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Spectroscopy of ultracold neutrons diffracted by a moving grating
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Spectra of ultracold neutrons that appeared in experiments on neutron diffraction by a moving grating
were measured using the time-of-flight Fourier spectrometer. Diffraction lines of five orders were observed
simultaneously. The obtained data are in good agreement with the theoretical predictions based on the multiwave
dynamical theory of neutron diffraction by a moving grating.
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I. INTRODUCTION

It is known that the neutron is a very convenient object for
the demonstration and investigation of the wave properties of
massive particles. In the majority of performed or proposed
experiments a neutron beam (or a wave) is constant, and
experimental results may be described by the stationary
Schrödinger equation. But neutron optics acquires essentially
new qualities when any parameter describing the interaction
of the neutron wave with an object varies with time. The
nonstationary action on the neutron wave makes it possible to
significantly change its properties, such as energy spectrum,
spin, intensity, phase, direction of propagation, and so on.
Moshinsky [1] was apparently the first to discuss the problem
of nonstationary quantum effects in the optics of massive par-
ticles. He considered the evolution of the wave function after
the instantaneous removal of a perfect absorber from a beam of
monochromatic particles. His result for the wave evolution in
the right half-space coincided in form with the familiar pattern
of the Fresnel diffraction of light at an abrupt edge. That is why
he named the considered phenomenon “diffraction in time.”
Gerasimov and Kazarnovsky [2] considered the possibility
of the observation of a number of nonstationary quantum
phenomena arising from the interaction of ultracold neutrons
(UCNs) with a potential barrier oscillating in time. In a number
of subsequent theoretical [3–11] and experimental [12] studies
the evolution of the neutron flux after transmission through a
fast quantum chopper was investigated in more detail.

The effect of energy quantization of polarized neutrons in
the interaction with the oscillating magnetic field was observed
in the experiment [13]. In Refs. [14,15] a number of neutron
optical phenomena occurring in the reflection and refraction
of neutrons at the interface of the matter with time-dependent
magnetic induction were analyzed theoretically. The reflection
of very cold neutrons from the vibrating surface was observed
in Ref. [16]. At a low vibration frequency this phenomenon can
be considered as a classical one whereas at a high frequency
and small amplitude it becomes essentially quantum.
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Under certain conditions neutron diffraction may also be
considered as a nonstationary phenomenon. In Ref. [17] UCN
diffraction by surface Rayleigh waves was treated as a cause
of inelastic neutron scattering resulting in a decrease in the
neutron storage time in traps. This phenomenon may also be
considered as a Doppler shift of the neutron wave frequency.
About a decade later the diffraction of cold neutrons by surface
acoustic waves generated at the surface of a quartz crystal was
observed [18]. As it followed from the theoretical analysis
the neutron energy shift corresponding to the first diffraction
orders was about 10−7 eV relative to the initial energy. Such a
change in the energy was almost three orders of magnitude less
than the energy itself and was not experimentally measured.
But the intensity and angular distribution of the diffracted
waves were in quite satisfactory agreement with the results of
the quantum calculation.

Neutron Bragg diffraction by a crystal on the surface of
which the acoustic waves were excited was observed as well
[19]. The effect of ultrasound on neutron diffraction by perfect
and mosaic crystals was studied in Refs. [20–23]. Neutron
diffraction by surface waves of viscous fluids was theoretically
analyzed in Refs. [24,25]. This study is related to the problem
of long-term storage of neutrons in traps.

Almost two decades after the publishing of the paper
[17] the effect of neutron energy change in diffraction by a
moving grating was predicted again in Ref. [26]. It was shown
that when the amplitude or phase grating moves across the
neutron beam the grating can act as a quantum modulator
of the neutron wave transforming the spectrum of transmitted
neutrons. As a result the spectrum is characterized by a discrete
set of energies. Shortly afterwards it was proposed to use
moving gratings in a neutron interferometer [27] which might
significantly increase its sensitivity.

