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Persistent currents in coherently coupled Bose-Einstein condensates in a ring trap
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We study the stability of persistent currents in a coherently coupled quasi-two-dimensional Bose-Einstein
condensate confined in a ring trap at T = 0. By numerically solving Gross-Pitaevskii equations and by analyzing
the excitation spectrum obtained from diagonalization of the Bogoliubov–de Gennes matrix, we describe the
mechanisms responsible for the decay of the persistent currents depending on the values of the interaction coupling
constants and the Rabi frequency. When the unpolarized system decays due to an energetic instability in the
density channel, the spectrum may develop a rotonlike minimum, which gives rise to the finite wavelength
excitation necessary for vortex nucleation at the inner surface. When decay in the unpolarized system is
driven by spin-density excitations, the finite wavelength naturally arises from the existence of a gap in the
excitation spectrum. In the polarized phase of the coherently coupled condensate, there is a hybridization of the
excitation modes that leads to complex decay dynamics. In particular, close to the phase transition, a state of
broken rotational symmetry is found to be stationary and stable.
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I. INTRODUCTION

Persistent currents have been one of landmarks of quantum
fluids since their discovery. The emergence of a complex
order parameter below the superfluid phase transition leads
to the quantization of the circulation of the superfluid velocity.
In superconductors, since it is charged particles that move,
this property is related to the quantization of magnetic
flux and has led, among other applications, to the creation
of superconducting quantum interference devices (SQUIDs;
see for instance [1]), which are present nowadays in many
laboratories. Helium superfluids behave in an analogous way,
but it is now a neutral current of atoms that flows, allowing
for instance for the Hess-Fairbank effect (equivalent to the
Meissner effect in superconductors; see for instance [2]), or
for proposals of precise rotation sensors (equivalent to SQUIDs
in superconductors; see for instance [3]).

Bose-Einstein condensates (BECs) offer a unique frame-
work to study persistent currents, since the absence of electric
charge and normal components (if cooled down well below the
critical temperature) allows one to isolate the effects arising
from the purely quantum nature of the fluid. From a theoretical
point of view, the decay of persistent currents is linked to the
energetic Landau instability of a moving superfluid, which
in a ring geometry is closely related to Bloch’s argument
[4] for the disappearance of metastable states. In somehow
related pictures, this metastability of the persistent currents
can be linked to the presence of energy barriers between states
with different angular momentum [5–7] or to the coupling
to surface modes [8,9]. Persistent currents in BECs have
been observed experimentally [10–13], and their decay has
been seen to be driven by a combination of flow instabilities
and stochastic events [11]. This physics is slightly different
from the decay of the superfluid flow through a weak link,
where the instabilities are triggered within the barrier region,
and is the subject of extensive theoretical and experimental
investigation [14–20]. Analogously to superconductors and
helium superfluids, research is advancing towards the creation
of atomic SQUID-like interferometers [21–26], which due
to the diversity of interactions in BECs could even have a
self-induced character [27].

We consider persistent currents in a special kind of
BEC: a coherently coupled two-component condensate, where
population transfer between two hyperfine levels is allowed via
Raman transitions. This system is at the basis of more complex
systems such as spin-orbit coupled BECs, and presents unique
features (for a review, see [28] and references therein). In
particular, the ground state shows a magneticlike transition
between neutral and polarized states and the excitation
spectrum in free space is characterized by two modes: a gapless
soundlike mode and a gapped mode that show density or spin-
density characters or a combination of both (hybridization).
These features play a very important role in the stability
and decay of persistent currents, which differ substantially
from binary mixtures [29–34] and can help us understand
superfluidity in systems characterized by more complex order
parameters.

Coherently coupled two-component condensates have re-
ceived strong attention. In particular, several superfluid prop-
erties have been addressed, such as internal Josephson effect
[35], split vortices [36] and domain walls [37], vortex lattices
[38], phase winding in the presence of Rabi coupling [39], soli-
ton [40] and vortex [41] dynamics arising from counterflow,
dipole oscillations [42], dynamics following a quench [43], and
vortices and persistent currents in state-selective potentials of
different geometries [44].

