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Geometrically induced complex tunnelings for ultracold atoms carrying orbital angular momentum
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We investigate the dynamics of angular momentum states for a single ultracold atom trapped in two-dimensional
systems of sided coupled ring potentials. The symmetries of the system show that tunneling amplitudes between
different ring states with variation of the winding number are complex. In particular, we demonstrate that in a
triangular ring configuration the complex nature of the cross-couplings can be used to geometrically engineer
spatial dark states to manipulate the transport of orbital angular momentum states via quantum interference.
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I. INTRODUCTION

Tunneling is one of the paradigms of quantum mechanics,
and, recently, its control in the context of ultracold neutral
atoms has been an issue of intense research. Pioneering ex-
periments demonstrated dynamical tunneling suppression for
a single particle in a strongly driven double-well potential [1]
and for a Bose-Einstein condensate (BEC) in a strongly driven
optical lattice [2]. The dynamical modification of tunneling
rates allowed experimentally realizing [3] the driving-induced
superfluid-Mott insulator transition [4] and, by independently
tuning the coupling rates in different directions of a triangular
lattice, simulating a large variety of magnetic phases and
different types of phase transitions [5].

The generation of artificial vector gauge potentials for
ultracold atoms in one-dimensional (1D) optical lattices
has been demonstrated by inducing controllable complex
tunneling amplitudes either by a suitable forcing of the optical
lattice [6] or by a combination of radio frequency and optical
Raman coupling fields [7]. In two-dimensional (2D) optical
lattices, the engineering of complex tunnelings has lead to
the generation of staggered fluxes [8], the implementation
of the Hofstadter Hamiltonian, and the observation of large
homogeneous artificial magnetic fields [9], as well as the
realization of the topological Haldane model [10] and of the
Harper and Weyl Hamiltonians [11].

In this article we demonstrate that complex tunneling
amplitudes appear naturally in the dynamics of orbital angular
momentum states for a single ultracold atom trapped in 2D
systems of sided coupled cylindrically symmetric identical
traps. We focus on ring-shaped traps, which are currently
implemented for ultracold atoms by means of the optical
dipole force or magnetic trapping. Techniques for the first
case include optically plugging magnetic traps [12], the use of
static Laguerre-Gauss beams [13], painting potentials [14,15],
time-averaged potentials [16], and conical refraction [17].
Alternatively, magnetic rings traps can be implemented us-
ing static magnetic fields [18] and time-averaged magnetic
fields [19], by induction [20] and using radiofrequency
adiabatic potentials [21]. Ring traps for ultracold atoms are one
of the simplest geometries that lead to nontrivial loop circuits
in the emerging field of atomtronics [22], which explores the
use of neutral atoms to build analogues of electronic circuits
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and devices. Specifically, BECs in a ring trap with one [23]
or two [24,25] weak links have been shown to resemble the
physical behavior of superconducting quantum interference
devices (SQUIDs). Atomic SQUIDs in a ring lattice have also
been proposed [26].

Specifically, we consider two 2D in-line ring potentials and
three 2D rings in a triangular configuration. The full dynamics
Hilbert space consists of a set of decoupled manifolds spanned
by ring states with identical vibrational and orbital angular
momentum quantum numbers. Recalling basic geometric sym-
metries of the system, we show that the tunneling amplitudes
between different ring states, named cross-couplings, with
(without) variation of the winding number, are complex (real).
Moreover, we show that a complex self-coupling between
states with opposite winding number within a ring arises
due to the breaking of cylindrical symmetry induced by the
presence of additional rings and that these complex couplings
can be controlled geometrically. Although for two in-line
rings, the complex cross-coupling contribution is shown to
give a nonphysically relevant phase, we demonstrate that, in
a triangular ring configuration, it leads to the possibility of
engineering spatial dark states, which allows manipulating
the transport of angular momentum states via quantum
interference. This triangular trapping configuration may open
a myriad of possibilities when assumed to be the unit cell of a
2D lattice.