The effect of quantum spectrum splitting predicted in
Ref. [26] was observed experimentally [28] and investigated
in more detail in Ref. [29]. An aperiodic moving grating
may serve as a neutron time lens, which can be used for
neutron focusing in time. This possibility was first discussed
in Ref. [30], and neutron time focusing was demonstrated
experimentally later [31,32]. More recently, the possibility
of deceleration and acceleration of neutrons using a blazed
moving grating was discussed [33]. A smooth transition from
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the quantum interpretation of the problem to the classical
one was demonstrated by gradually increasing the size of the
grating which transforms it into a set of macroscopic lenses. It
is worth noting here the theoretical study [34] also was devoted
to the diffraction of neutrons and electromagnetic waves by a
moving grating. In this paper the authors confined themselves
only to the analysis of the possible directions of diffracted
waves in the simplest case of a harmonic grating.

The nonstationary phenomenon of neutron diffraction by a
moving grating has found its application in the experiments
testing the weak equivalence principle for the neutron [35].
The continuation of this research [36,37] and recent theoretical
results [38] have brought us to the understanding of the need
for more detailed investigation of UCN spectra in diffraction
by a moving grating. Unfortunately, the gravity spectrometry
with interference filters used in Refs. [28,29,35–37] has proved
to be inadequate for the problem because it makes it possible
to observe only ±1 diffraction orders.

The most appropriate method for the solution of the
problem appears to be the time-of-flight (TOF) Fourier
spectrometry [39]. For this purpose the spectrometer [37]
has been significantly upgraded and converted into a TOF
Fourier UCN spectrometer. The spectrometer was used for new
measurements of UCN spectra using diffraction by a moving
phase grating. Some results of these measurements with the
comparison with the theoretical prediction are reported in the
present paper.

II. THEORY OF NEUTRON DIFFRACTION
BY A MOVING GRATING

First of all let us show how the motion of the grating leads
to the appearance of a discrete energy spectrum as reported in
Refs. [26,28,29]. Let the wave function of the neutron incident
on the grating have in the laboratory coordinate system the
form

�in(x,z,t) = exp
[
i
(
k0xx + k0zz − ω0t

)]
, (1)

where k0x = MV0x/�, k0z = MV0z/�, and V0x and V0z are the
tangential and normal components of the velocity, respectively,
M is the neutron mass, ћ is the Planck constant, ω0 = �k2

0/2M

is the frequency, and k0 = (k2
0x + k2

0z)
1/2 is the wave number.

Assuming that the grating grooves are directed along the Y
axis we exclude from the consideration the y component of
the wave vector k0y , the presence of which does not affect the
result.

Neutron diffraction by a stationary grating results in the
appearance of plane waves of various orders with x projections
of the wave vectors kmx = k0x + gm, where gm = mg0, g0 =
2π/d is the value of the reciprocal lattice vector, d is the
spatial period of the grating, and m = 0,±1,±2, . . . , are the
integer numbers [see Fig. 1(a)]. Since diffraction scattering
is an elastic process, wave numbers and frequencies of all
diffracted waves are equal: km = k0, ωm = ω0.

Let us assume now that the grating is moving at a constant
velocity Vgr in a positive direction of the X axis. Let us choose
the moving coordinate system comoving with the grating. In
this system neutrons are incident on the grating at a different
angle [see Fig. 1(b)] and have a wave number and energy

FIG. 1. Schematic of neutron diffraction by a grating. (a) Grating
at rest, ωm = ω0, (b) grating moving together with the coordinate
system ωm = ω′, and (c) grating moving in the laboratory coordinate
system ωm = ω0 + m�.

which differ from the values in the laboratory system,

� ′
in(x ′,z,t) = Ain(x ′) exp

[
i
(
k0zz − ω′t

)]
, (2)

where

Ain(x ′) = exp
(
ik′

0xx
′),

k′
0x = k0x − kV , kV = MVgr/�,

ω′ = �k0
′2/2M, k′

0 = (
k′2

0x + k2
0z

)1/2
. (3)

The wave function of diffracted neutrons is now

� ′(x ′,z,t) =
∑
m

am exp[i(k′
mxx

′ + kmz(z − h) − ω′t)], (4)

where h is the thickness of the grating, k′
mx = kmx − kV ,

kmx = k0x + gm, kmz = [
k2

0z + 2(kV − k0x)gm − g2
m

]1/2
,

(5)
For the moment we leave aside the question of the value of

the amplitudes am of corresponding diffraction orders.
As in the case of the stationary grating the wave numbers

k′
m = k′

0 and frequencies ω′ of waves of all diffraction orders
are equal here, but due to the motion of the grating and the
reference system they differ from k0 and ω0, respectively
[Fig. 1(b)]. Relative intensities of the diffraction orders are
defined by the relation Im = |am|2. It should also be noted
that for an arbitrary periodic phase grating, which does not
absorb neutrons, the condition of flux conservation �mIm = 1
is satisfied.