In this work we concentrate on the stability and decay
of stationary persistent currents when both components are
trapped in a ring-shaped potential. We characterize the stability
conditions and decay dynamics by solving the Gross-Pitaevskii
equation and analyzing the linearized excitation spectrum
given by the fully numerical Bogoliubov–de Gennes equations.
We study the decay mechanisms both in the neutral and the po-
larized phases, and understand them in terms of energetically
unstable modes propagating along the azimuthal direction. We
discuss the difference in behavior when decay is induced by
pure density or pure spin excitations, showing that in the former
case the spectrum acquires a rotonlike structure that allows the
formation of the vortices responsible for phase slippage, while
in the latter case the vortices are formed directly at the mini-
mum of the Doppler-shifted spectrum. In the polarized phase
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we go from a situation far from the phase transition where
excitations assume a single-component character, to a situation
close to the phase transition where there is a breaking of the
rotational symmetry and the system develops striking density
structures, which are stable and stationary configurations.

The article is organized as follows. In Sec. II we describe the
theoretical framework in which the work is carried out, namely
the mean-field Gross-Pitaevskii equation and Bogoliubov–de
Gennes equations for linear perturbations. In Sec. III we
describe the ground state of the coherently coupled BEC in a
ring trap. In Secs. IV and V the stability of persistent currents is
studied, respectively, in the neutral and polarized ground states.
Finally, further discussions and the conclusions are drawn in
Sec. VI.

II. THEORETICAL FRAMEWORK

A. Gross-Pitaevskii equation

We consider a T = 0 Bose-Einstein condensate that con-
sists of two hyperfine states coherently coupled by a Rabi fre-
quency, in the regime of tight axial harmonic trapping, where
the system can be effectively considered two dimensional
(2D). Within mean-field regime this system is described (in the
rotating wave approximation) by the coupled Gross-Pitaevskii
equations (GP)

i�
∂�1

∂t
=

[
− �

2

2m
∇2 + V1 + g11|�1|2 + g12|�2|2

]
�1

+ ��R�2, (1)

i�
∂�2

∂t
=

[
− �

2

2m
∇2 + V2 + g22|�2|2 + g12|�1|2

]
�2

+ ��R�1, (2)

where �α are the wave functions of components α = 1,2,
Vα ≡ V are the external trapping potentials, gαα and g12 are
respectively the intra- and interspecies coupling constants, and
2�R is the generalized Rabi frequency given by the interaction
of the atoms with the laser fields. In this setup �R is positive
and real [45], uniform in space and constant in time, thus not
leading to any spin-orbit couplings. After integration along the
axial direction, the interaction constants relate to the scattering
lengths as gγ = √

8πλaγ �ω⊥a⊥ (γ = 11,22,12), with aγ the
3D s-wave scattering length, λ = ωz/ω⊥ the trap asymmetry,
a⊥ = √

�/mω⊥ the radial oscillator length, and ω⊥ and ωz the
radial and axial harmonic trap frequencies. The ring potential
is simulated as a harmonic plus Gaussian potential,

V = 1
2mω2

⊥r2
⊥ + V0e

−2r2
⊥/σ 2

0 , (3)

where r2
⊥ = x2 + y2, and V0 and σ0 are given by the laser

intensity and the beam waist of the laser digging the hole. In the
simulations we have fixed the following values of the dimen-
sionless parameters: V0 = 200 �ω⊥, σ0 = 1 a⊥, g11 = g22 �
3.48 × 10−3

�ω⊥a2
⊥, and a total number of particles N = 105.

Different values of g12 and �R have been used to explore
the different regimes of the system. These parameters allow
us to explore a regime in the way between the noninteracting
system (Gaussian wave functions) and the Thomas-Fermi limit
(inverted parabola wave functions), which is more similar to

what one may have in a three-dimensional system. Examples
of configurations with the same quantitative behavior (with the
corresponding normalization of the densities) are as follows:
a 87Rb condensate with ω⊥ = 200 × 2π s−1, λ = 100, N �
1000, and a11 = a12 � 100 aB ; or a 23Na condensate with
ω⊥ = 20 × 2π s−1, λ = 1000, N � 10 000, and a11 = a12 �
50 aB . Notice that the size of the ring does not affect the
qualitative behavior of the system. Indeed, it is generalizable
to other laser parameters and interaction coupling constants
(the relevant quantity being gγ N ): a larger radius tends to shift
the decay towards higher values of the winding number, while
higher interactions tend to lead to a more pronounced rotonlike
minimum.