II. TWO IN-LINE RING POTENTIALS

We consider a single atom trapped in a 2D system consisting
of two in-line ring potentials of radius r0 separated by a
distance d; see Fig. 1(a). We define the radial coordinate
rj and the azimuthal angle φj with respect to the center of
each ring, where j = L, R accounts for the left and right
potentials, respectively. The angular momentum eigenstates
of each individual ring potential read

�n
j,m(rj ,φj ) = 〈�r|j,m,n〉 = 1√

N
ψm(rj )ein(φj −φ0), (1)

where j = L, R, n = ±l is the winding number with l ∈ N0

being the orbital angular momentum quantum number, ψm(rj )
with m ∈ N0 is the radial part of the wave function for the
m transverse vibrational state, φ0 is a free phase parameter,
defined with respect to the x axis, which sets the azimuthal
phase origin, and N is a normalization constant.
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FIG. 1. (a) Two in-line ring potentials. (b) Sketch of the energy
spectrum of the angular momentum eigenstates |j,m,n〉 for a single
atom trapped in each of the two in-line rings, where j = L, R

indicates the ring, m the transverse vibrational state, n = ±l the
winding quantum number, and l the orbital angular momentum. The
Hamiltonian corresponding to the (m,l) manifold is indicated by Ĥm,l .
(c) Three-ring potentials in an isosceles triangular configuration.

Without loss of generality, we assume ψm(rj ) to be real,
and, thus, the phases of the, in general, complex tunneling
amplitudes will be determined only by φ0. To obtain these
phases, we recall that two identical in-line rings present two
symmetries, the x and the y mirrors defined as

M̂x : (x, y) −→ (x, −y), (2a)

M̂y : (x, y) −→ (−x, y), (2b)

respectively. The effects of such transformations on the angular
momentum eigenstates, Eq. (1), are

M̂x |j,m,n〉 = e−2inφ0 |j,m,−n〉, (3a)

M̂y |j,m,n〉 = e−2inφ0einπ |k,m,−n〉 for j �= k. (3b)

Assuming σm 	 r0 	 d, where σm is the radial width of
the atom in the m vibrational state of any of the two rings, the
total Hamiltonian of the system reads

ĤT =
∑
m�0

Ĥm,0 +
∑
m�0

∑
l>0

Ĥm,l, (4)

where Ĥm,0 accounts for the two-state Hamiltonian associated
to |L,m,0〉 and |R,m,0〉, and Ĥm,l corresponds to the four-
state Hamiltonian (FSH) for the (m,l) combination with l �= 0,
whose basis is formed by four degenerate angular momentum
eigenstates |L,m,±n〉, |R,m,±n〉 [see Fig. 1(b)]:

Ĥm,l = �

2

∑
j,k=L,R

∑
n=±l

[
J

k,n
j,n (m)|j,m,n〉〈k,m,n|

+ J
k,−n
j,n (m)|j,m,n〉〈k,m,−n|], (5)

where (�/2)J j,n

j,n (m) are the eigenenergies of a single atom in

an uncoupled ring, J
j,−n

j,n (m) are the self-coupling tunnelings,

and J
k,−n
j,n (m) and J

k,n
j,n (m) with j �= k are the cross-coupling

tunnelings.
The Hamiltonian describing this system is invariant under

M̂x and M̂y transformations and, consequently, under parity
P̂ = M̂xM̂y . Using the symmetry transformations acting on
the angular momentum states [Eqs. (3)], we obtain that

M̂x : J
k,n
j,n = J

k,−n
j,−n , (6a)

e−2inφ0J
k,−n
j,n = e2inφ0J

k,+n
j,−n , (6b)

M̂y : J
k,n
j,n = J

j,−n

k,−n , J
j,n

j,n = J
k,−n
k,−n for j �= k, (6c)

e−2inφ0J
k,−n
j,n = e2inφ0J

j,n

k,−n for j �= k, (6d)

e−2inφ0J
j,−n

j,n = e2inφ0J
k,n
k,−n for j �= k. (6e)

These relations between the couplings along with the Hermitic-
ity of the Hamiltonian reduce the parameter space to only three
different couplings: a real coupling J

