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Collision dynamics of skyrmions in a two-component Bose-Einstein condensate
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The dynamics of skyrmions in a two-component Bose-Einstein condensate is numerically investigated in the
mean-field theory. When two skyrmions collide with each other, they are first united and then scattered into
various states. For head-on collisions, skyrmions with unit winding number are scattered. The collision dynamics
with an impact parameter are shown to depend on the relative phase. These dynamic processes are characterized
by integer winding numbers.
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I. INTRODUCTION

A quantized vortex in a superfluid is a topological excitation
that reflects the U(1) manifold of the order-parameter space.
For multicomponent superfluids with larger degrees of free-
dom in the order-parameter space, there exists a rich variety of
topological excitations, such as spin vortices, monopoles, and
skyrmions [1], which have been realized in superconductors
[2,3], superfluid 3He [4], Bose-Einstein condensates (BECs)
of ultracold gases [5–9], and exciton-polariton superfluids
[10,11].

When two or more topological excitations are generated in
proximity to each other, they can exhibit interesting dynamics.
The simplest example is a quantized vortex-antivortex pair
(called a vortex dipole), which travels at a constant velocity
in a uniform system. Such a topological object in a BEC has
been studied theoretically [12,13] and realized experimentally
[14–17]. A pair of quantized vortices with the same circulation
rotate around one another [18,19]. When two quantized vortex
lines approach each other, they interact with one another
[20], and a reconnection occurs [21,22]. Two copropagating
quantized vortex rings show leapfrogging dynamics [23,24],
such as those in classical fluids, and when they collide with
each other, they merge and split again into vortex rings [24,25].
For multicomponent or spinor BECs, interaction between
half-quantum vortices [26], reconnection of 1/3 vortices [27],
the dynamics of spin-vortex dipoles [28], and generation
of multiple skyrmions [29] have been predicted. Recently,
the collision of half-quantum vortices in a spin-1 BEC was
observed [30].

In the present paper, we investigate the collision and
scattering dynamics of skyrmions in a two-component BEC.
Although the scattering of skyrmions has been studied in the
context of high-energy physics [31–33], previous studies on
skyrmions in a two-component BEC have mainly focused on
their static properties [34–40]. A skyrmion in a two-component
BEC consists of a quantized vortex ring in one component,
whose core is occupied by a quantized vortex of the other
component. A skyrmion therefore travels at a constant velocity,
since a vortex ring has a momentum along the symmetry
axis. Let us consider a situation in which two skyrmions
move toward and collide with each other. The topology of
a skyrmion is characterized by an integer winding number,
and the sum of the winding numbers of the two skyrmions,
W1 + W2, is conserved during their collision, if the wave
functions are always restricted to the SU(2) manifold. When

the winding number is conserved, we find that W1 + W2

skyrmions with unit winding number are scattered after the
collision. We present the collision dynamics of skyrmions
with various winding numbers. For off-axis collisions with
finite impact parameters, we show that the dynamics depends
on the relative phases between the two skyrmions, whereas the
head-on collisions are independent of the relative phases.

This paper is organized as follows. Section II introduces a
skyrmion in a two-component BEC and discusses the problem
that we consider in this paper. Section III shows numerical
results for the dynamics of skyrmions. Section IV presents our
conclusions for this study.

II. FORMULATION OF THE PROBLEM

A. Skyrmion in a two-component BEC

First, we briefly review a skyrmion in a two-component
BEC. The mean-field energy of a two-component BEC in a
three-dimensional (3D) free space is given by

E =
∫

d r
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2∑
j=1

ψ∗
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�
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2mj

∇2ψj +
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|ψj |2|ψj ′ |2

⎞
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(1)
where ψj and mj are the macroscopic wave function and
the mass of the atom of the j th component, respectively.
The interaction coefficient in Eq. (1) is defined as gjj ′ =
2π�

2ajj ′ (m−1
j + m−1

j ′ ), where ajj ′ = aj ′j is the s-wave scat-
tering length between the atoms in components j and j ′.