This system has spinor character, and the order parameter
in the superfluid phase is given by � = (�1,�2)T . There is
only one broken U(1) symmetry, which in particular means
that the stationary states take the form

(
�1(r,t)
�2(r,t)

)
=

(
ψ1(r)
ψ2(r)

)
e−iμt/�, (4)

where μ is the chemical potential. This is in contrast to binary
mixtures (where �R = 0), where there are two coexisting
condensates, that is two broken U(1) symmetries, and one
can define a chemical potential for each component since
the numbers of particles are conserved separately. This leads
to a huge conceptual difference between coherently coupled
BECs and binary mixtures [28]. In particular the presence
of the linear coupling �R changes the order of the phase
transition from first order (demixing instability in binary
mixtures) to second order (ferromagneticlike transition in
the coherently coupled case), leading to a finite polarization
instead of phase separation. This is seen to be the case both
in the mean-field regime (homogeneous and trapped) and in
the purely quantum regime of strong correlations in optical
lattices [46,47].

The numerical simulations presented here are performed
in a grid of 256 × 256 points, with a spacing of 0.06a⊥
in both directions (in some particular cases, we have also
run the simulations in a grid of 512 × 512 and spacing of
0.04a⊥ to check the accuracy of the original grid, finding
very good agreement). Equations (1) and (2) are numerically
solved in imaginary time to find the metastable solutions for
different values of the winding number, κ , characterizing the
persistent currents. This is done without any constraint during
evolution, but imprinting the desired value of κ in the initial
trial wave function. The real-time dynamics are performed
using a Hamming’s algorithm (predictor, corrector, modifier)
initialized by a fourth-order Runge-Kutta method, checking
that both the energy and number of particles are conserved
throughout the simulation. In order to study dissipative
dynamics (necessary to simulate energetic instabilities) we
have added a small real term in the left-hand side of Eqs. (1)
and (2), that is i∂t → (i − γ )∂t , with γ = 0.03 [32,33]. This
term (which can be thought of as a small imaginary time
component) simulates a coupling to a reservoir (for instance,
the thermal cloud) that can remove energy from the system.
To isolate the effects of dissipation, the wave function is
renormalized at each time step.
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B. Bogoliubov–de Gennes excitations

The linear stability analysis of the stationary solutions
to Eqs. (1) and (2) is done by applying the Bogoliubov
prescription to the time-dependent wave functions �α ,
that is

�α(r,t) = [ψα(r) + δ�α(r,t)]e−iμt/�, (5)

with ψα the converged wave functions obtained from imag-
inary time propagation of Eqs. (1) and (2), and α =
1,2. Substituting these Ansätze (and the corresponding

complex conjugates) into Eqs. (1) and (2) and keeping terms up
to first order in δ�α we find a set of equations, usually referred
to as Bogoliubov–de Gennes (BdG), that can be written in
matrix form as

i�
∂

∂t

⎛
⎜⎝

δ�1

δ�∗
1

δ�2

δ�∗
2

⎞
⎟⎠ = L

⎛
⎜⎝

δ�1

δ�∗
1

δ�2

δ�∗
2

⎞
⎟⎠, (6)

where the differential operator L is given by

L =

⎛
⎜⎜⎝

h1 g11(ψ1)2 g12ψ1ψ
∗
2 + ��R g12ψ1ψ2

−g11(ψ∗
1 )2 −h1 −g12ψ

∗
1 ψ∗

2 −g12ψ
∗
1 ψ2 − ��R

g12ψ
∗
1 ψ2 + ��R g12ψ1ψ2 h2 g22(ψ2)2

−g12ψ
∗
1 ψ∗

2 −g12ψ1ψ
∗
2 − ��R −g22(ψ∗

2 )2 −h2

⎞
⎟⎟⎠ (7)

with the diagonal terms given by

h1 = − �
2

2m
∇2 + V1 + 2g11n1 + g12n2 − μ, (8)

h2 = − �
2

2m
∇2 + V2 + 2g22n2 + g12n1 − μ . (9)

The operatorL is a space-dependent, nonlinear, non-Hermitian
operator with well-known properties (see for instance [48]).

In homogeneous space, the perturbations δ�α can be
expanded in a plane-wave basis, ∼ ei(k·r−ωt), and one can find
analytical solutions to the eigenvalue problem [28,49–51].

In the trapped system the solutions are in general not
analytic and one has to solve the eigenvalue problem with
numerical methods. In the most general case, the perturbations
are expanded as⎛

⎜⎝
δ�1(r,t)
δ�∗

1 (r,t)
δ�2(r,t)
δ�∗

2 (r,t)

⎞
⎟⎠ ∼

⎛
⎜⎝
U1(r)
V1(r)
U2(r)
V2(r)

⎞
⎟⎠e−iωt (10)

and diagonalization of L yields a set of eigenvectors
(U1,V1,U2,V2)T and corresponding eigenvalues ω. Numer-
ically this can be done by writing the differential term
∇2 appearing in L using a second-order finite-difference
approximation and writing the matrix L in a spatial basis. For
a calculation grid of 256 × 256 points in x and y directions,
the dimensions of the (sparse) matrix L are 218 × 218. We use
the Lanczos method to diagonalize such a matrix, which is
implemented in the function eigs of MATLAB.

