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We address the problem of computing the thermodynamic properties of the repulsive one-dimensional two-
component Fermi gas with contact interaction, also known as the Gaudin-Yang model. Using a specific lattice
embedding and the quantum transfer matrix we derive an exact system of only two nonlinear integral equations
for the thermodynamics of the homogeneous model which is valid for all temperatures and values of the
chemical potential, magnetic field, and coupling strength. This system allows for an easy and extremely accurate
calculation of thermodynamic properties circumventing the difficulties associated with the truncation of the
thermodynamic Bethe ansatz system of equations. We present extensive results for the densities, polarization,
magnetic susceptibility, specific heat, interaction energy, Tan contact, and local correlation function of opposite
spins. Our results show that at low and intermediate temperatures the experimentally accessible contact is
a nonmonotonic function of the coupling strength. As a function of the temperature the contact presents a
pronounced local minimum in the Tonks-Girardeau regime which signals an abrupt change of the momentum
distribution in a small interval of temperature. The density profiles of the system in the presence of a harmonic
trapping potential are computed using the exact solution of the homogeneous model coupled with the local
density approximation. We find that at finite temperature the density profile presents a double shell structure
(partially polarized center and fully polarized wings) only when the polarization in the center of the trap is above
a critical value which is monotonically increasing with temperature.
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I. INTRODUCTION

The Gaudin-Yang model [1,2], which describes one-
dimensional (1D) spin- 1

2 fermions interacting via a δ-function
potential has a long and distinguished history being the subject
of theoretical investigations for more than 50 years [3]. This ex-
perimentally realized model [4,5] not only presents an incredi-
bly rich physics of which we mention Tomonaga-Luttinger [6]
and incoherent spin Luttinger liquids [7–10], Bardeen-Cooper-
Schrieffer [11,12] and Fulde-Ferrel-Larkin-Ovchinnikov–like
pairing, spin-charge separation, Fermi polarons [13], and
quantum criticality and scaling [14], but is also amenable to an
exact solution which allows for a parameter-free comparison
of theory and experiment. From the historical point of view, the
Gaudin-Yang model, also known as the two-component Fermi
gas (2CFG), was the first multicomponent system solved by
the nested Bethe ansatz (BA). (The particular cases of one
and two particles with spin up in a sea of opposite spins were
considered in [13,15].) The thermodynamics of the 2CFG in
the framework of the thermodynamic Bethe ansatz (TBA) was
derived independently by Takahashi and Lai [16–18]. The
experimental advances of the last 20 years in the field of
ultracold atomic gases which allowed for the creation and
manipulation of 1D multicomponent systems renewed the
interest in such models, which were investigated further using
a large variety of exact and approximate methods [19–26].

At zero temperature the ground state in the thermodynamic
limit of the Gaudin-Yang model is characterized by a system
of two Fredholm integral equations whose solution allows one
to derive the phase diagram [23–25]. The situation at finite
temperature is much more complicated. This is due to the
fact that the application of TBA produces an infinite system
of nonlinear integral equations which are very difficult to
investigate, even numerically. This is the main reason why

the vast majority of results regarding the thermodynamic
behavior of the 2CFG found in the literature are restricted
to a small region of the relevant parameters (temperature,
chemical potential, magnetic field, and coupling strength).
Even though numerical schemes to treat the TBA equations
have been developed [27–30], the need for an efficient
thermodynamic description of multicomponent 1D systems
cannot be overstated.

In this paper we address this problem by deriving a
system of only two integral equations characterizing the
thermodynamics of the repulsive Gaudin-Yang model which is
valid for all values of the physical parameters and from which
physical information can be easily extracted numerically. We
employ the same method we have used in the case of the two-
component Bose gas [31,32], which utilizes the fact that the
2CFG can be obtained as the scaling limit of the Perk-Schultz
spin chain with a specific grading [33–38] and the quantum
transfer matrix [39–43]. The largest eigenvalue of the quantum
transfer matrix gives the free energy of the associated lattice
model, which means that by performing the same scaling
limit we obtain the grand-canonical potential of the continuum
model. In the homogeneous case we present extensive results
for the densities, polarization, susceptibility, specific heat, Tan
contact, and local correlation function of opposite spins for a
wide range of coupling strengths, temperatures, and chemical
potentials. We find that, for T > 0 and any value of the
polarization, the contact [44–51] is a nonmonotonic function of
both coupling strength and temperature. The implication of this
unusual behavior can be more easily understood if we take into
account that for δ-function interactions, the contact C controls
the tail of the momentum distribution via ñ(k) ∼ C/k4 with
k → ∞. The local maxima or minima of the contact result in
abrupt changes of ñ(k), which can be experimentally detected,
and can be used for accurate thermometry. The reconstruction
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of the momentum distribution as a function of the temperature
for the balanced impenetrable system was first described by
Cheianov et al. in [52].

The experimentally relevant situation in which the system
is subjected to an external harmonical potential is treated
using the local density approximation [23–25,53] and the
solution of the homogeneous system. Compared with the
zero-temperature case [25], at low temperatures the density
profiles present a double shell structure with a partially
polarized center and polarized wings only if the polarization
at the center of the trap is above a critical value which depends
on the temperature. As we increase the temperature eventually
the entire system becomes partially polarized.

The plan of the paper is as follows. In Sec. II we introduce
the Gaudin-Yang model and present the zero- and finite-
temperature Bethe ansatz solution. The new thermodynamic
description of the model is introduced in Sec. III. Numerical
data for the densities, polarization, susceptibility, specific heat,
and Tan contact are reported in Secs. IV and V. The density
profiles are investigated in Sec. VI. The derivation of the
nonlinear integral equations from the similar result for the
Perk-Schultz spin chain is performed in Secs. VII, VIII, and
IX. The solution of the generalized Perk-Schultz model can be
found in Appendix A.

II. THE GAUDIN-YANG MODEL

The Gaudin-Yang model [1,2] describes one-dimensional
spin- 1

2 fermions interacting via a δ-function potential and
represents the natural extension in the fermionic case of
the Lieb-Liniger model [54]. In the second quantization the
Hamiltonian reads

HGY =
∫ LF

0
dx

[
�

2

2m
(∂x�

†∂x�) + g

2
: (�†�)2 :

+ [V (x) − μ](�†�) − H (�†σz�)

]
, (1)

where � = (�↑(x)
�↓(x)), �† = (�†

↑(x) �
†
↓(x)), σz = (1 0

0 −1) ,
V (x) is the trapping potential, μ is the chemical potential,
H the magnetic field, and we consider periodic boundary
conditions on a segment of length LF . �↑,↓(x) are fermionic
fields which satisfy the canonical anticommutation relations
{�a(x),�†

b(y)} = δa,bδ(x − y). In (1) the symbol : : denotes
normal ordering. The coupling constant g = �

2c/m can be
positive or negative corresponding to repulsive or attractive
interactions. In this paper we will consider only the repulsive
case g > 0. Due to the spin-independent interaction, the
Zeeman term in the Hamiltonian (1) is a conserved quantity.
In the following it will be preferable to use units of � =
2m = 1 and introduce the dimensionless coupling constant
γ = c/n = −2/(a1Dn), where n is the density of the system
and a1D the scattering length. In terms of this coupling
constant the strong-coupling regime is defined as γ � 1 and
the weak-coupling regime as γ � 1.