R,n
L,n and two complex

ones J
L,−n
L,n = |JL,−n

L,n |e2inφ0 and J
R,−n
L,n = |JR,−n

L,n |e2inφ0 . For
two rings, we can fix φ0 to any arbitrary value. Thus, for φ0 = 0
all couplings become real, and the four-state Hamiltonian Ĥm,l

reads

Ĥm,l = �

2

⎛
⎜⎜⎜⎜⎜⎝

0 J
L,−n
L,n J

R,n
L,n J

R,−n
L,n

J
L,−n
L,n 0 J

R,−n
L,n J

R,n
L,n

J
R,n
L,n J

R,−n
L,n 0 J

L,−n
L,n

J
R,−n
L,n J

R,n
L,n J

L,−n
L,n 0

⎞
⎟⎟⎟⎟⎟⎠

, (7)

where we have subtracted the common energy from the
diagonal. In fact, the complex nature of the self-couplings
and cross-couplings with winding number exchange does not
play any physical role in the two in-line ring configuration.
However, as detailed below, it will become crucial when
studying the dynamics of more than two coupled rings. Note
also that, although for a single ring J

j,−n

j,n = 0, in the case of
two in-line coupled rings a non-null coupling appears between
opposite winding number states in the same ring. This coupling
emerges due to the breaking of cylindrical symmetry in the
system [27], produced by the presence of the second ring.
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FIG. 2. (a) Temporal evolution of the population of each angular
momentum state involved in the dynamics, ρj,±1 = |〈�(t)|j,0,±1〉|2,
where j = L, R, using the numerically integrated 2D SE (points) and
the FSH [Eq. (7)] (lines). (b) Atomic probability density (upper plots)
and phase distribution (lower plots) of the state of the system at times
A, B, C in panel (a). The phase is plotted only where the probability
density is non-negligible. For the parameters see text.

To numerically investigate the free dynamics of a single
atom of mass M in two in-line rings, Fig. 1(a), we consider
two radially truncated harmonic ring potentials of frequency
ω. The atom is initially trapped in state |L,0,1〉. The distance
between rings is kept fixed during the dynamics at d = 14 and
r0 = 5, all in 1D radial harmonic oscillator (h.o.) units.

Figure 2(a) shows the temporal evolution of the populations
of the four angular momentum states of the (0,1) manifold by
using the FSH [Eq. (7)] and the numerical integration of the
full 2D Schrödinger equation (SE). The perfect agreement
has been achieved by taking J

R,1
L,1 = 3.06 × 10−3, J

R,−1
L,1 =

3.28 × 10−3, and J
L,−1
L,1 = −4.06 × 10−4 in the FSH, in h.o.

units. These values of the tunneling amplitudes for the
FSH have been obtained by numerically constructing the
eigenstates basis of the total system. Then, by taking states with
angular momentum n = ±1 that are degenerate in the basis
|j,0,±1〉 (with j = L,R), we are able to build a FSH whose
diagonalization gives rise to a simple relation between the
eigenenergies of the total system and the tunneling amplitudes
of the mentioned FSH.

The dynamics shows that the population is being initially
transferred from |L,0,1〉 to states |R,0,±1〉 to come back again
[B in Fig. 2(a)] to the left trap but mostly with opposite winding
number, i.e., to state |L,0,−1〉. From the FSH numerical
simulations, we have checked that there are no complete
population oscillations between states |L,0,1〉 and |L,0,−1〉
due to the self-coupling contribution J

L,−1
L,1 . Note that since

the self-coupling appears due the asymmetry of the system
and the cross-coupling has two contributions, the asymmetry
and the tunneling through the kinetic energy term between the

two rings, the tunneling amplitude of the self-coupling is in
general smaller than the cross-coupling. In particular, in our
example the self-coupling is roughly one order of magnitude
smaller than the cross-couplings.

From the integration of the 2D SE, Fig. 2(b) shows the
atomic probability density and the phase distribution at times
A, B, and C in Fig. 2(a). A corresponds to the initial state
|L,0,1〉. In B we observe the appearance of two minima in the
left ring probability density produced by the coexistence of
states |L,0,1〉 and |L,0,−1〉. Finally, C corresponds to the state
formed by an approximately equally weighted superposition of
the four states of the (0,1) manifold. Accordingly, two density
nodes appear in each ring.