After diagonalization, the eigenvectors are normalized as∫
dr(|U1|2 − |V1|2 + |U2|2 − |V2|2) = ±1 . (11)

Positive-norm eigenvectors correspond (in our notation) to
the physical solutions of the problem, while negative norm
eigenvectors will be discarded. With this choice, negative
frequencies indicate energetic instabilities of the system,
and imaginary or complex frequencies represent dynamical
instabilities (see, for instance, [48]). Notice that for purely
imaginary eigenvalues, which indicate dynamical instability,
the normalization above is zero. In addition, there is a mode

with eigenvalue ω = 0 and zero norm that represents the gauge
mode, which can be understood as a global phase excitation
of the reference state ψ , but that has no physical effect. For
completeness, we will show this mode in all the spectra.

The eigenvector components Uα and Vα give important
information on the nature of the excitations. In the absence of
phase gradients in the reference state and for stable modes, the
eigenvectors are real. When currents are present with winding
number κ , instead, the eigenvectors become complex. In
rotationally symmetric systems, they can be characterized by
the azimuthal quantum number �. The phase of the eigenvector
components then shows vortexlike patterns with winding
number �U = � + κ , �V = � − κ , where �U and �V indicate
the winding numbers exhibited by the components U and V
of a particular eigenvector. In addition, the eigenvectors may
show radial nodes with quantum number n⊥. In this work
we focus on the modes with n⊥ = 0, which are the lowest in
energy and the ones driving the decay.

The dynamical evolution of �α is a result of a combination
of Bogoliubov modes. However, to understand the effect of a
particular eigenmode, it is convenient to write the perturbation
that it creates on the wave function as

�α(r,t) ∼ ψα(r) + ε[Uα(r)e−iωt + V∗
α(r)eiωt ] (12)

with α = 1,2 and ε a number quantifying the proportion of
perturbation added to the reference state wave function (ε 

1 to remain in the Bogoliubov regime). This representation
of the modes is very convenient to understand the change
in the condensate wave function due to a particular excitation.
The above expression, moreover, can be used as initial wave
function in the dynamics of Eqs. (1) and (2) to facilitate the
development of excitations.

III. GROUND-STATE STRUCTURE

Following the notation in Ref. [28], when g11 = g22 ≡ g,
the ground state of the system is characterized by the presence
of a neutral (GS1) and a polarized (GS2) configurations. The
phase transition between the two is of the second order and
in the homogeneous system it takes place when the equality
g12 = g + 2��R/n is satisfied, with n the total density,
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FIG. 1. (a) Polarization phase transition in the ring trap, for
g12 = 1.5g. Bottom panels: Examples of the density profiles along
the x direction through the phase transition: (b) �R = 1ω⊥, (c) �R =
1.5ω⊥, (d) �R = 1.75ω⊥, (e) �R = 2ω⊥. Majority and minority
components are plotted as solid and dashed lines, respectively.

n1 = n2 ≡ n/2. This allows us to introduce a critical value
for one of the parameters g12, g, or �R . In this work we will
choose the latter one, therefore we will have

�c = n

2�
(g12 − g). (13)

The system is in GS1 when �R � �c, and in GS2 otherwise.
The condition g11 �= g22 has the effect of creating a permanent
polarization in the condensate and the behavior of the system
in a way resembles that in GS2. For the sake of simplicity
and clarity, we will restrict here to the case where the
intracomponent interaction coupling constants are equal.

In the presence of an external trap the density depends on
position, n(r), and the equality above is reached for some value
r = Rc. This means that in a confined system if �R < �c

the two phases GS1 and GS2 coexist, with the GS1 phase
at the surface of the condensate [28]. The global GS1-GS2
transition can still be characterized by the polarization of the
system, P = (N1 − N2)/N , where N1 and N2 are the numbers
of particles in components 1 and 2, respectively. This quantity
is shown in the top panel of Fig. 1 as a function of �R for
the ring trap. Examples of ground-state densities for different
values of �R can be seen in the bottom panels of Fig. 1. We
can clearly see that in the ring trap there exist two critical radii
R±

c where the transition from GS1 to GS2 takes place. Notice
that in the ground state there is always a π phase shift between
the phases of the wave functions for components 1 and 2, since
we take �R > 0.