After returning to the laboratory system of coordinates x =
x ′ + Vgr t we obtain the wave function of diffracted neutrons in
the form of the superposition of plain waves with amplitudes
Am, discrete frequencies ωm, and wave vectors km = (kmx,kmz)
[see Fig. 1(c)],

�(x,z,t) =
∑
m

Am exp[i(kmxx + kmzz − ωmt)], (6)

where the projections of wave vectors kmx and km are defined
by (5) and frequencies are ωm = ω0 + m�. The constant of
spectral splitting � is defined by the following equivalent
relations:

� = 2π/τ = g0Vgr, (7)

where τ = d/Vgr .
The relation �m|am|2 = 1 is still valid but no longer

expresses the flux conservation since the wave vectors km
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FIG. 2. Profile of the phase grating.

differ for different diffraction orders. The amplitudes Am in
Eq. (6) may be found from the flux conservation law,

Am = am

[(
k2

0x + k2
0z

)/(
k2
mx + k2

mz

)]1/4
. (8)

In Refs. [26,28,29] the problem of diffraction in the moving
system was analyzed in the framework of the kinematic theory
when amplitudes were taken as Fourier amplitudes of the
complex transmission function of an ideally flat grating. In
Ref. [40] an attempt was made to take into account the real
geometry of the phase grating by modifying its transmission
function. In both cases the kinematic approach leads to the
concept of complete independence of the waves with different
orders m.

In a recent paper [38] the problem of neutron diffraction by
a moving three-dimensional (3D) grating was analyzed in the
framework of the dynamical theory when waves of different
orders interact with each other as they propagate through the
grating material. Below we present some results of this work.

Let the wave with the wave function (1) be incident on the
phase grating with period d and groove depth h (see Fig. 2)
moving along the positive direction of the X axis at a constant
velocity Vgr . As in the above case the problem is analyzed in
the moving coordinate system in which the grating is at rest. In
this coordinate system we are interested only in the coordinate
parts of the wave functions.

Neutron propagation in a medium is described by the
Schrödinger equation,

��(r) + [k2 − χ (r)]�(r) = 0, (9)

where k is the neutron wave number in a vacuum, χ (r) =
4πN (r)b(r), N(r) is the volume density of the nuclei, and b(r)
is the coherent scattering length. Let us expand the function
χ (x), which is periodic in the region 0 � z � h, into a series,

χ (x) =
∞∑

n=−∞
χn exp(ignx), (10)

where gn = ng0, g0 = 2π/d,n = 0,±1,±2, . . . , are integers,
and

χn = 1

d

∫ d

0
χ (x) exp (−ignx)dx. (11)

A zero Fourier amplitude χ0 determines the value of the
average grating refractive index ne = (1 − χ0/k

2)1/2 in a layer
of thickness h. The wave function of neutrons in the region
0 � z � h in the moving coordinate system we can write using

(2) and (3) as the sum of the Bloch functions with amplitudes
�m(z) depending on the vertical coordinate z,

� ′(x ′,z) =
∞∑

m=−∞
�m(z) exp[i(qmxx

′ + q0zz)], (12)

where the projections of the wave vectors are

qmx = k0x − kV + gm, · · · q0z = (
k2

0z − χ0
)1/2

. (13)

Here, it was assumed that the wave number of incoming
neutrons is k′ = (k2

0 + k2
V )1/2, and the average value of q0 in

the material of the grating 0 � z � h is q0 = k′ne.
By inserting (10) and (12) into (9) we equate the terms with

equal exponents and obtain the following infinite system of
coupled differential equations:

d2�m

dz2
+ 2iq0z

d�m

dz
− αm�m −

∑
n�=0

χn�m−n = 0, (14)

where

αm = gm[gm − 2(kV − k0x)]. (15)