The Gaudin-Yang model is exactly solvable only when
V (x) = 0. However, in the case of a sufficiently shallow trap,
the system can be considered locally homogeneous and the
local density approximation (LDA) [23–25,53] can be used.
The LDA coupled with the solution of the homogeneous
system allows for accurate predictions of the density profiles,
which will be computed in Sec. VI. Therefore, we will first
present the solution in the V (x) = 0 case. For a system with M

particles of which M↑ have spin up and M↓ have spin down,
the energy spectrum of the homogeneous system is [1,2]

EGY =
M∑

j=1

ē0
(
k

(1)
j

) − H (M↑ − M↓), ē0(k) = k2 − μ,

(2)

where the charge and spin rapidities {k(1)
j },{k(2)

j } satisfy the
Bethe ansatz equations (BAEs)

eik
(1)
s LF =

M↓∏
p=1

k(1)
s − k(2)

p + ic/2

k
(1)
s − k

(2)
p − ic/2

, s = 1, . . . ,M, (3a)

M∏
j=1

k
(2)
l − k

(1)
j + ic/2

k
(2)
l − k

(1)
j − ic/2

=
M↓∏

p = 1
p 	= l

k
(2)
l − k(2)

p + ic

k
(2)
l − k

(2)
p − ic

, l = 1, . . . ,M↓. (3b)

The solution at finite temperature is a very difficult task to
accomplish even though the system is integrable. Assuming
the string hypothesis, Takahashi and Lai [16–18] obtained for
the grand-canonical potential (β = 1/T with T the tempera-
ture) φT BA(β,μ,H ) = − 1

2πβ

∫ +∞
−∞ dk ln[1 + ζ (k)], with ζ (k)

satisfying the following infinite system of nonlinear integral
equations (NLIEs):

ln ζ (k) = −β(k2 − μ) + R ∗ ln[1 + ζ (k)]

+ f ∗ ln[1 + η1(k)], (4a)

ln η1(k) = f ∗ {ln[1 + η2(k)] − ln[1 + ζ (k)]}, (4b)

ln ηn(k) = f ∗ {ln[1 + ηn−1(k)] + ln[1 + ηn+1(k)]},
n = 2, . . . ,∞, (4c)

together with the asymptotic condition limn→∞ ln ηn(k)/n =
2βH . In Eqs. (4), which are also known as the ther-
modynamic Bethe ansatz equations, the asterisk de-
notes the convolution g ∗ h(k) ≡ ∫ +∞

−∞ g(k − k′)h(k′) dk′,
f (k) = 1/[2c cosh(πk/c)], R(k) = b1 ∗ f (k) with b1(k) =
c/{2π [(c/2)2 + k2]}. It is clear that extracting physically
relevant information from the TBA equations is very hard,
even from the numerical point of view. In general, numeri-
cal implementations require the truncation of the equations
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after a certain level, an approximation which introduces
uncontrollable errors, especially in the intermediate- and
high-temperature regime.

III. EFFICIENT THERMODYNAMIC DESCRIPTION OF
THE REPULSIVE GAUDIN-YANG MODEL

A similar situation is encountered in the case of the
one-dimensional two-component repulsive Bose gas (2CBG).
Using a lattice embedding and the quantum transfer matrix in
[31,32], we derived a simple system of two NLIEs character-
izing the thermodynamics of the 2CBG, which circumvents
the problems associated with the TBA equations. The same
method can be applied in the case of the Gaudin-Yang model
(the derivation is presented in Secs. VIII and IX), obtaining
for the grand-canonical potential per length

φ(β,μ,H ) = − 1

2πβ

∫
R

ln[1 + a1(k)] + ln[1 + a2(k)] dk,

(5)

where a1,2(k) are auxiliary functions satisfying (ε → 0)

ln a1(k) = − β(k2 − μ − H ) +
∫
R

KF
2 (k − k′ − iε)

× ln[1 + a2(k′)] dk′, (6a)

ln a2(k) = − β(k2 − μ + H ) +
∫
R

KF
1 (k − k′ + iε)

× ln[1 + a1(k′)] dk′, (6b)

and

KF
1 (k) = 1

2π

c

k(k + ic)
, KF

2 (k) = 1

2π

c

k(k − ic)
. (7)

We would like to stress that this system of equation is
exact and valid for all values of chemical potential, magnetic
fields (including the balanced case H = 0), positive coupling
strengths, and temperature. We also note that (6) differs from
the result for the 2CBG derived in [31] by dropping the
diagonal terms.

In the left panel of Fig. 1 we present results for the
temperature dependence of the grand-canonical potential
of a system with μ = 10 and H = 5, showing how for
increasing values of the coupling strength c = {1,10,50},
we approach Takahashi’s result for impenetrable particles
[16,17]:

φ∞(β,μ,H ) = − 1

2πβ

∫
R

dk ln[1 + 2 cosh(βH )e−β(k2−μ)].

(8)

A comparison between the grand-canonical potential for a
system with c = 1 and μ = 1 computed using Eq. (5) and
the TBA equations (4) truncated at the n = 30 level can be
found in the right panel of Fig. 1. The results show almost
perfect agreement, which not only confirms the validity of our
results but also supports the string hypothesis in the case of
the repulsive Gaudin-Yang model.

FIG. 1. (Left panel) Temperature dependence of the grand-
canonical potential calculated using Eq. (5) for μ = 10,H = 5 and
c = 1 (dotted black line), c = 10 (dashed black line), and c = 50
(black line). In the limit of impenetrable particles we reproduce
Takahashi’s result (8) (dashed red line). (Right panel) Relative error
|φ − φT BA|/|φ| with φ the grand-canonical potential given by Eq. (5)
and φT BA calculated from the TBA equations (4) for c = 1,μ = 1
and magnetic fields H = {0.01,0.1,0.5}. Grand-canonical potential
per length and temperature in units of φ0 and T0 [55].

In the noninteracting limit, c → 0, using limc→0 KF
2 (k −

iε) = limc→0 KF
1 (k + iε) = 0 it is easy to show that (5)

reduces to φ0(β,μ,H ) = 1
2πβ

∫
R ln(1 + e−β(k2−μ−H )) +

ln(1 + e−β(k2−μ+H ))dk, which, as expected, is the result for
free fermions in a magnetic field.

IV. THERMODYNAMIC PROPERTIES OF THE
HOMOGENEOUS SYSTEM

Despite being the first multicomponent model solved by
Bethe ansatz at zero and finite temperature, our knowledge of
the thermodynamic properties of the Gaudin-Yang model is
still very limited. Fueled by the interest in the Fulde-Ferrell-
Larkin-Ovchinnikov (FFLO) pairing phase, the case of attrac-
tive interactions has received more attention [23,24,56–58],
but even in this case a complete characterization of the
thermodynamical properties is still lacking. The situation is
even more dire in the repulsive case. The phase diagram
at T = 0 was derived by Colomé-Tatché [25] and the low-
temperature strong-coupling regime was investigated by Lee
et al. [26]. The main reason behind this information scarcity
is the complexity of the TBA equations and other methods
used in the investigation of thermodynamic properties, like
the Monte Carlo lattice calculations, which require rather
cumbersome numerical schemes in order to obtain accurate
numerical data. In contrast, our equations (6) can be accurately
and easily solved employing a simple iterative procedure with
the convolutions treated using the fast Fourier transform and
the convolution theorem. This scheme allows us to probe a
wide region of the parameter space, with the exception of the
low polarization at the low-temperature regime (H � μ and
T → 0). This regime requires a more careful treatment of the
NLIEs, which will be deferred to a future publication.

In Fig. 2 we present for several values of the magnetic
field the dependence on the reduced temperature τ = T/Td =
T/n2 of the densities n↑,↓, polarization P , magnetic suscepti-
bility χ , and specific heat cV , which can be derived from the
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FIG. 2. Plots of the polarization (first row), densities of spin-up and spin-down particles (second row), susceptibility per length normalized
by n/Td (third row), and specific heat per length normalized by nkB (bottom row) as functions of the reduced temperature τ = T/Td = T/n2

for four values of the dimensionless coupling strength γ = {0,1,3,∞} and magnetic field H = {1,2.5,10,50}. The total density is fixed to
n = 1.

grand-canonical potential (5)

n↑,↓ = −1

2

(
∂φ

∂μ
± ∂φ

∂H

)
, P = n↑ − n↓

n↑ + n↓
,

χ = −
[(

∂2φ

∂H 2

)
μ

+
(

∂n

∂H

)2

μ

(
∂n

∂μ

)−1

H

]
,

cV = −T

[
∂2φ

∂T 2
+

(
∂n

∂T

)2

μ

(
∂n

∂μ

)−1

T

]
.

At zero temperature and zero magnetic field, the ground
state of the Gaudin-Yang model is balanced (number of
particles with spin up is equal with the number of particles
with spin down) and the excitation spectrum is gapless, which
means that in switching a magnetic field the system will
become partially polarized. The monotonously decreasing
polarization of the system as a function of the reduced
temperature in the presence of a constant magnetic field is
presented in the upper panels of Fig. 2. We can also see
that for a given H and temperature the polarization is an
increasing function of the interaction strength. For large values
of the dimensionless coupling strength the system becomes

paramagnetic, as it can be seen from Eq. (8), which describes
free fermions at chemical potential μ′ = μ + ln[2 cosh(βH )].