When g11 � g22 � g12 and the interaction energy is much
larger than the kinetic energy, the total density ρ = |ψ1|2 +
|ψ2|2 is approximately uniform. The wave functions are then
written as

�(r) =
(

ψ1(r)

ψ2(r)

)
= √

ρ

(
ξ1(r)

ξ2(r)

)
, (2)

where |ξ1|2 + |ξ2|2 = 1. The two-component state is thus
described by the SU(2) manifold. A skyrmion is defined as
a topological state in which �(r) goes to the same state �0 at
infinity, i.e., limr→∞ �(r) = �0. Such a state can be described
by a map of SU(2) on the sphere S3 in four-dimensional
(4D) space. (This can be understood from a lower-dimensional
analogy, e.g., a map of SU(2) on the sphere S2 in 3D space:
imagine that the sphere is cut open from a point on the sphere,
and the cut edge is expanded to infinity; this is equivalent to
a two-dimensional (2D) plane satisfying limr→∞ �(r) = �0.)
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Topologically, the way in which SU(2) is mapped onto S3

is expressed by π3(SU(2)) = Z, which indicates that the
skyrmion state is characterized by an integer topological
number.

Separating the complex variables ξj in Eq. (2) into their real
and imaginary parts, ξj = cj + idj , we have |ξ1|2 + |ξ2|2 =
c2

1 + d2
1 + c2

2 + d2
2 = 1, which is a unit sphere in four dimen-

sions. Using polar coordinates as c1 = sin α sin β sin γ , d1 =
sin α sin β cos γ , d2 = sin α cos β, and c2 = cos α, Eq. (2)
becomes

�(r) = √
ρ

(
i sin α(r) sin β(r)e−iγ (r)

cos α(r) + i sin α(r) cos β(r)

)
. (3)

Noting that the area of the unit sphere in four dimensions is∫ π

0 dα
∫ π

0 dβ
∫ 2π

0 dγ sin2 α sin β = 2π2, the number of times
that S3 (3D space) covers SU(2) (two-component state) is
expressed as

W = 1

2π2

∫
d r sin2 α(r) sin β(r)det

(
∂(α,β,γ )

∂(x,y,z)

)
, (4)

where det(· · · ) is the Jacobian. The winding number W is an
integer reflecting π3(SU(2)) = Z. In the numerical analysis, it
is convenient to express the two-component state as

�(r) = √
ρ

(
cos θ(r)

2 eiφ1(r)

sin θ(r)
2 eiφ2(r)

)
. (5)

Since the area of the unit sphere c2
1 + d2

1 + c2
2 + d2

2 = 1 is
written as

∫ π

0 dθ
∫ 2π

0 dφ1
∫ 2π

0 dφ2
1
4 sin θ = 2π2, the winding

number W is given by

W = 1

8π2

∫
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)
, (6)

which is also an integer.

B. Dynamics of the system

In the mean-field approximation, the dynamics of the two-
component BEC is described by the Gross-Pitaevskii (GP)
equation,

i�
∂ψ1

∂t
= − �

2

2m1
∇2ψ1 + g11|ψ1|2ψ1 + g12|ψ2|2ψ1, (7a)

i�
∂ψ2

∂t
= − �

2

2m2
∇2ψ2 + g22|ψ2|2ψ2 + g12|ψ1|2ψ2. (7b)

In the following, we assume m1 = m2 ≡ m and g11 = g22 =
g12 ≡ g. The characteristic length and velocity of the system
are given by the healing length ξ = �/(mgn0)1/2 and sound
velocity vs = (gn0/m)1/2, where n0 is the uniform density
far from the skyrmions. The characteristic time is given by
τ = ξ/vs = �/(gn0).