The solution of the system (14) in the general case is a rather
difficult problem [41–46]. It can be considerably simplified if
the second derivatives are neglected. It can be shown that the
condition of the smallness of their contribution is the relation
χ1 � 4q2

0z which is valid with the reasonable accuracy in the
experiments [35–37]. As a result, we obtain the following
system of reduced differential equations of the first order:

d�m

dz
= −iγm�m − i

∑
n�=0

βn�m−n, (16)

where γm = αm/2q0z, βn = χn/2q0z. It should be supple-
mented by the following boundary conditions: �0(z = 0) =
1, �m�=0(z = 0) = 0.

It is possible to show that the wave functions �m(z) satisfy
the flux conservation condition

∑∞
m=−∞ |�m(z)|2 = 1 on any

arbitrary plane z, whereas the flux changes from one diffraction
order to another as the coordinate z increases.

The coefficients γm in (16) and hence the functions �m(z)
depend on the grating velocity Vgr , horizontal projection of the
neutron velocity V0x , grating period d, and diffraction order
m. They both vanish at m = 0 and Bragg condition 2kV = qm.

With regard to the neutron wave function in the laboratory
coordinate system in the region of observation z > h it is also
defined by Eqs. (6) and (8) where amplitudes am should be
replaced by the values of �m(z = h) obtained from the solution
of the system of Eqs. (16). The condition Re(kmz) > 0 of the
undamped waves with z projections of the wave vectors kmz

defined by Eq. (5) imposes certain restrictions on possible
values of the grating velocity and diffraction orders. From the
comparison of Eqs. (5) and (15) it follows that this condition
has the form αm < k2

0z.

III. EXPERIMENTAL SETUP AND
MEASUREMENT PROCEDURE

The experiment was performed at the PF2 source of the
Institute Laue-Langevin (Grenoble, France) using the time-of-
flight UCN Fourier spectrometer, which is a modification of
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FIG. 3. Time-of-flight Fourier spectrometer: general view (at the left) and its upper part (at the right): 1— feeding guide, 2—entrance
chamber, 3—annular channel, 4—filter-monochromator, 5—grating, 6—rotor of the Fourier modulator, 7—vertical glass guide, 8—detector,
and 9—vacuum vessel.

the spectrometer [37]. The detailed description of this device
will be published elsewhere. The design of the spectrometer is
illustrated in Fig. 3. Ultracold neutrons are fed to the entrance
chamber through the UCN neutron guide and, after a number
of reflections, fall down the annular channel with the lower
section closed by a monochromator, which is a five-layer Ni-Ti
interference filter. To suppress the background of neutrons with
energies higher than the effective potential of nickel, the filter
monochromator is combined with a multilayer “superwindow”
filter [47,48].

The diffraction grating (see below) is placed just below the
monochromator. The neutron flux formed by the combination
of filters and transformed by the moving grating enters the
spectrometric part of the device. The latter comprises a Fourier
chopper, vertical guide, and detector. The Fourier chopper
consists of a rotating rotor and stator. The rotor is a titanium
disk about 400 mm in diameter and 2-mm thick with 12
windows in the form of sectors (see Fig. 4). The stator is a
titanium diaphragm with only one slit. It is placed at the inlet
section of the vertical neutron guide.

As in Ref. [37] the rotor is driven by a Phytron stepper motor
VSS-65HV located outside the vacuum volume and connected

FIG. 4. Rotor of the Fourier modulator.

to the rotor via a toothed belt and magnetic coupling. The
rotation frequency of the rotor may reach 1800 rpm, which
corresponds to a modulation frequency of 360 Hz. For the use
of the electronic control system an infrared Honeywell sensor
HOA2006-001 and a small slot at the periphery of the rotor are
used. Stability of the rotor rotation frequency is on the order
of 10−4.

UCNs passing through the modulator come to the vertical
neutron guide formed by six 95 × 680-mm float-glass plates
and reach the scintillation detector. The measurement system
registered the time of arrival of pulses from the sensor of the
chopper and from the detector, and these data were recorded
sequentially to a file. The modulation frequency fk ranged
from 6 to 360 Hz. It was increased with a step of 6 Hz (in some
measurements by 12 Hz) and upon reaching the maximum
value decreased again. The duration of each measurement was
usually 1000 s. The count rate was several counts per second.