The lowest-lying excitation frequencies of the ground state
across the phase transition are shown in Fig. 2. For these
modes there are small hybridization effects, and they can still
be recognized as density and spin modes. In the limit of small
�R they tend to majority and minority component modes,
respectively. The density modes (solid lines) keep almost
constant values as �R increases for the low-lying modes shown

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
ΩR / ω⊥

0

0.5

1.0

1.5

2.0

2.5

3.0

ω
 / 

ω
⊥

GS2 GS1

FIG. 2. Lowest lying azimuthal (n⊥ = 0) excitations of the
ground state in the ring trap, for g12 = 1.5g. Solid lines show the
density mode, while dashed lines represent the spin-density mode.
From bottom to top the solid and dashed lines correspond to the
modes with � = 0,−1,−2,−3,−4.

in the figure. Instead, the spin modes vary strongly with �R .
In particular, the � = 0 spin mode (gap in the homogeneous
case) drives the phase transition, which takes place around
�c ∼ 1.8 ω⊥, in agreement with the global polarization plot,
Fig. 1. Using Eq. (13), the critical value for the maximum
density is predicted at �c ∼ 2.1ω⊥.

IV. STABILITY OF PERSISTENT CURRENTS IN GS1

In the GS1 phase, the criterion of stability of persistent
currents is very similar to that of single component conden-
sates, and it is related to energetic instabilities of the flow in
the azimuthal direction when its velocity exceeds the Landau
critical velocity. In the homogeneous (V = 0) system at rest,
the density and spin modes are given, respectively, by [28]

(�ωd )2 = �
2k2

2m

(
�

2k2

2m
+ (g + g12)n

)
, (14)

(�ωs)
2 = �

2k2

2m

(
�

2k2

2m
+ (g − g12)n + 4��R

)

+ 2��R[(g − g12)n + 2��R]. (15)

Notice that the spin mode supports a dynamical instability,
which occurs at the transition point between the GS1 and GS2
phases; see Eq. (13). In the presence of currents, the excitation
frequencies acquire a shift due to the Doppler effect ω′ → ω +
kv, with k the wave vector and v the superfluid velocity. When
the Doppler-shifted frequency fulfills ω′ = 0 for some value
of k, the currents become energetically unstable. This happens
when the flow velocity reaches either the speed of sound of
the density mode or the Landau velocity corresponding to the
spin mode, respectively given by

cd =
√

(g + g12)n

2m
, (16)

v
(s)
L ≡ min[ωs(k)/k] =

√
�ωJ

m
+ (g − g12)n + 4��R

2m
, (17)
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where we have introduced the gap frequency (related to the
internal Josephson frequency in the small amplitude limit),

�ωJ =
√

2��R[(g − g12)n + 2��R]. (18)

Depending on the values of the parameters, instabilities will be
driven by density or spin-density excitations. In the absence of
any polarization these two excitation channels are completely
decoupled.

If there is rotational symmetry, the excitation spectrum
in the azimuthal direction of the ring trap is very similar to
the Bogoliubov spectrum in free space, the main difference
being that now the quasimomenta and the flow velocities
are quantized due to the periodicity inherent in the ring
trap. These two quantities can be written, respectively, in
terms of the quantum number � characterizing the azimuthal
excitations, k = 2π�/R, and the winding number κ charac-
terizing the persistent current, v = �κ/mR, with R the radius
of the ring. In addition, the transverse degrees of freedom
reduce the excitation frequency by a factor up to

√
2/3 in the

Thomas-Fermi limit [33].
In the following we will analyze the decay of the currents

in each of the modes in more detail, using numerical results
obtained from BdG and GP.

A. Instability driven by the density mode

For large values of �R the gap in the spin mode is so large
that it is the density mode that becomes energetically unstable
first. The left panel of Fig. 3 shows examples of excitation
spectra in this regime, for different values of κ . The upper and
lower panels correspond, respectively, to the density and spin-
density modes and the excitation frequencies are plotted as a
function of �. The case κ = 0 corresponds to the ground state.
For κ > 0 we can see that the dispersion relations bend due
to the Doppler shift and ωd becomes negative for high enough
κ . From Eq. (16), we find that the sound velocity written
in dimensionless form takes the value

√
2/3cdRm/� ∼ 4.5,

FIG. 3. Spectrum corresponding to azimuthal modes in GS1.
Left panels: instability driven by the density mode, for g12 = 1.5g,
�R = 3.5ω⊥; right panels: instability driven by the spin mode, for
g12 = 0.5g, �R = 0.1ω⊥. Top panels show the spectrum of density
excitations ωd , while the bottom panels show the spectrum of spin
excitations ωs . Lines have been drawn as a guide to the eye.

which is in agreement with the numerical results. The radius
R has been taken as that of the maximum density. Notice that,
contrary to the homogeneous case, the gap in the spin mode
shows a dependence on the winding number. This is a result
of the density dependence on the winding number in a ring
trap (experimentally studied in [11] for a single component
condensate).