We numerically solve the GP equation using the pseu-
dospectral method. The initial state of a skyrmion is prepared
as follows. First we numerically imprint a skyrmion as

ψ1(r) = √
n0e

−[(
√

�x2+�y2−Rs )2+�z2]/r2
s einφ, (8a)

ψ2(r) =
√

n0 − |ψ1(r)|2ei�χ , (8b)

where �r = r − r0, and r0 is the center of the
skyrmion, Rs and rs are constants that determine the
shape of the skyrmion, n and � are integers, φ =
arg(�x + i�y), and χ = arg(

√
�x2 + �y2 − Rs + i�z) −

arg(
√

�x2 + �y2 + Rs + i�z). The winding number of the
state in Eqs. (8) is W = n�. We then perform the imaginary-
time propagation for some time (typically 20τ ), in which i on
the left-hand side of Eq. (7) is replaced by −1, and the wave
functions are normalized to their initial values in every time
step. By the imaginary-time propagation, the excess energy of
the skyrmion imprinted by Eqs. (8) is relaxed. Starting from the
wave functions obtained by the imaginary-time propagation,
we perform the real-time propagation to study the dynamics
of the system, where a small initial noise is added to the initial
state to break the symmetry. The size of the numerical mesh
is typically (256)3 or (512)3. The periodic boundary condition
is imposed by the pseudospectral method, which does not
affect the dynamics of skyrmions located near the center of
the numerical space.

III. NUMERICAL RESULTS

A. Dynamics of a single skyrmion

First we numerically investigate the dynamics of a single
skyrmion. The initial state is given by Eqs. (8) with Rs = 20ξ ,
rs = 10ξ , and n = � = 1. Component 1 has a donut shape with
a quantized circulation, which is held by the quantized vortex
ring in component 2, as shown in Fig. 1(a). Since the vortex
ring in component 2 has a momentum, the skyrmion travels
in the −z direction. We find that the shape of the skyrmion
remains almost unchanged for a long time [41].

Figure 1(b) shows the time evolution of the position zs of the
skyrmion and its winding number W . The position zs is defined
as the z coordinate of the core of the vortex ring in component
2. From the slope of zs in Fig. 1(b), the skyrmion is found to
travel at a constant velocity �0.09vs . For a single-component
superfluid, a vortex ring travels at a velocity vr � �

2Rrm
ln 8Rr

rr
,

where Rr is the radius of a ring and rr is the size of the
vortex core [42]. Substituting Rs and rs into Rr and rr , we
obtain vr � 0.07vs , which is in reasonable agreement with
the skyrmion velocity in Fig. 1. The winding number W is
calculated using Eq. (6), which is always �1 during the time
evolution. The deviation from 1 is less than 1%, which is due
to the numerical error from the spatial discretization.

B. Collision dynamics of two skyrmions

We first examine the dynamics of the head-on collision of
two skyrmions, where each winding number is W = 1, and
the total winding number is Wtot = 1 + 1 = 2. Figure 2(a) is
the initial state, with the isodensity surfaces of component 1
shown. The skyrmions travel toward each other, and a head-on
collision occurs at t � 160τ ; at this time, the two rings of
component 1 touch at two regions [Fig. 2(b)]. When the two
rings merge with each other, two quantized vortices are created
on the ring [Fig. 2(c)]. The ring is then divided into pieces, and
the two quantized vortices on the ring become independent
rings, which then become two skyrmions with unit winding
number [Fig. 2(d)]. After that, the two small skyrmions are
scattered in directions perpendicular to the incident directions.
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FIG. 1. Dynamics of a single skyrmion. (a) Cross-sectional
density profiles of component 1 at z = zs (upper panels) and those
of component 2 at y = 0 (lower panels), where zs is the z coordinate
of the position of the vortex-ring core in component 2. The insets
show the phase profiles. The field of view is 128ξ × 128ξ . (b) Time
evolution of zs (red solid line) and the winding number W (blue
dashed line).

The part of component 1 that is not contained in the scattered
skyrmions spreads into the surrounding component 2 without
topological structure, which has disappeared from Fig. 2(d).
In this dynamics, the deviation of the total winding number
Wtot from the initial value of 2 is less than 1%. The variation in
the winding number is due to the roughness of the numerical
mesh.