The magnetic susceptibility is finite everywhere except at
γ = ∞, H = 0, and T = 0. In this case we can see from
Eq. (8) that the magnetization is M = n tanh (H/T ) and the
susceptibility χ = n[1 − tanh2 (H/T )]/T diverges like 1/T

at vanishing magnetic field. At low temperatures and small
magnetic fields χ presents a complex behavior as a function
of γ . For H = 1 the maximum susceptibility is obtained
for γ = ∞, but already for H = 2.5 the susceptibilities for
γ = {0,1,3} present more pronounced maxima at very low
temperatures while the maximum for χ (γ = ∞) moves at a
higher temperature. For strong magnetic fields the susceptibil-
ity is zero at low temperatures, presents a global maximum at
a reduced temperature close to the value of the magnetic field,
and the dependence on the coupling strength becomes small.
The specific heat is linear at low temperatures and, similar
to the case of the susceptibility, presents a maximum at a
temperature τ ∼ H . A similar behavior was noticed by Klauser
and Caux [29] for the 2CBG, but in our case the maxima
are more pronounced for the same values of temperatures
and magnetic field. At high temperatures the specific heat
per particle approaches 1/2, the value for the ideal gas. As
a function of the coupling strength and for low values of
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the magnetic field the specific heat reaches its maximum for
γ = ∞, but this is no longer true for strong magnetic fields
where the dependence on γ becomes less pronounced.

V. TAN CONTACT AND LOCAL CORRELATION
FUNCTIONS

Tan [44] discovered that the momentum distribution of
three-dimensional fermions with zero range spin-independent
interactions exhibits a universal C/k4 behavior at large
momenta. (A similar relation for the Lieb-Liniger model
was derived earlier by Olshanii and Dunjko [45].) The large
momentum distribution is the same for both particle species,
and the constant C, called contact, is given by the probability
that two particles of opposite spin are found at the same
position in space. The contact also appears in Tan’s adiabatic
theorem [44], which determines the change of the energy with
respect to the interaction strength and a series of universal
thermodynamic identities called Tan relations [44] (see also
[46–51]). The analogues of Tan relations in 1D were derived by
Barth and Zwerger [49] using the operator product expansion
of Wilson and Kadanoff [59,60]. The contact is not only
an important and valuable theoretical concept but is also
experimentally measurable [61–68].

In the case of the Gaudin-Yang model with the Hamiltonian
(1), the contact is defined as [49] (remember � = 2m = 1 and
c = −2/a1D with a1D the scattering length)

C = 4

a2
1D

∫
dx 〈�†

↑(x)�†
↓(x)�↓(x)�↑(x)〉

= c2
∫

dx 〈�†
↑(x)�†

↓(x)�↓(x)�↑(x)〉, (9)

where by 〈 〉 we denote the zero- or finite-temperature
expectation value. In our definition we can see that C is an
extensive variable and is closely related to the interaction
energy I = 2c

∫
dx 〈�†

↑(x)�†
↓(x)�↓(x)�↑(x)〉 and the local

correlation function of opposite spins defined by

g
(2)
↑↓(x) = 4

〈�†
↑(x)�†

↓(x)�↓(x)�↑(x)〉
n(x)2

= 4
〈�†

↑(x)�†
↓(x)�↓(x)�↑(x)〉

[n↑(x) + n↓(x)]2
. (10)

A simple application of the Hellmann-Feynman theorem
gives the 1D version of Tan’s adiabatic theorem [49] dE

da1D
=

〈 ∂HGY

∂a1D
〉 = C, which expresses the variation of the total energy

E with respect to the scattering length.

The situation is considerably simplified in the homogeneous
case V (x) = 0. The local correlation function and density no
longer depend on x and we can introduce the contact and
interaction energy per length

C = c2

4
n2g

(2)
↑↓(0), I = c

2
n2g

(2)
↑↓(0). (11)

Another application of the Hellmann-Feynman theorem
allows us to obtain the local correlation function from the
derivative of the grand-canonical potential per length with
respect to the coupling strength g

(2)
↑↓(0) = 2

n2
∂φ

∂c
. Noting that

φ = − lnZ/(βL) with Z = Tr[e−β(HGY −μ↑N↑−μ↓N↓)],
we have ∂φ

∂c
= Tr[ ∂HGY

∂c
e−β(HGY −μ↑N↑−μ↓N↓)]/(LZ) =

2〈�†
↑(0)�†

↓(0)�↑(0)�↓(0)〉T , which proves the identity.
For the homogeneous system the pressure and total energy
per length E satisfy the following Tan relation [49]:
p = 2E − 2C/c. We have checked numerically this relation
and found perfect agreement, providing an additional check
for the validity of our NLIEs. Other analytical or numerical
computations of the contact in 1D systems can be found in
[56,57,69–74].

A. Results at T = 0

At zero temperature the thermodynamic properties of
the system can be extracted from the following system of
Fredholm-type integral equations [2]:1

ρc(k) = 1

2π
+

∫ λ0

−λ0

b1(k − λ)ρs(λ) dλ, (12a)

ρs(λ) =
∫ k0

−k0

b1(λ − k)ρc(k) dk −
∫ λ0

−λ0

b2(λ − μ)ρs(μ) dμ,

(12b)

where bm(k) = mc/{2π [(mc)2/4 + k2]}. In Eqs. (12) k0 and
λ0 are parameters which fix the values of the density
of spin-down particles and energy per length via n =∫ k0

−k0
ρc(k) dk,n↓ = ∫ λ0

−λ0
ρs(λ) dλ, and E = ∫ k0

−k0
k2ρc(k) dk.

The balanced system is characterized by λ0 = ∞ and the fully
polarized system by λ0 = 0. Even though in the general case an
analytic solution of the system of equations (12) is not known,
in certain limits approximate results can be derived. In the
strong interaction limit (γ � 1) Guan and Ma [75] obtained
(the leading order term was derived in [12,21])

E =
⎧⎨
⎩

n3π2

3

[
1 − 4 ln 2

γ
+ 12(ln 2)2

γ 2 − 32(ln 2)3

γ 3 + π2ζ (3)
γ 3

]
, P = 0,

n3π2

3

[
1 − 4(1−P )

γ
+ 12(1−P )2

γ 2 − 32(1−P )3

γ 3 + 16π2(1−P )
5γ 3

]
, P � 0.5,

(13)

with ζ (z) the Riemann function, and in the weak interaction limit (γ � 1)

E = n3π2(1 − P )3

24
+ n3π2(1 + P )3

24
+ γ

n3(1 − P 2)

2
. (14)

1An analytical derivation of Eqs. (12) from the low-temperature limit of our NLIEs, Eqs. (6), is still lacking. The main difficulty lies in the
fact that our (complex) auxiliary functions a1,2(k) are not easily related to the dressed energies of the TBA formalism.
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FIG. 3. Plots of the zero-temperature energy density E at fixed polarization (upper panels, black continuous line) in units of E(∞) = n3π 2/3
and dimensionless contact s = C/k4

F (lower panels, black continuous line) with kF = πn/2 as functions of the dimensionless coupling constant
γ. The dashed blue and dot-dashed red lines represent the asymptotic expansions in the strong and weak interaction limit given by Eqs. (13),
(14), and (15). The results presented in the top row can be seen as complementing Fig. 1 of [75].

It should be emphasized that Eqs. (13) and (14) are not exact.
They represent numerical approximations which are valid only
in the Tonks-Girardeau (γ � 1) and weak interaction (γ � 1)
regimes. Using Tan’s adiabatic theorem (see above), the local
correlation function of opposite spins, contact, and interaction
energy can be computed as

g
(2)
↑,↓(0) = 2

n3

dE
dγ

, C = n

2
γ 2 dE

dγ
, I = γ

dE
dγ

. (15)

In the following it will be preferable to work with the
dimensionless contact density defined as s = C/k4

F with kF =
πn/2.