The collected data were analyzed off line. The analysis
included the determination of amplitude Rk and phases ϕk

of the count rate oscillation for each frequency ωk = 2πfk .
The obtained set of data defined the time-of-flight spectrum in
agreement with the equation,

Iexp(t) = π

2

∑
k

Rk sin(ωkt + φk). (17)

Due to the vertical orientation of the spectrometer and the
effect of the Earth’s gravity the neutron time of flight does
not linearly depend on the initial velocity. For the correct
interpretation of the results it was necessary to recalculate the
TOF spectrum to the energy scale. In addition to the relation
between TOF and energy given by the equation,

E = M

2

(
H 2

t2
− gH + g2t2

4

)
, (18)

it was also necessary to take into account the nonlinear relation
between the widths of energy and time channels on the abscissa
axis. The relation between Nt and NE values, which were
proportional to the number of counts in time and energy

033606-4



SPECTROSCOPY OF ULTRACOLD NEUTRONS . . . PHYSICAL REVIEW A 93, 033606 (2016)

FIG. 5. Diffraction grating: dimensions and orientation of grooves.

channels, is given by

NE = Nt

[
M

(
H 2

t3
− g2t

4

)]−1

, (19)

where M is the neutron mass, g is the free fall gravity
acceleration, and H is the difference in height between the
Fourier modulator and the detector. The latter was 72.5 cm the
sentence. Equation (19) is valid when the time resolution of
Fourier spectrometer much better then the widths of the initial
spectrum lines.

IV. DIFFRACTION GRATING

As in Refs. [28,29,35–37] the diffraction grating was
prepared on the surface of a silicon disk 150 mm in diameter
and 0.6-mm thick. Radial grooves (see Figs. 2 and 5) were
made in the peripheral region of the disk, which is a ring with
an average diameter of 12 cm and a width of about 2 cm. The
widths of the grooves are proportional to the radius, and this
proportionality ensures a constant angular distance between
the grooves equal to a half period. The angular period of the
structure is exactly known to be α = 2π/N with N = 94 500.
The design depth of the grooves of 0.144 nm was chosen to
ensure a phase difference �ϕ = π between the neutron waves
passing through the neighboring elements of the grating. The
grating was manufactured by Qudos Technology Ltd.1

The grating was examined using an atomic force micro-
scope. Two fragments of the grating positioned at different
distances from the center were scanned. The image of one of
these fragments is shown in Fig. 6. Each of the two fragments
was investigated in four cross sections. The profile in each
cross section was plotted for subsequent analysis as that shown
in Figs. 7 and 8. The following parameters were measured:
width of the tooth at the top and bottom, width of the groove at

1Qudos Technology Ltd., Rutherford Appleton Laboratory, OX11
0QX Chilton, U.K.

FIG. 6. Three-dimensional image of the grating fragment ob-
tained with an atomic force microscope.

the top and bottom, and period of the grating in the planes of
the tops and bottoms of the tooth and depth of the groove. The
obtained data were averaged. The typical number of averaged
measurements was 15–20.

As a result, the following data were obtained. The periods
of the grating in the investigated regions were 4.25(1) and
3.40(1) μm. These data are quite reasonable but do not carry
important information because the absolute coordinates of the
fragments were not determined. The visible profile of the
groove is not exactly rectangular and the groove tapers with
depth. This taper is about 50 nm, which corresponds to the ex-
pected systematic error of the method. It can be concluded with
sufficient confidence that the difference from the rectangular
profile, if it really exists, is small. The measured depth of the
grooves was 141(2) and 151(2) nm for both fragments, which
is in quite satisfactory agreement with the design value of
144 ± 5 nm. For the ratio of the tooth-to-groove widths
measured on the plane of the tooth tops the value of ζ =
0.817(2) was obtained for both fragments.

FIG. 7. Two-dimensional image of the grating fragment and the
line showing how the cross section was done for the subsequent
analysis.
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FIG. 8. Grating profile measured along the line shown in Fig. 6.

