, but that for
the direct cascade may be difficult to observe.

Finally, we comment on the interaction parameter in our nu-
merical calculation. The typical experiment on ferromagnetic
spin-1 spinor BECs uses 87Rb with the interaction parameter
|c0/c1| ∼ 200. However, in the numerical calculation, we use
|c0/c1| = 20 since the ferromagnetic state is hard to break.
Thus, to confirm whether or not these power laws appear
in experiments, we must perform a numerical calculation
supposing the realistic situation.

In summary, for simplicity, our numerical calculation
addresses a spin-1 spinor BEC in an unrealistic situation, so
that we cannot conclude whether or not the power laws in SWT
are observable. Thus, to clarify the possibility of experimental
observation for the power laws in SWT, a detailed numerical
calculation assuming the experimental situation is required.

VI. CONCLUSION

We have analytically and numerically studied SWT in a
uniform ferromagnetic spin-1 spinor BEC at zero temperature
by using the spinor GP equations. We have derived the −7/3
and −5/3 power laws for the direct and inverse cascades in
the transverse spin correlation function by using the previous
result [52]. Our numerical calculation of the spinor GP

equation has yielded a numerical result consistent with these
power exponents, although the scaling region with the power
laws is not very wide. Also, we checked whether or not the
approximations used to derive the power laws were valid.
Finally, we discussed the experimental observation of the
power laws.
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APPENDIX: FJØRTOFT ARGUMENT

We describes the Fjørtoft argument [36,37,67]. In SWT,
there are two conserved quantities defined by

E =
∑

k

E(k) =
∑

k

ε(k)n(k) (A1)

and

N =
∑

k

n(k), (A2)

which are the spin-wave energy E and action N . The dispersion
relation ε(k) is given by �

2k2/2M . Let us consider the situation
shown in Fig. 9, where only a spin wave with a wave number
k0 is initially excited. After development in time, the spin wave
is supposed to be redistributed into two spin waves with two
wave numbers k0/2 and 2k0. Through this dynamics, Eqs. (A1)
and (A2) are independent of time, which leads to

E(k0) = E(k0/2) + E(2k0), (A3)

n(k0) = n(k0/2) + n(2k0). (A4)

k0

n
(k

)

E(
k
)
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n
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E(
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Time development

n(k0)
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FIG. 9. Fjørtoft argument. The two conserved quantities restrict
the dynamics, leading to the direct and inverse cascades (see text).
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We solve these coupled equations, obtaining

n(k0/2) = 2
5n(k0), (A5)

n(2k0) = 1
5n(k0), (A6)

E(k0/2) = 1
5E(k0), (A7)

E(2k0) = 4
5E(k0). (A8)

This result shows that the spin-wave energy is transferred from
the low- to the high-wave-number region and vice versa for
the spin-wave action. Thus, direct and inverse cascades can
occur in SWT because of the existence of the two conserved
quantities. This discussion is called the Fjørtoft argument.
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