In Fig. 3 we present results for the zero-temperature
energy and dimensionless contact as functions of the coupling
constant obtained from the numerical integration of Eqs. (12)
and the asymptotic expansions (13) and (14). In the balanced
case (P = 0) the asymptotic expansions for energy and contact
represent a good approximation in the weak and strong
interacting regime, but in the case of imbalanced systems
(P 	= 0) the results derived from Eq. (13) for the strongly
interacting regime become more accurate as the polarization
approaches 1. The contact is a monotonously increasing
function of γ and in the Tonks-Girardeau limit (γ → ∞)
approaches asymptotically a finite value. As a function of the
polarization s reaches a maximum for P = 0 and is zero for the
fully polarized system. For the balanced system in the strongly
interacting regime, using (13) and (15) we obtain

s(γ,P = 0) = 8

3π2

[
4 ln 2 − 24(ln 2)2

γ

+ 96(ln 2)3

γ 2
− 3π2ζ (3)

γ 2

]
, γ � 1, (16)

with s(∞,P = 0) = 32 ln 2/(3π2), a result which was first
obtained in [49].

B. Results at finite temperature

As we have mentioned before, at finite temperature an-
alytical results are restricted to the low-temperature strong-
coupling regime [26] and therefore we will have to rely on nu-
merical solutions of the NLIEs (6). In Fig. 4 we present the de-
pendence on the interaction strength of the dimensionless con-
tact, local correlation function, and interaction energy for fixed
polarization and several values of the reduced temperature.

An interesting feature revealed by our data is that the
contact at low and intermediate temperatures (see upper
panels of Fig. 4) presents a local maximum (for any value
of the polarization) which does not appear at τ = 0 and
gets suppressed at high temperatures. In the Tonks-Girardeau
regime the contact approaches a finite value for all values
of τ . Remembering that the contact governs the tail of the
momentum distribution [ñ(k) ∼ C/k4 for k → ∞], this means
that at τ = 0 and fixed polarization (or magnetic field) the
width of the momentum distribution increases monotonically
with γ , reaching its maximum at γ = ∞. In contrast, at low
and intermediate temperatures the width of the momentum
distribution reaches a maximum at a finite value of the
coupling strength and then becomes narrower as γ → ∞. This
reconstruction of the momentum distribution as a function
of the strength of the interaction should be in principle
experimentally accessible.

As shown in the middle panels of Fig. 4, the local
correlation function which quantifies the probability that two
particles of opposite spin occupy the same point in space is a
monotonically decreasing function of γ with a maximum in
the noninteracting limit (g(2)

↑↓(0) = 1 for P = γ = 0 and all τ ).

In the strongly interacting limit g(2)
↑↓(0) drops to zero like 1/γ 2.

For a fixed value of γ as a function of the polarization the local
correlator is maximal in the balanced system and vanishes in
the fully polarized case. The interaction energy (bottom row
Fig. 4) exhibits a local maximum at zero and finite temperature
and vanishes for γ → ∞. This is due to the fact that in the
strong interaction limit the short-range repulsive interaction
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FIG. 4. Plots of the dimensionless contact s (upper panels) local correlation function of opposite spins g
(2)
↑↓(0) (middle panels) and interaction

energy I (lower panels) as functions of the dimensionless coupling constant γ for τ = {0,1.3,3,20} and fixed polarization P = 0 (red line),
P = 0.25 (blue dashed line), P = 0.5 (black dot-dashed line), and P = 0.75 (green dotted line). The red disks, blue squares, black triangles,
and green diamonds represent the values of the dimensionless contact s(γ = ∞) computed from the momentum distribution derived from the
Fredholm determinants (17) for P = {0,0.25,0.5,0.75}. The total density is fixed to n = 1/2.

acts as an effective Pauli exclusion principle also between
fermions of opposite spins [49]. As expected, the interaction
energy is largest for the P = 0 case and it is zero for the fully
polarized system.

An alternative way of deriving the contact requires the
analytical or numerical computation of the momentum dis-
tribution, which is the Fourier transform of the static Green’s
function, i.e., ñ(k) = ∫ +∞

−∞ e−ikx〈�†
↑(x)�↑(0)〉μ,H,T dx. In the

general case this is an almost hopeless task due to the fact
that our knowledge of the correlators is still rather limited
[7–9,76–79]. However, in the impenetrable case we can use
the Fredholm determinant representations derived by Izergin
and Pronko [76], which have the advantage of being extremely
easy to implement numerically using the method presented in
[80]. In our case the Green’s functions have the following
representation [76]:

〈�†
↑(x)�↑(0)〉μ,H,T

= det

(
Î + e2H/T

2
V̂ + R̂

)
− det

(
Î + e2H/T

2
V̂

)
, (17)

where the integral operators V̂ and R̂ act on an arbitrary
function like (V̂f )(λ) = ∫ +∞

−∞ V(λ,μ)f (μ) dμ and (R̂f )(λ) =

∫ +∞
−∞ R(λ,μ)f (μ) dμ with kernels

V(λ,μ) = −
√

θ (λ)
2 sin

(|x| λ−μ

2

)
π (λ − μ)

√
θ (μ),

(18)

R(λ,μ) = −
√

θ (λ)
e−ix

λ+μ

2

2π

√
θ (μ),

and θ (λ) = e−H/T /[2 cosh(H/T ) + e(λ2−μ)/T ] is the Fermi
weight. In addition, we have 〈�†

↓(x)�↓(0)〉μ,H,T =
〈�†

↑(x)�↑(0)〉μ,−H,T . The results for the contact obtained
from the large k analysis of the Fourier transform of (17)
are presented in the τ = {1.3,3,20} panels of Fig. 4 as
red disks (P = 0), blue squares (P = 0.25), black triangles
(P = 0.5), and green diamonds (P = 0.75), and they are
in perfect agreement with the results derived from the
NLIEs.

The temperature dependence of the contact shown in Fig. 5
reveals another interesting phenomenon. [In Fig. 5 the values
of the contact at τ = 0 were computed from the integral
equations (12) and for τ > 0 from the NLIEs (6).] For weak
interactions the dependence of s on temperature is very small,
but as we increase the coupling strength, the contact develops
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FIG. 5. Reduced temperature dependence of the dimensionless contact s for γ = {0.2,2,20,200} and fixed polarization P = 0 (red
line), P = 0.25 (blue dashed line), P = 0.5 (black dot-dashed line), and P = 0.75 (green dotted line). The red disks, blue squares, black
triangles, and green diamonds represent the values of the dimensionless contact s(τ = 0) computed from the integral equations (12) for
P = {0,0.25,0.5,0.75}.

a local minimum, which becomes very pronounced in the
Tonks-Girardeau limit. The nonmonotonic behavior is present
for all polarizations, and the temperature interval in which it
manifests itself shrinks as the value of γ increases. Outside of
this temperature interval and for strong interactions, the contact
presents a linear dependence on the reduced temperature for all
values of P. The nonmonotonic behavior of the contact implies
that the shape of the momentum distribution of the strongly
repulsive Gaudin-Yang model suffers an abrupt change in a
very small interval of temperature. This reconstruction of the
distribution is also counterintuitive, because as the temperature
increases the distribution becomes narrower and not wider, as
one would expect from a system of weakly interacting or free
particles. However, one should not forget that in this case we
are dealing with a strongly interacting system where this type
of picture is not correct.

This crossover of the momentum distribution was first
discovered by Cheianov et al. in [52] for the balanced system
and signals the transition from the Tomonaga-Luttinger liquid
phase to the incoherent spin Luttinger liquid regime. Our
results show that a similar crossover is present also in the
imbalanced case and it might be possible to be detected
even for moderate values of the coupling strength. Compared
with the single-component case in the two-component system,
there are two temperature scales TF = π2n2 and T0 = TF /γ

(remember � = 2m = kB = 1) which define two different
quantum regimes: T < T0, characterized by the Tomonaga-
Luttinger liquid theory, and T0 � T � TF , in which the
incoherent spin Luttinger theory is applicable. The two
temperature scales are well separated in the strong-coupling
limit, and for T0 � T � TF the charge degrees of freedom
are effectively frozen while the spin degrees of freedom
are strongly “disordered.” It is important to note that in the
computation of the correlation functions the limits c → 0 and
T → 0 do not commute [9]. The determinant representation
(17) has been derived by taking the c → ∞ limit in the
wave functions followed by the summation of form factors
at finite temperature. If we take the limit T → 0 in (17)
and compute the dimensionless contact from the tail of the
momentum distribution we obtain s(γ = ∞,P = 0)T >T0 =
0.270, which is considerably smaller than s(γ = ∞,P =
0)T <T0 = 32 ln 2/(3π2) = 0.749... [see Eq. (16)] obtained

from the integral equations at zero temperature [Eqs. (12)]. The
momentum crossover for the balanced impenetrable system is
presented in Fig. 1 of [52].