For high enough winding number, close to instability, a
rotonlike structure is seen to appear in the spectrum of the
density mode. Its appearance has the effect of shifting the
critical velocity to a finite wave vector, and thus to lower its
critical value compared to the homogeneous result Eq. (16).
The rotonlike structure is not inherent in two-component
systems but has been seen to appear as well in single
components [8] and spinor F = 1 systems [9]. It has been
argued in [8] that it comes from a coupling of the Bogoliubov
mode to a surface mode [52,53] localized in the internal surface
of the ring. We have found that the roton minimum is more
pronounced when the system is in the Thomas-Fermi limit in
the radial direction, while it disappears when the system tends
to a Gaussian wave function. Indeed, in the limit of vanishing
interactions the GP equations become Schrödinger equations
and, due to the absence of the nonlinearity, the finite κ states
cannot break their symmetry and decay by shedding vortices.

To better understand the nature of the roton mode in the
two-component system, we have looked at how the modes
affect the wave functions �α(r,t), following Eq. (12). An
example is shown in Fig. 4 for an excitation corresponding
to the rotonlike minimum (n⊥ = 0, � = −4) on top of the
wave fuction with κ = 5. The left panels show the density
difference |�α|2 − |ψα|2 (at first order in δ�α), while the

FIG. 4. Wave functions �1 and �2 at time t = 0.1 ω−1
⊥ and for

ε = 0.01, Eq. (12), perturbed with the mode with symmetry n⊥ = 0,
� = −4, in the case with g12 = 1.5g, �R = 3.5ω⊥, and κ = 5. The
left panels show |�α|2 − |ψα|2 at first order in δ�α (units of a−2

⊥ ),
while the right panels show the phase of �α (units of π ). As a guide
to the eye, the contours ρmax (solid) and ρmax/100 (dashed) have been
drawn.
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FIG. 5. Dissipative dynamics of the decay of persistent currents with κ = 6 in a GS1 configuration with g12 = 1.5g and �R = 3.5 ω⊥.
The initial state is built using Eq. (12) with ε = 0.01, using the eigenmode with � = −6 with density character. Left panels show the angular
momentum and the numbers of particles, respectively. Density plots (in harmonic oscillator units) show components 1 (top row) and 2 (bottom
row) at times t = 20 ω−1

⊥ (left), t = 52 ω−1
⊥ (middle), and t = 94 ω−1

⊥ (right). The color scale is normalized to the maximum density.

right panels show the phase of �α . From the figure one can
clearly see that this perturbation belongs to the density mode
(densities in components 1 and 2 are in phase). Notice the
π -phase difference between the δ�1 and δ�2; this is just the
π -phase difference of the reference state ψα . This mode is
clearly localized at the internal surface of the condensate.

We have found that, in our configuration, for −7 � � � −1
the excitations of the κ = 5 state are localized in the inner
surface, while for � > 0 and � < −7 they correspond to
external surface excitations. Instead, for low values of κ that
do not show a roton minimum the excitations tend to be bulk
excitations for low � and external surface excitations at large �.
As κ is increased the low � excitations become more localized
at the internal surface. This seems to indicate that as the
energetical instability is approached, the excitations tend to
localize at the inner surface of the condensate at the same
time that a roton mode with a minimum at finite � is formed
in the spectrum. When the system becomes unstable these
modes lead to the nucleation of vortices, which later cause the
phase slips associated with the decay of the persistent current.
Notice that the nucleation of vortices comes from a symmetry
breaking of the pure finite κ state, which is only possible due
to the nonlinearity of the GP equations. On the other hand, the
nucleation of vortices can only happen with finite wavelength
excitations (that is, not by soundlike excitations), and the only
way to achieve these is by a roton structure.