Figure 3 shows the dynamics of a head-on collision of two
skyrmions with W = 2 (Wtot = 2 + 2 = 4). The two donuts
of component 1 merge to form a multiply connected shape
containing four quantized vortices, as shown in Fig. 3(c).
The four small skyrmions with W = 1 are then scattered in
directions perpendicular to the incident directions. In this
dynamics, the deviation of Wtot from 4 is less than 1%. After the
scattering, we only observe skyrmions with W = 1; skyrmions
with W � 2 are never produced. This is probably because the
energy of n skyrmions with W = 1 is less than that of a single
skyrmion with W = n.

Figure 4 shows the collision of two skyrmions with various
winding numbers. In Fig. 4(a), two skyrmions with W = 3
(Wtot = 3 + 3 = 6) collide with each other, and six skyrmions
with unit winding number are scattered after the collision,
which is similar to the dynamics in Figs. 2 and 3. Figure 4(b)

(a) t = 0 (b) t = 160τ

(c) t = 220τ (d) t = 340τ

y
x

z

−π

π

50ξ

w=1 w=1

w=1 w=1

FIG. 2. Dynamics of a collision and scattering of two skyrmions.
Isodensity surfaces of component 1 at |ψ1|2 = 0.5n0 are shown; the
color represents the phase at the surface. Each skyrmion in (a) has a
winding number W = 1, and the total winding number is Wtot = 2.
The parameters for preparing the initial skyrmions are Rs = 20ξ ,
rs = 10ξ , r0 = (0,0,±20ξ ), n = ±1, and � = ±1. The size of each
box is (128ξ )3. See Ref. [43] for a movie of the dynamics.

(a) t = 0 (b) t = 180τ

(c) t = 260τ (d) t = 360τ
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w=1
w=1

w=1
w=1

y
x

z

50ξ

FIG. 3. Isodensity surfaces of component 1; the color represents
the phase at the surface. Each skyrmion in (a) has winding number
2 (n = ±2 and � = ±1), and the total winding number is Wtot = 4.
Other conditions are the same as those in Fig. 2. See Ref. [43] for a
movie of the dynamics.
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FIG. 4. Isodensity surfaces of component 1; the color represents
the phase at the surface. The initial states of two skyrmions and the
states after their collision are shown. (a) Winding numbers are 3 and 3
(Wtot = 6). (b) Winding numbers are 1 and 2 (Wtot = 3). (c) Winding
numbers are −1 and 2 (Wtot = 1). Other conditions are the same as
those in Fig. 2. All the skyrmions in the right-hand panels have unit
winding number. See Ref. [43] for a movie of the dynamics.

shows the case of skyrmions with different winding numbers,
W = 1 and W = 2 (Wtot = 3). After the collision, the three
skyrmions with unit winding number are scattered. Figure 4(c)
shows the case with W = −1 and W = 2. Since the total
winding number is Wtot = 1, only a single small skyrmion with
unit winding number is left after the collision, where most of
component 1 has spread into component 2 without topological
structure. We also found that a head-on collision between two
skyrmions with Wtot = 0 (for example, W = −1 and W = 1)
generates no topological structure, and component 1 spreads
into component 2 after the collision (data not shown).

Figure 5 shows the dynamics of off-axis collisions of
skyrmions with W = 1, where the impact parameter is 20ξ .
The difference between Figs. 5(a) and 5(b) is only the initial
phase of component 1: component 1 contained in the one
skyrmion is multiplied by eiη with η = π in Fig. 5(b).
When the two donut shapes touch each other in Fig. 5(a),

(b)(a)

y

x
z
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50ξ

w=1

t = 0

t = 240τ
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t = 0

t = 260τ

t = 380τ

w=1

w=1

w=1

w=1

w=1

w=1

w=1
w=1

FIG. 5. Dynamics of off-axis collisions of skyrmions with W = 1
(Wtot = 2) and r0 = (±10ξ,0,±20ξ ) (the impact parameter is 20ξ ).
Isodensity surfaces of component 1 are shown; the color represents
the phase at the surface. The initial phase differences between the two
donut-shaped components are (a) 0 and (b) π . Other conditions are
the same as those in Fig. 2. See Ref. [43] for a movie of the dynamics.