VI. DENSITY PROFILES AT FINITE TEMPERATURE

In most experiments the system is subjected to a har-
monic potential V (x) = mω2x2/2, a situation in which the
Hamiltonian (1) is no longer exactly solvable. However, for
slowly varying potentials we can apply the local density
approximation (LDA) and the V (x) = 0 solution to obtain
reasonably accurate data for the trapped system. Under LDA
each point in the trap can be seen as a locally homogeneous
system with

μ(x) = μ(0) − V (x) = μ(0) − mω2x2/2, H (x) = H (0),

(19)

where μ(0) and H (0) are the chemical potential and magnetic
field in the center of the trap. An immediate consequence of
(19) is that the density along the trap is monotonously decreas-
ing and at zero temperature vanishes at a distance RT F from
the center of the trap, where RT F is called the Thomas-Fermi
radius and is determined by μ(0) − mω2R2

T F /2 = 0. An inho-
mogeneous system can be characterized by three parameters:
the dimensionless coupling strength γ (0) = c/n(0), the polar-
ization P (0) = [n↑(0) − n↓(0)]/n(0), and the reduced temper-
ature τ (0) = T/n2(0), all evaluated at the center of the trap.

The density profiles at T = 0 were computed in [25], and
it was noticed that for all P (0) ∈ (0,1) they present a two shell
structure: an imbalanced mixture of spin-up and spin-down
fermions in the center and fully polarized wings. At finite
temperature the situation becomes more complex, as it can
be seen in Fig. 6 where we present the density profiles at
τ (0) = 0.5 for different values of the coupling strength and
two polarizations. For P (0) = 0.15 and τ (0) = 0.5 the entire
system is in the mixed phase for all values of γ (0) (the density
n(0) = √

24 is the same in all cases presented), even though
the polarization along the trap increases away from the center.
The double shell structure appears only for values of the center
polarization above a critical value, which is a monotonic
increasing function of γ (0) and temperature (see the lower
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FIG. 6. Plots of the normalized total density n(x)/n(0) (blue continuous line), normalized density of up spins n↑(x)/n(0) (blue dashed
line), normalized density of down spins n↓(x)/n(0) (blue dotted line), and their difference [n↑(x) − n↓(x)]/n(0) (red dot-dashed line) for
an inhomogeneous Gaudin-Yang model with τ (0) = 0.5 and polarizations P (0) = 0.15 (upper panels) and P (0) = 0.6 (lower panels). The
insets depict the variation of the polarization P (x) = [n↑(x) − n↓(x)]/[n↑(x) + n↓(x)] in the trap. For all values of the coupling strength
γ (0) = {0,0.61,1.83,∞}, the total density in the center of the trap is n(0) = √

24.

panels of Fig. 6). At high temperatures the entire system will
be found only in the mixed phase irrespective of the value of
γ (0) and P (0).

VII. THE GAUDIN-YANG MODEL AS THE CONTINUUM
LIMIT OF THE PERK-SCHULTZ SPIN CHAIN WITH

(− + +) GRADING

The derivation of Eqs. (5) and (6) is performed in three
steps. First, we identify a lattice embedding of the Gaudin-
Yang model for which the quantum transfer matrix method

[39,42] can be employed. The need for this lattice model stems
from the fact that the quantum transfer matrix method, which
has the advantage of producing a finite number of NLIEs for the
thermodynamics of the system, can be defined only for discrete
systems. In the second step we calculate the free energy of
this lattice model from the largest eigenvalue of the quantum
transfer matrix (QTM). Finally, the thermodynamics of the
continuum model is obtained by performing the scaling limit
in the result for the lattice model.

As in the case of the two-component Bose gas [31,32], the
appropriate lattice model is the q = 3 critical Perk-Schultz
spin chain [37,38]

HPS = Jε1

L∑
j=1

⎛
⎜⎜⎜⎝cos γ

3∑
a=1

εa e(j )
aa e(j+1)

aa +
3∑

a,b = 1
a 	= b

e
(j )
ab e

(j+1)
ba + i sin γ

3∑
a,b = 1
a 	= b

sgn(a − b)e(j )
aa e

(j+1)
bb

⎞
⎟⎟⎟⎠ −

L∑
j=1

3∑
a=1

hae
(j )
aa , (20)

where J > 0 is the coupling strength, L is the number of lattice sites, γ ∈ [0,π ] is the anisotropy, h1,h2,h3 are chemical potentials,
and ε1,ε2,ε3, (εi ∈ {±1}) are the grading parameters. Also e

(j )
ab = I⊗j−1

3 ⊗ eab ⊗ I⊗L−j

3 , with eab and I3 the canonical basis and
the unit matrix in the space of 3 × 3 matrices. If in the case of the 2CBG we considered the grading (ε1,ε2,ε3) = (− − −), for
the Gaudin-Yang model the relevant grading is (ε1,ε2,ε3) = (− + +). The energy spectrum of the spin chain is (see Appendix A)

EPS =
M∑

j=1

e0
(
v

(1)
j

) + M1(h2 − h3) + E0, e0(v) = J
sin2 γ

sin(v − γ ) sin v
+ h1 − h2, E0 = JL cos γ − h1L, (21)
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with the Bethe ansatz equations

(
sin(γ − v(1)

s )

sin v
(1)
s

)L

= (−1)M−1
M1∏
p=1

sin
(
v(1)

s − v(2)
p − γ

)
sin

(
v

(1)
s − v

(2)
p

) , s = 1, . . . ,M, (22a)

M∏
j=1

sin
(
v

(2)
l − v

(1)
j + γ

)
sin

(
v

(2)
l − v

(1)
j

) =
M1∏

p = 1
p 	= l

sin
(
v

(2)
l − v(2)

p + γ
)

sin
(
v

(2)
l − v

(2)
p − γ

) , l = 1, . . . ,M1. (22b)

In order to prove that the Perk-Schultz spin chain with the (− + +) grading is the lattice embedding of the 2CFG, we are
going to show that the spectrum and Bethe equations of the continuum model (2), (3) can be obtained in a scaling limit from the
lattice analogs (21), (22). We start with the Bethe ansatz equations. Performing the transformation v(1)

s → iδk(1)
s /ε + γ /2, and

v
(2)
l → iδk

(1)
l /ε + π/2 with δ the lattice constant and ε → 0 a small parameter, Eqs. (22) take the form(

(−)
sinh

(
δk(1)

s /ε − iγ /2
)

sinh
(
δk

(1)
s /ε + iγ /2

)
)L

= (−1)M−1
M1∏
p=1

cosh
(
δk(1)

s /ε − δk(2)
p /ε − iγ /2

)
cosh

(
δk

(1)
s /ε − δk

(2)
p /ε + iγ /2

) ,

M∏
j=1

cosh
(
δk

(2)
l /ε − δk

(1)
j /ε − iγ /2

)
cosh

(
δk

(2)
l /ε − δk

(1)
j /ε + iγ /2

) =
M1∏

p = 1
p 	= l

sinh
(
δk

(2)
l /ε − δk(2)

p /ε − iγ
)

sinh
(
δk

(2)
l /ε − δk

(2)
p /ε + iγ

) .