To explore the decay of the superflow in the long-time
and nonlinear regimes we have evolved Eqs. (1) and (2) in
real time using Eq. (12) with ε = 0.01 as the t = 0 wave
function, adding the small dissipative term γ (see Sec. II A).
The time evolution of the angular momentum per particle,
Lz, and the polarization P are shown in Fig. 5 together with
snapshots of the density taken at different times, for the case
with g12 = 1.5 g and �R = 3.5 ω⊥. It is clear from the figure
that both components show an identical evolution, and the
decay happens as for a single component. The initial � = −6
excitation evolves into the nucleation of two vortices in the
internal surface, which spiral out of the condensate producing
thus the phase slips that drive the decay of the flow. The final
state has κ = 4, which is stable. Notice that the two vortices

happen at exactly the same place in both components, and that
the density increases after shedding the vortices out since the
condensate has a smaller (repulsive) kinetic energy coming
from the currents.

B. Instability driven by the spin-density mode

Close enough to the GS1-GS2 phase transition, that is for
small enough values of �R but still �R > �c, the gap in the
spin mode is small, and the decay of the persistent currents is
driven by out-of-phase excitations in the azimuthal direction.
An example of dispersion relations in the case where the lowest
mode is the spin-density mode is shown in the right panels of
Fig. 3. When the flow velocity exceeds v

(s)
L , see Eq. (17),

the spectrum becomes negative at finite � and the persistent
currents are no longer stable. In the case of the figure, the spin
Landau velocity written in dimensionless form takes the value√

2/3v
(s)
L Rm/� ∼ 3.2, which agrees well with both imaginary

time simulations and BdG.
It is interesting to note that the spin mode does not show any

rotonlike structure. This is due to the fact that, since the mode
is gapped, the minimum of the excitation spectrum is already
at � < 0, allowing thus the appearance of excitations at finite
values of �, necessary for the nucleation of vortices. When
the dispersion relation approaches the energetic instability, the
eigenvectors of the lowest-lying excitations in the spin-density
mode localize mostly at the internal surface, as happened in the
density mode. As an example, Fig. 6 shows the perturbed wave
functions �α for the unstable mode with n⊥ = 0 and � = −4
for κ = 4 (see Fig. 3). One clearly sees that it corresponds
to a spin-density mode localized at the inner surface of the
condensate, where the perturbations in the two components
appear out of phase.

To understand how the spin excitation drives the decay
dynamics of the persistent currents, we have numerically
evolved the GP Eqs. (1) and (2) in real time with dissipation,
with the initial wave function plotted in Fig. 6, for which g12 =
0.5g, �R = 0.1 ω⊥, κ = 4, and � = −4. The time evolution of
the angular momentum and the polarization is shown in Fig. 7
together with selected density snapshots during the evolution.
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FIG. 6. Wave functions �1 (top) and �2 (bottom) at time t =
0.1 ω−1

⊥ and for ε = 0.01, Eq. (12), perturbed with the mode with
symmetry n⊥ = 0, � = −4, in the case with g12 = 0.5g, �R =
0.1 ω⊥, and κ = 4. The left panels show |�α|2 − |ψα|2 at first order in
δ�α (units of a−2

⊥ ), while the right panels show the phase of �α (units
of π ). As a guide to the eye, the contours ρmax (solid) and ρmax/100
(dashed) have been drawn.

In contrast to the decay driven by the density mode, we can see
from the figure that the original out-of-phase excitation evolves
into the nucleation of vortices between components that need
not be correlated. As we can see from the middle snapshots,
component 1 develops two vortices while component 2 shows
only one vortex. The two vortices (one in component 1 and
the other in component 2), which in this plot appear on the
right, move together during the dynamics, until they exit the
condensate; they seem to form some kind of bound state.
In contrast, the other vortex event exists separately in both
components: component 1 expels the second vortex first (seen

as well in the angular momentum evolution as a drop), and later
component 2 follows, in a way that seems to bind its vortex with
a ghost vortex of the first component, which is perceived in the
figure as the irregular shape of component 1. This complicated
dynamics is reflected as oscillations of the numbers of particles
in each component, and in the polarization. Let us note that
this simulation is an example of the kind of dynamics that
could arise when the decay of the persistent currents is driven
by spin-density excitations. It shows that phase-slip events can
exist simultaneously in both components but also separately,
in contrast to the decay driven by the density mode. The exact
dynamical evolution and the final κ state may depend on the
initial conditions and the dissipation term γ . Notice that, as
happens in the density-mode decay analysis, the final density
is lower than the initial density, although when the decay is
induced by the spin mode, since the cores of the vortices do
not coincide, the density reaches a higher maximum when one
component fills the vortex core of the other component.