V. MEASURED ENERGY SPECTRA AND COMPARISON
WITH THE THEORY

Energy spectra of UCN passing through the grating were
measured both for the grating at rest and for the grating rotating
at frequencies of 1500, 3600, and 4800 rpm. With the fixed and
specified number of grooves N the expected value of the energy
splitting is �E = 2π�Nf where f is the rotation frequency.
Time-of-flight spectra reconstructed in accordance with (17)
were then recalculated into the energy scale using Eqs. (18)
and (19).

Theoretically calculated spectra were obtained using the
above equations of the dynamical theory of diffraction. The
system of Eqs. (16) was solved numerically using the Runge-
Kutta fourth-order method. To simplify the calculations, it
was assumed that the grating has a linear structure rather
than a radial one. The following parameters were used for
the calculations. The grating period and its linear velocity
were obtained as d = 2πR/N and V = 2 πf Rcm s where
R = 6 cm. The height of the tooth was h = 145 nm, and the
tooth width-to-period ratio was ξ = 0.45.

The normal component of the neutron velocity at the
surface of the grating was taken to be Vz = 4.67 m s (energy of
114 neV) which corresponds to the position of the maximum
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FIG. 10. Calculated transmission spectrum of the filter
monochromator. It is known that the real spectrum slightly differs
from the calculated one.

of the monochromator transmission spectrum measured earlier
by the time-of-flight method. The distribution of the velocity
Vz was assumed to be a Gaussian with the degree of
monochromatization �Vz/Vz = 0.0175, where �Vz is the
FWHM of the distribution. The dependence of the resolution
on the time of flight was neglected. The poorly known spectrum
of horizontal velocities was also assumed to have a Gaussian
distribution with a zero average value and a FWHM equal to
3 m s.

Figure 9 shows the TOF spectrum of the UCN passing
through the stationary grating and its corresponding energy
spectrum. In addition to the main peak one can also clearly
see a small peak at an energy of 255 neV. Apparently, this is a
peak at the energy slightly higher than the value of the potential
(see Fig. 10) significantly suppressed by the transmission of
the superwindow.

Figure 11 illustrates the main results of the experiment.
The obtained time and energy UCN spectra measured at three
rotation velocities of the grating are displayed together with
the results of the calculation. The absolute normalization of
the spectra was performed for better visualization purposes.
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FIG. 9. TOF spectrum (at the left) and energy spectra of UCNs passing through the stationary grating.
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FIG. 11. Time-of-flight (at the left) and energy (at the right) spectra of neutrons diffracted by a moving grating measured at different
rotation frequencies. Experimental (red solid line) and theoretical (blue dotted line) spectra are shown.

VI. CONCLUSION

As noted in the Introduction the nonstationary splitting
of neutron spectra by a moving grating was first observed
in Refs. [28,29]. The results of those first experiments were
in good agreement with the theoretical predictions based on
the simplest kinematic approach. In this theory only odd
diffraction orders may appear in the spectrum, and the intensity
of ±1 orders should amount in aggregate to about 80% of the
total intensity.

The intention to increase the energy splitting of spectra
stimulated the use of gratings with a much smaller spatial
period. In Ref. [41] it was supposed that as the ratio of the
grating velocity to its period decreases, the intensity of the
first-order line diminishes, and the intensity of even orders
(including zero) grows. The qualitative confirmation of these
considerations was obtained later, and the expected presence
of even orders posed serious systematic problems in the
experiment [37]. It became evident that the phenomenon of
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neutron diffraction by a moving grating should be investigated
in more detail. The results of Ref. [38] contributed to a
better understanding of the theoretical aspects of the phe-
nomenon. The present paper is a next step in its experimental
investigation.

UCN spectra appeared in the experiments on neutron
diffraction by a moving grating were measured using the
time-of-flight Fourier spectrometer. The diffraction lines of
five orders were observed simultaneously. Despite the fact that
the first measurements were made with not very high statistics
the results allow a reliable comparison with the theoretical

prediction. The obtained data testify that the experiment is in
rather satisfactory agreement with the theoretical predictions
based on the multiwave dynamical theory of neutron diffrac-
tion in the approximation of slowly changing amplitudes [38].
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