Considering γ = π − ε we obtain

(
cosh(δk(1)

s /ε + iε/2)

cosh(δk(1)
s /ε − iε/2)

)L

= (−1)M−1
M1∏
p=1

(−)
sinh

(
δk(1)

s /ε − δk(2)
p /ε + iε/2

)
sinh

(
δk

(1)
s /ε − δk

(2)
p /ε − iε/2

) , (23a)

M∏
j=1

(−)
sinh

(
δk

(2)
l /ε − δk

(1)
j /ε + iε/2

)
sinh

(
δk

(2)
l /ε − δk

(1)
j /ε − iε/2

) =
M1∏

p = 1
p 	= l

sinh
(
δk

(2)
l /ε − δk(2)

p /ε + iε
)

sinh
(
δk

(2)
l /ε − δk

(2)
p /ε − iε

) . (23b)

If we take the limits L → ∞,δ → 0, [L ∼ O(1/ε2),δ ∼
O(ε2)] such that Lδ = LF , c = ε2/δ, identifying M1 with M↓
and using

cosh
(
δk(1)

s /ε + iε/2
)

cosh
(
δk

(1)
s /ε − iε/2

) ∼ 1 + ik(1)
s δ/2

1 − ik
(1)
s δ/2

,

we see that for M even and M1 odd Eqs. (23) transform in the
Bethe equations of the Gaudin-Yang model (3).

Under this set of transformations the energy spectrum
becomes

β(EPS − E0) =
M∑

j=1

β
[
Jδ2(k(1)

j

)2 − Jε2 − Jε4/4
]

+β(h1 − h2)M + β(h2 − h3)M1 + O(ε6).

(24)

If we denote by β̄ the inverse temperature of the continuum
model and consider β = β̄/δ2, J = 1, h1,h2,h3 → 0[h1 ∼
O(ε2),h2,h3 ∼ O(ε4)] such that Jε2/δ2 − h1/δ

2 is finite we
have

eβE0Z(h1,h2,h3,β) → Z(μ,H,β̄), (25)

where Z(h1,h2,h3,β) is the canonical partition function of
the spin chain and Z(μ,H,β̄) is the grand-canonical partition

function of the Gaudin-Yang model. Therefore, we have
showed that by performing the scaling limit presented above
(the spectral parameter v → iδk/ε) the thermodynamics of
the 2CFG can be derived from the similar result for the
low-T critical Perk-Schultz spin chain with (− + +) grading.
It should be noted that the scaling limit presented here is the
same as that employed in the 2CBG case (see Table I of [32]),
the only difference being the grading.

VIII. FREE ENERGY OF THE (− + +)
PERK-SCHULTZ SPIN CHAIN

The importance of the quantum transfer matrix [39–43] in
the study of integrable lattice models resides in the fact that
not only the free energy of the model is related to the largest
eigenvalue of the QTM, but also various correlation lengths can
be derived from the spectrum of the next-largest eigenvalues.
The definition of the QTM for the Perk-Schultz spin chain in
the algebraic Bethe ansatz framework can be found in [32].
The interested reader can find pedagogical introductions on
the subject in [81–83].

The largest eigenvalue of the quantum transfer matrix (see
Appendix A), which will be denoted by �0(v), is found in
the (N/2,N/2) sector of the spectrum, which means that
m = n = N/2 in Eqs. (A3) and (A4). �0(v) is related to
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the free energy per lattice site of the Perk-Schultz spin
chain via the relation f (β,h1,h2,h3) = −[ln �0(0)]/β. In the
following it will be useful to introduce the notations φ±(v) =
[sinh(v ± iu)/ sin γ ]N/2 with u = J sin γβ/N , where N is the
Trotter number and q0(v) = φ−(v), qj (v) = ∏N/2

r=1 sinh(v −
v

(j )
r ), j = 1,2, q3(v) = φ+(v). Changing the spectral param-

eter v → iv and considering N ∈ 4N, the expression for the
largest eigenvalue of the QTM (A3) can be written as (see the
last remark of Appendix A)

�0(v) = λ1(v) + λ2(v) + λ3(v),

λj (v) = φ−(v)φ+(v)
qj−1(v − iε̃j γ )

qj−1(v)

qj (v + iε̃j γ )

qj (v)
eβh̃j ,

(26)

with (ε̃1,ε̃2,ε̃3) = (+ − +) and (h̃1,h̃2,h̃3) = (h3,h1,h2).
In this notation the BAEs (A4) take the form
λj (v(j )

r )/λj+1(v(j )
r ) = −1, r = 1, . . . ,N/2,(j = 1,2).

A. Nonlinear integral equations for the auxiliary
functions

The derivation of the nonlinear integral equations and
integral expression for the largest eigenvalue of the QTM in
the Gaudin-Yang model is very similar with that presented in
[32] for the two-component Bose gas. For this reason, below
we will not be as explicit as in the 2CBG case but we will
highlight the particular features introduced by the fermionic
model.

We introduce two auxiliary functions periodic of period iπ

defined by

a1(v) = λ1(v)

λ2(v)
= φ−(v − iγ )

φ−(v)

q2(v)

q2(v − iγ )
eβ(h3−h1), (27a)

a2(v) = λ3(v)

λ2(v)
= φ+(v + iγ )

φ+(v)

q1(v)

q1(v + iγ )
eβ(h2−h1). (27b)

The equation a1,2(v) = −1 has N solutions and contains as a
subset the N/2 Bethe roots [see the remark after Eq. (26)]
which will be denoted by {v(1,2)

j }N/2
j=1. The additional N/2

solutions are called holes and will be denoted by {v′(1,2)
j }N/2

j=1.

We will first focus on the case when γ ∈ (0,π/2) and we are
going to assume that the Bethe roots and holes for the largest
eigenvalue of the QTM are distributed in the complex plane
as in Fig. 7. For v outside the contour C we introduce two
additional functions (j = 1,2):

fj (v) ≡ 1

2πi

∫
C

d

dv
[ln sinh(v − w)] ln[1 + aj (w)]dw

= 1

2πi

∫
C

ln sinh(v − w)
a′

j (w)

1 + aj (w)
dw. (28)

Let g(v) be a function which is analytic inside and on C.
Consider another function φ(v) which is also analytic inside
the contour with the exception of some poles. Then (see p. 129
of [84])

1

2πi

∫
C
g(v)

φ′(v)

φ(v)
dv =

∑
i∈ zeros

rig(ai) −
∑

i∈ poles

sig(bi), (29)

FIG. 7. Relevant contours and distribution of Bethe roots
{v(1)

i },{v(2)
j } (•,�) and holes {v′(1)

i },{v′(2)
j } (◦,�) for the largest

eigenvalue [γ ∈ (0,π/2)]. The upper and lower edges of C are parallel
with the real axis and intersect the imaginary axis at ±i(γ − ε)/2 with
ε → 0.

where ri and si are the multiplicities of the zeros ai and poles
pi of the function φ(v) inside the contour. The application of
(29) with g(v) = ln sinh(v − w) and φ(v) = 1 + aj (v) gives

f1(v) = ln q1(v) − ln φ−(v) − N

2
ln sin γ, (30a)

f2(v) = ln q2(v) − ln φ+(v) − N

2
ln sin γ. (30b)

Taking the logarithm of Eqs. (27) and using (30) we find

ln a1(v) = β(h3 − h1) + ln

(
φ−(v − iγ )

φ+(v − iγ )

φ+(v)

φ−(v)

)

+ f2(v) − f2(v − iγ ), (31a)

ln a2(v) = β(h2 − h1) + ln

(
φ+(v + iγ )

φ−(v + iγ )

φ−(v)

φ+(v)

)

+ f1(v) − f1(v + iγ ). (31b)

The Trotter limit N → ∞ can be taken in Eqs. (31)
(limN→∞ ln [φ+(v)/φ−(v)] = iβJ sin γ coth v) with the result

ln a1(v) = β(h3 − h1) − β
J sinh2(iγ )

sinh v sinh(v − iγ )

−
∫
C
K2(v − w) ln[1 + a2(w)] dw, (32a)

ln a2(v) = β(h2 − h1) − β
J sinh2(iγ )

sinh v sinh(v + iγ )

+
∫
C
K1(v − w) ln[1 + a1(w)] dw, (32b)

where

K1(v) = 1

2πi

sinh(iγ )

sinh(v + iγ ) sinh v
,

(33)
K2(v) = 1

2πi

sinh(iγ )

sinh(v − iγ ) sinh v
.