four quantized vortices are created between them (t = 260τ ).
One of these decreases the winding number by 1, and the
remaining three vortices increase the winding number by 3;
thus, the total winding number remains Wtot = 3 − 1 = 2.
As they split into skyrmions with W = ±1, the one with
W = −1 (corresponding to the vortex in the right-hand inset)
disappears; this increases the total winding number by 1, giving
Wtot = 3 (t = 380τ ). The nonconservation of the total winding
number indicates that the total density vanishes at some point,
at which the wave function deviates from the SU(2) manifold.
In Fig. 5(b), one of the initial donuts of component 1 is
multiplied by eiη = eiπ . In this case, two quantized vortices
are created when the two donuts unite (t = 240τ ), and they
are scattered as two skyrmions with W = 1 (t = 480τ ). The
total winding number Wtot = 2 is conserved for the dynamics
in Fig. 5(b).

Thus, the collision dynamics of skyrmions with a finite
impact parameter depends on the initial relative phase η

between the two donuts of component 1. We also found that the
same is true for the oblique collisions. However, for head-on
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collisions as in Figs. 2–4, the initial relative phase η is not
important, since it is described by eiLzη/Wtot�, where Lz is the
z component of the angular momentum operator. Therefore,
when η 
= 0, the entire dynamics is rotated around the z axis.

We have considered so far the case of g11 = g22 = g12. For
a more specific example, we consider |F = 1,mF = 1〉 and
|F = 1,mF = −1〉 states of alkali-metal atoms. In this case,
g11 = g22 ≡ g, and the two components are miscible (g12/g �
0.97) for 23Na atoms and immiscible (g12/g � 1.01) for
87Rb atoms. Using these parameters, we performed numerical
simulations of skyrmion collisions and found that the dynamics
are qualitatively the same as those for g11 = g22 = g12.
However, in a strongly immiscible case with g12/g � 1.1, we
found that the total winding number is not conserved during
collisions, which may be due to the large interface tension. For
example, for Wtot = 2 + 2 = 4, the four quantized vortices as
shown in Fig. 3(c) escape from component 1, which is followed
by the scattering of four objects without topological structures.

IV. CONCLUSIONS

We have numerically investigated the dynamics of collision
and scattering of skyrmions in a two-component BEC. A
skyrmion in a two-component BEC is composed of a quantized
vortex ring in one component, whose donut-shaped core is
occupied by a quantized vortex of the other component. Since
a vortex ring has a momentum, a skyrmion travels at a constant
velocity, as shown in Fig. 1. When two skyrmions are prepared
and collide with each other, various dynamics can be observed;

these depend on the winding numbers, impact parameters,
collision angles, and phase differences. When two skyrmions,
which both have W = 1, collide, they first merge into a
skyrmion with Wtot = 2, and then separate into two skyrmions
with W = 1 and 1 and are scattered (Fig. 2). The scattering
of skyrmions with unit winding number occurs even for a
collision with W = 2 and 2. In this case, four skyrmions with
unit winding number are scattered after the collision (Fig. 3).
Similar dynamics are also observed for Wtot = 3 + 3, Wtot =
1 + 2, and Wtot = −1 + 2 collisions, where, respectively, 6, 3,
and 1 skyrmion(s) with unit winding number are scattered
(Fig. 4). These dynamics imply that Wtot skyrmions with
unit winding number are always scattered following head-on
collisions in which the total winding number is conserved. For
off-axis collisions, the dynamics depends on the relative phase
of the two skyrmions (Fig. 5).

The dynamics of skyrmions studied in this paper can
be reproduced experimentally, if skyrmions are created in
a sufficiently large BEC in a controlled manner. Dynamical
creation of skyrmions in a two-component BEC has been
proposed in Refs. [29,44]. Once two skyrmions are created,
their trajectories may be controllable by external potentials
[13], which would enable us to collide skyrmions at the desired
angle and with the desired impact parameter.
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