III. TRIANGULAR CONFIGURATION

We consider now three identical ring potentials (labeled L,
C, R from left, central, and right) of radius r0 in a triangular
configuration with distances between their centers dCL =
dCR ≡ d and dLR = 2d sin(	/2); see Fig. 1(c). Considering
the angular momentum eigenstates of each ring [Eq. (1)],
the bare energy spectrum of a single atom trapped in any
of the three ring potentials is formed by a set of manifolds
of six degenerate angular momentum states, for each (m,l)
combination with l �= 0, |L,m,±n〉, |C,m,±n〉, and |R,m,±n〉
plus manifolds of three degenerate states of null orbital angular
momentum |L,m,0〉, |C,m,0〉, and |R,m,0〉. Following the
procedure developed for the two in-line rings configuration,
the total Hamiltonian of the system can be written as a direct
sum of the three-state Hamiltonians with l = 0, plus six-state
Hamiltonians (SSHs) for each (m,l) combination with l �= 0.

By assuming that the rings L and R are decoupled, i.e.,
dLR � d, we can describe the system as two sets of two in-
line coupled rings (C-L and C-R). By setting the free phase
parameter φ0 = 0 with respect to the C-L axis, we can use
Eqs. (6) with φ0 = 0 and j,k = L,C to determine the C-L
couplings, which will be real. Similarly, the relations between
the C-R couplings can be obtained using Eqs. (6) with φ0 = 	

and j,k = R,C. Thus, by means of the geometrical parameter
	 one can manipulate the phases of the complex tunnelings.
Using the M̂y symmetry of the three triangular configuration
we find an additional relation:

e−in	J
L,−n
L,n = ein	J

R,n
R,−n, (8)

which relates the two sets of two in-line systems C-L and
C-R. Considering the full system L-C-R, one can see that
the central self-coupling is in fact a combination of the ones
obtained in the two sets of systems, C-L and C-R, and thus, it
becomes J

L,−n
L,+n + J

R,−n
R,+n = J

L,−n
L,+n (1 + e2in	). Note that 	 =

π in Fig. 1(c) corresponds to three in-line ring potentials for
which J

C,−n
C,n = 2|JL,−n

L,n |, while 	 = π/2 corresponds to an

isosceles triangle configuration for which dLR = √
2d, and

J
C,−n
C,n = 0.

Assuming that the self-couplings are negligible compared
to the cross-couplings and taking 	 = (2s + 1)π/2n with s ∈
N, each six-state manifold, for a given (m,l) combination, can
be mapped into two two-level systems |C,m,n〉 ↔ |B+,m〉
and |C,m,−n〉 ↔ |B−,m〉 with the two spatial bright states
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defined as

|B±,m〉 ≡ 1

J

(
J

C,n
L,n |S,m,±n〉 + J

C,−n
L,n |A,m,∓n〉), (9)

plus two spatial dark states decoupled from the dynamics:

|D±,m〉 ≡ 1

J

(
J

C,−n
L,n |S,m,±n〉 − J

C,n
L,n |A,m,∓n〉), (10)

where

|S,m,±n〉 = 1√
2

(|L,m,±n〉 + |R,m,±n〉), (11a)

|A,m,±n〉 = 1√
2

(|L,m,±n〉 − |R,m,±n〉), (11b)

and J =
√
|JC,n

L,n |2 + |JC,−n
L,n |2. From these definitions, it

is straightforward to check that 〈C,m,n|Ĥm,l|D+,m〉 =
〈C,m,−n|Ĥm,l|D−,m〉 = 0 and that the only remaining cou-
plings are 〈C,m,n|Ĥm,l|B+,m〉 = 〈C,m,−n|Ĥm,l|B−,m〉 =√

2J .
To numerically study the free dynamics of a single atom

trapped in a three-ring configuration [Fig. 1(c)], we consider
three harmonic ring potentials of frequency ω centered at the
vertices of an isosceles triangle with 	 = π/2. In Fig. 3(a)
we plot the temporal evolution of the populations of the
angular momentum states |j,0,±1〉, with j = L, C, R, using
the SSH and the numerical integration of the full 2D SE,
with the atom being initially in |C,0,1〉. We observe, as
predicted above, that the population oscillates between states
|C,0,1〉 and |B+,0〉. The values of the couplings in the SSH
are J