Equations (32) were derived assuming that v and v ± iγ are
located outside the contour C. For v inside the contour we
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should add an additional term ln[1 + a2(v)] on the right-hand
side of (32a) and ln[1 + a1(v)] on the right-hand side of (32b).
The NLIEs (32) remain valid also for γ ∈ (π/2,π ), but in this
case the upper and lower edges of the contour C are situated at
±i(π − γ − ε)/2.

B. Integral representation of the largest eigenvalue

Due to the fact that the largest eigenvalue of the QTM is an-
alytic in a strip around the real axis, we can calculate �0(v0) for
an arbitrary v0 close to the real axis and then take the limit v0 →
0. [The expression for the free energy requires �0(0).] Choos-
ing v0 = iu for which λ3(v0) = 0 and using (B1) we obtain

�0(v0) = c
φ+(v0)

q2(v0)
q1(v0 + iγ )q(h)

1 (v0),

(34)

q
(h)
1 (v) =

N/2∏
j=1

sinh
(
v − v′(1)

j

)
,

which highlights the need for an integral representation of
q

(h)
1 (v0) with v0 close to the real axis [where {v′(1)

j }N/2
j=1 are

the holes of a1(v) = −1]. Let v be a point close to the real
axis (inside the contour C). As a result of (B6) we have
[d(v − w) = d

dv
ln sinh(v − w)]∫

C
d(v − w)

a′
1(w)

1 + a1(w)
dw = −

∫
C′

d(v − w)
a′

1(w)

1 + a1(w)
dw,

where the right-hand side can be evaluated with the help of
(29). We find (inside C the function 1 + a1(w) has N/2 zeros
at the holes {v′(1)

j }N/2
j=1 and N/2 poles at {v(2)

j + iγ }N/2
j=1)∫

C
d(v − w)

a′
1(w)

1 + a1(w)
dw

= −
⎛
⎝N/2∑

j=1

d
(
v − v

′(1)
j

) −
N/2∑
j=1

d
(
v − v

(2)
j − iγ

)⎞⎠. (35)

If v is close to the real axis, then v + iγ is outside the contour
C. Therefore, with the help of (29) we can similarly compute∫

C
d(v − w + iγ )

a′
1(w)

1 + a1(w)
dw

=
N∑

j=1

d
(
v − v

(1)
j + iγ

) − ln φ−
N

2
d(v − iu + iγ ). (36)

Taking the difference of (35) and (36) and integrating by parts
with respect to w and then integration with respect to v we
obtain ∫

C
[d(v − w) − d(v − w + iγ )] ln[1 + a1(w)]dw

= − ln q
(h)
1 (v) + ln q2(v − iγ ) − ln q1(v + iγ )

+ ln φ−(v + iγ ) + c, (37)

with c a constant. In an analogous fashion we can show that∫
C
[d(v − w) − d(v − w − iγ )] ln[1 + a2(w)]dw

= − ln q
(h)
2 (v) + ln q1(v + iγ ) − ln q2(v − iγ )

+ ln φ+(v − iγ ) + c. (38)

Taking the logarithm of (34) we obtain

ln �0(v0) = ln φ+(v0) − ln q2(v0)

+ ln q1(v0 + iγ ) + ln q
(h)
1 (v0), (39)

= ln q
(h)
1 (v0) + ln q

(h)
2 (v0) − ln[1 + a2(v0)] + c,

(40)

where in the last line we have used the identity (B5). Using
(37) and (38) we find

ln �0(v0) = ln[φ+(v0 − iγ )φ−(v0 + iγ )]

−
∫
C
K1(v0 − w) ln[1 + a1(w)] dw

+
∫
C
K2(v0 − w) ln[1 + a1(w)] dw

− ln[1 + a2(v0)] + c.

The constant of integration can be obtained as in [32] using
the behavior of the involved functions at infinity with the
result c = βh1 + ln [ 1+eβ(h2−h1)+eβ(h3−h1)

1+eβ(h3−h1) ]. Now, we can take the
Trotter limit followed by v0 → 0, limv → 0,N→∞ ln[φ+(v −
iγ )φ−(v + iγ )] = −Jβ cos γ , obtaining the integral
expression for the largest eigenvalue of the QTM:

ln �0(0) = c − Jβ cos γ −
∫
C
K2(w) ln[1 + a1(w)] dw

+
∫
C
K1(w) ln[1 + a2(w)] dw − ln[1 + a2(0)].

(41)

For γ ∈ (π/2,π ) the same representation remains valid with
the upper and lower edges of the contour C situated
at ±i(π − γ − ε)/2. We should mention that other
thermodynamic descriptions of the Perk-Schultz spin
chain and related models can be found in [85–88].

IX. CONTINUUM LIMIT

In the continuum limit γ = π − ε. This means that in
the NLIEs (32) and integral representation for the largest
eigenvalue (41) the upper and lower edge of the contour C,

denoted by C±, are parallel with the real axis and intercept the
imaginary axis at ±i(π − γ − ε)/2. At low temperatures and
for J > 0, h3 < h1 the driving term on the right-hand side of
Eq. (32a) is large and negative on C−, which implies that a1(v)
vanishes on the lower edge of the contour. In a similar way,
for h2 < h1 we can show that a2(v) is zero on C+. Therefore
we obtain

ln a1(v) = β(h3 − h1) − β
J sinh2(iγ )

sinh v sinh(v − iγ )

−
∫
C−

K2(v − w) ln[1 + a2(w)] dw, (42a)

ln a2(v) = β(h2 − h1) − β
J sinh2(iγ )

sinh v sinh(v + iγ )

+
∫
C+

K1(v − w) ln[1 + a1(w)] dw (42b)
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for the NLIEs and

ln �0(0) = c − Jβ cos γ +
∫
C+

K2(w) ln[1 + a1(w)] dw

+
∫
C−

K1(w) ln[1 + a2(w)] dw − ln[1 + a2(0)]

(43)

for the integral representation of the largest eigenvalue.
Shifting the argument v and variable of integration to the line
+iγ /2 (−iγ /2) for the function a1(v) [a2(v)] we find

ln a1(v + iγ /2)

= β(h3 − h1) − β
J sinh2(iγ )

sinh(v + iγ /2) sinh(v − iγ /2)

−
∫
R

K2(v − w + iγ − iε) ln[1 + a2(w − iγ /2)] dw,

(44a)

ln a2(v − iγ /2)

= β(h2 − h1) − β
J sinh2(iγ )

sinh(v + iγ /2) sinh(v − iγ /2)

−
∫
R

K1(v − w − iγ + iε) ln[1 + a1(w + iγ /2)] dw,

(44b)

and

ln �0(0) = c − Jβ cos γ +
∫
R

K2(w + iγ /2)

× ln[1 + a1(w + iγ /2)] dw +
∫
R

K1(w − iγ /2)

× ln[1 + a2(w − iγ /2)] dw − ln[1 + a2(0)].

(45)

In the scaling limit v → iδk/ε,w → iδk′/ε [the i factor is
not needed because we have already changed the spectral
parameter to iv in (26)] γ = π − ε and

K1(v − iγ ) → −ε

δ

1

2π

c

k(k + ic)
,

(46)
K2(v + iγ ) → −ε

δ

1

2π

c

k(k − ic)
.

Introducing a1(k) = a1(δk/ε − iγ /2), a2(k) = a2(δk/ε +
iγ /2) it is easy now to see that in the continuum limit (44)
transforms in the NLIEs (6) of the Gaudin-Yang model. The
expression for the grand-canonical potential (5) is derived
from (45) using φ(μ,H,β̄) = [f (h1,h2,h3,β) − E0/L]/δ3

with f (h1,h2,h3,β) = − ln �0(0)/β and that K1(δk/ε −
iγ /2) = K2(δk/ε + iγ /2) ∼ ε in the scaling limit. (The
ln[1 + a2(0)]/δ term vanishes in the same limit due to the

fact that the real part of the driving term of Eq. (32b) is large
and negative like O(1/ε2).]