C,1
L,1 = 1.12 × 10−3, J

C,−1
L,1 = 1.18 × 10−3, and J

L,−1
L,1 =

−7.76 × 10−5, and we fix r0 = 5 and d = 14.5, in h.o. units.
Note that the ratio between the self-coupling of the lateral
rings and the cross-coupling tunneling amplitudes in this
triangular configuration is smaller than for the two-ring case.
This simply occurs since we are considering a larger distance
and the exponential decay of the self-coupling is faster than
for the cross-coupling. Moreover, as discussed along the
lines following Eq. (8), note that for this particular triangular
geometry the self-coupling contribution of the middle ring is
completely suppressed.

Figure 3(b) shows the density and phase snapshots at times
A and B in Fig. 3(a). A corresponds to the initial state |C,0,1〉.
In B we can see that the initial state has been fully transferred to
the bright state |B+,0〉, as given in Eq. (9), which corresponds
to an almost equally weighted combination of the four states
|L,0,±1〉 and |R,0,±1〉. In Fig. 3(c) we demonstrate the
existence of spatial dark states [Eq. (10)] by using both the
SSH and the numerically integrated 2D SE. Specifically, we
select as initial state |D+,0〉 and let the system evolve freely.
We observe that the dark state remains decoupled from the
dynamics. and, therefore, states |C,0,±1〉 are never populated.

IV. CONCLUSIONS

We have studied the dynamics of the angular momentum
states of a single ultracold atom trapped in 2D systems of
sided coupled identical ring traps. We have demonstrated
that the couplings between states of different rings with
different winding number are complex and that the breaking
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FIG. 3. (a) Temporal evolution of the population of each angular
momentum state involved in the dynamics, ρj,±1 = |〈�(t)|j,0,±1〉|2,
where j = C, L, R, using the numerically integrated 2D SE (points)
and the SSH (lines) when the initial state of the system is |C,0,1〉.
(b) Probability density (upper plots) and phase distribution (lower
plots) of the state of the system at times A and B in panel (a). (c)
Temporal evolution of the population of the dark state |D+,0〉 using
the numerically integrated SE (points) and the SSH (lines) when the
system is initialized in this state. Phase is only plotted where the
probability density is non-negligible. For the parameters see text.

of the cylindrical symmetry induced by the presence of the
neighboring rings produces a complex self-coupling between
angular momentum states with opposite winding number
within the same ring. Worth highlighting is that the results here
derived are solely based in the mirror symmetries that exhibit
sided coupled cylindrically symmetric identical potentials
carrying angular momentum atomic states. Thus, they could be
applied not only to rings but also, for instance, to 2D identical
isotropic harmonic traps. On the other hand, although the
article has been focused on the single atom case, it would
be interesting to extend our results to BECs trapped in ring
potentials to investigate the role of the nonlinearity in the
self and cross-coupling tunneling amplitudes. Note that, even
though most of current experimental setups consider ring radii
larger than those discussed in the article, one of the main
experimental short-term goals in atomtronics is to build-up
smaller rings. For instance, rings with radii of 4 μm were
used to build and investigate a SQUID in Ref. [24]. The
ring radius of our examples shown here would correspond
to approximately 5.6 μm when using the same radial trapping
frequency as in Ref. [24].
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In a triangular ring configuration, we have demonstrated
that the complex nature of the couplings between angular
momentum states yields spatial bright and dark states that
depend on the system’s geometry. Thus, these complex
couplings could be used in 2D trapping configurations, e.g.,
2D optical lattices, of cylindrically symmetric identical traps
to manipulate the dynamics of ultracold atoms by means of
the constructive (destructive) quantum interference associated
with spatial bright (dark) states. Note, finally, that the particular
dynamical evolutions induced by the complex tunnelings

may be inferred through density measurements in current
experimental setups [15,23,26,28].
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