X. CONCLUSIONS

We have introduced an efficient thermodynamic description
of the repulsive Gaudin-Yang model, which was derived using
the connection with the Perk-Schultz spin chain and the
quantum transfer matrix method. Our system of NLIEs is valid
for all values of coupling strengths, chemical potentials, and
magnetic fields and can be easily implemented numerically.
The numerical data presented for various thermodynamic
quantities reveals the complex interplay between interaction
strength, statistical interaction, and temperature. The non-
monotonicity of the contact as a function of the interaction
strength and temperature shows that the momentum distri-
bution of the repulsive Gaudin-Yang model has a nontrivial
behavior as a function of these parameters which can be
experimentally detected. Compared with the zero-temperature
case, the density profiles of the trapped system present a double
shell structure only above a critical polarization which depends
on the coupling strength and temperature. Our paper also opens
further avenues of research. A natural expectation is that the
attractive case can also be investigated along similar lines. An
appropriate lattice embedding would also be the Perk-Schultz
spin chain with the same grading but considered in the massive
regime. It is also possible that difficulties can occur due to the
presence of additional bound states in the spectrum. One could
also determine the correlation lengths of the Green’s functions
following [89], which would require an analysis of the next
leading eigenvalues of the QTM. This will be deferred to future
publications.
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APPENDIX A: SOLUTION OF THE GENERALIZED
q = 3 PERK-SCHULTZ MODEL

In this Appendix we present the solution of the generalized
q = 3 Perk-Schultz model (see the Supplemental Material of
[32]) which contains as particular cases the transfer matrix
and quantum transfer matrix of the Perk-Schultz spin chain.
The generalized model is constructed from the trigonometric
Perk-Schultz R matrix [36,37] defined by

R(v,w) =
3∑

a=1

Raa
aa (v,w)eaa ⊗ eaa

+
3∑

a,b = 1
a 	= b

Rab
ab (v,w) eaa ⊗ ebb

+
3∑

a,b = 1
a 	= b

Rab
ba (v,w) eab ⊗ eba, (A1)
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with

Raa
aa (v,w) = sin[γ + εa(v − w)]

sin γ
,

Rab
ab (v,w) =

a 	=b

sin(v − w)

sin γ
, (A2)

Rab
ba (v,w) =

a 	=b
eisgn(a−b)(v−w),

where γ ∈ [0,π ] is the anisotropy, (ε1,ε2,ε3) is the grad-
ing (εi ∈ {±1}), and (eab)ij = δiaδjb is the canonical basis
in the space of 3 × 3 matrices. The generalized model
also depends on three functions ϕi, i ∈ {1,2,3} which we
will call the parameters of the model. For the trans-
fer matrix the parameters are ϕ1(v) = α1(v,0)L,ϕ2(v) =
β(v,0)L,ϕ3(v) = β(v,0)L with L the number of lattice sites
of the spin chain, while for the quantum transfer ma-
trix ϕ1(v) = eβh1 [α1(v, − u)β(u,v)]N/2, ϕ2(v) = eβh2 [β(v, −
u)β(u,v)]N/2, ϕ3(v) = eβh3 [β(v, − u)α3(u,v)]N/2, with u =
−J sin(ε1γ )β/N where N is the Trotter number and h1,h2,h3

are chemical potentials. In the above definitions we have
introduced the notations

αi(v,w) = sin[γ + εi(v − w)]

sin γ
, β(v,w) = sin(v − w)

sin γ
.

The generalized model can be solved using the nested
Bethe ansatz [32,90–93]. The eigenvalues are [gi(v,w) =
αi(v,w)/β(v,w)]

�(v) = ϕ1(v)
n∏

j=1

g1
(
v

(1)
j ,v

) + ϕ2(v)
n∏

j=1

g2
(
v,v

(1)
j

)

×
m∏

k=1

g2
(
v

(2)
j ,v

) + ϕ3(v)
n∏

j=1

g3
(
v,v

(2)
j

)
, (A3)

with {v(1)
j }nj=1,{v(2)

k }mk=1 satisfying the Bethe ansatz equations

ϕ1
(
v(1)

s

)
ϕ2

(
v

(1)
s

) =
n∏

j = 1
j 	= s

g2
(
v(1)

s ,v
(1)
j

)
g1

(
v

(1)
j ,v

(1)
s

) m∏
k=1

g2
(
v

(2)
k ,v(1)

s

)
,

s = 1, . . . ,n, (A4a)

ϕ2
(
v

(2)
l

)
ϕ3

(
v

(2)
l

) =
m∏

j = 1
j 	= s

g3
(
v

(2)
l ,v

(2)
j

)
g2

(
v

(2)
j ,v

(2)
l

) m∏
k=1

1

g2
(
v

(2)
l ,v

(1)
k

) ,

l = 1, . . . ,m. (A4b)

In this paper the Hamiltonian of the Perk-Schultz spin chain
is given by [t(v) is the transfer matrix]

HPS = J sin(ε1γ ) t−1(0)t′(0) −
L∑

j=1

3∑
a=1

hae
(j )
aa , (A5)

where the second term in the right-hand side of (A5) is
a chemical potential term which commutes with the main
component of the Hamiltonian. The energy spectrum of the
Perk-Schultz spin chain is obtained using (A5), (A3) and
the fact that the contribution of the chemical potential term
is h1(L − n) + h2(n − m) + h3m [36]. In the case of the

quantum transfer matrix it is preferable to work with a different
pseudovacuum (see the Supplemental Material of [32]). This
change of the pseudovacuum means that if in the Hamiltonian
we consider the grading (ε1,ε2,ε3) and chemical potentials
(h1,h2,h3) in the results (A3) and (A4) for the quantum
transfer matrix we have to perform a cyclical permutation in the
grading and chemical potentials, i.e., (ε1,ε2,ε3) → (ε3,ε1,ε2)
and (h1,h2,h3) → (h3,h1,h2).

APPENDIX B: SOME USEFUL IDENTITIES

Here we present several identities which play an important
role in the derivation of Sec. VIII B. The first identity is

λ1(v) + λ2(v) = c
φ+(v)

q2(v)
q1(v + iγ )q(h)

1 (v),
(B1)

q
(h)
1 (v) =

N/2∏
j=1

sinh
(
v − v′(1)

j

)
,

with c a constant. The proof is relatively straightforward. From
the definition (26) we have

λ1(v) + λ2(v) = φ+(v)
q1(v + iγ )

q1(v)

p1(v)

q2(v)
,

p1(v) = φ−(v − iγ )q2(v)eβh3 +φ−(v)q2(v−iγ )eβh1 .

(B2)

The equation p1(v) = 0 is equivalent with a1(v) = −1, which
shows that the zeros of p1(v) are the N/2 Bethe roots {v(1)

j }N/2
j=1

and N/2 holes {v′(1)
j }N/2

j=1. In addition, p1(v) is quasiperiodic
p1(v + iπ ) = (−1)Np1(v) and limv→∞ p1(v)/[sinh(v)]N =
c. Therefore, p1(v) = c

∏N/2
j=1 sinh(v − v

(1)
j )

∏N/2
j=1 sinh(v −

v
′(2)
j ) = c q1(v)q(h)

1 (v), which together with (B2) proves (B1).
In a similar fashion we can show that

λ2(v) + λ3(v) = c
φ−(v)

q1(v)
q2(v − iγ )q(h)

2 (v),
(B3)

q
(h)
2 (v) =

N/2∏
j=1

sinh
(
v − v′(2)

j

)
,

with c a constant. An immediate consequence of (B1) and (B3)
is that for arbitrary v we have

− ln φ−(v) + ln q1(v) − ln q2(v − iγ ) + ln q
(h)
1 (v)

− ln[1 + a1(v)] + c1 = 0, (B4)

− ln φ+(v) + ln q2(v) − ln q1(v + iγ ) + ln q
(h)
2 (v)

− ln[1 + a2(v)] + c2 = 0, (B5)

with c1,2 constants. Another useful identity is∫
C+C′

d(v − w)
a′

j (w)

1 + aj (w)
dw = 0,

(B6)
d(v − w) = d

dv
ln sinh(v − w),

where again we considered γ ∈ (0,π/2) and the contour C ′ is
presented in Fig. 7. (The lower edge of C ′ coincides with the
upper edge of C, but it has opposite orientation.) The proof of
(B6) is identical with the one presented [32] and is omitted.
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