V. STABILITY OF PERSISTENT CURRENTS IN GS2

In the GS2, the conditions for stability of persistent currents
are more complex. First, the presence of currents lowers the
value of the global polarization with respect to the ground state,
that is the system with nonzero superflow is less polarized than
the ground state. This implies that the energetic instability
driving the decay of the currents cannot be understood as a
simple Doppler shift, since the velocity shifts the system with
polarization P at rest to another configuration characterized
by P ′ < P . Second, the excitation modes (now hybridized due
to the finite polarization) depend strongly on the value of �R

since the densities change with polarization. These two points
reflect the fact that the GS2 is not a unique configuration,
but each configuration with different P is a different ground
state. Instead, in the GS1 phase, there is a unique ground state
characterized by equal density in both components and phase
locking.

An example of the two points above is shown in Fig. 8, for
a system with g12 = 1.5g. The top panel compares the global
polarization for κ = 4 and κ = 0 as a function of �R , while
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FIG. 7. Dissipative dynamics of the decay of persistent currents with κ = 4 in a GS1 configuration with g12 = 0.5g and �R = 0.1 ω⊥.
The initial state is built using Eq. (12) with ε = 0.01, using the eigenmode with � = −5 with spin character. Left panels show the angular
momentum and the numbers of particles, respectively. Density plots (in harmonic oscillator units) show components 1 (top row) and 2 (bottom
row) at times t = 142 ω−1

⊥ (left), t = 248 ω−1
⊥ (middle), and t = 290 ω−1

⊥ (right). The color scale is normalized to the maximum density.
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FIG. 8. Top panel: Global polarization for κ = 0 and κ = 4 as
a function of �R , for g12 = 1.5g. Bottom panel: Excitation modes
� = 0, . . . , − 4 of the κ = 4 case as a function of the Rabi coupling.
Solid lines correspond to modes with density character; dashed
lines correspond to modes with spin character; dash-dotted lines
correspond to modes with majority component character; dotted lines
correspond to modes with minority component character. The shaded
region corresponds to the states with broken rotational symmetry, and
the blank region to states where the κ = 4 current is highly unstable.

the bottom panel shows the excitation energies of the modes
with azimuthal quantum number � = 0,−1,−2,−3,−4. For
�R � 1.95 ω⊥, the system is unpolarized (GS1) and the
stability of persistent currents follows what has been discussed
in Sec. IV. For �R < 1.95 ω⊥, one of the spin modes becomes
energetically unstable, but instead of decaying, the system
undergoes an azimuthal symmetry breaking (see discussion
below). This allows the system to remain unpolarized down to
�R � 1.65 ω⊥, but since the symmetry is broken the excitation
spectrum cannot be easily classified in terms of ±� quantum
numbers (shaded area in the bottom panel of Fig. 8). Below
�R � 1.65 ω⊥, there is a range of �R (empty region in the

figure) for which the current with κ = 4 is highly unstable
(numerically, this means that imaginary time cannot find a
local minimum without any constraint). At lower �R the
system shows a regime of energetic instability (with preserved
rotational symmetry) in the mode with mainly spin character.
Finally, below �R � 1.3 ω⊥ the polarization increases with
decreasing �R and the persistent currents are stable. In the
following we analyze these regimes in more detail.

Let us start with the persistent currents for �R below the
highly unstable region. In this regime, the excitations can be
described in terms of the ±� quantum numbers since the
system shows rotational symmetry. However, the modes no
longer correspond to pure density or spin-density modes as in
the GS1, but they are now hybridized and the spectrum shows
avoided crossings. In the limit �R 
 �c, where the system is
highly polarized, the excitation modes are described in terms
of excitations of the majority or the minority components.
This character is shown in the figure as dash-dotted and dotted
lines, respectively. The single-component character represents
excitations for which the ratio between the norms |Uα|2 − |Vα|2
corresponding to the minority and majority components is
less than 0.1. Surprisingly, the single-component character
is recovered for the � = −2 modes close to the unstable
region. It is also interesting to note that for the � = −3
excitation the majority component character becomes spin
character.

Figure 9 shows the time evolution of the angular momentum
per particle and the polarization together with snapshots of
the decay dynamics of a persistent current in the GS2, corre-
sponding to a state with winding number κ = 5, g12 = 1.5g,
and �R = 0.5 ω⊥. In this case the flow in both the majority
and the minority components (densitylike and spinlike modes)
is energetically unstable and decay is mostly driven by spin
excitations. The initial excitation appears mainly on the
minority component, but as time goes on it transfers to the
majority component as well. As soon as the latter begins
to allow vortices in the high-density regions, the density in
the minority component becomes trapped in the vortex cores
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FIG. 9. Dissipative dynamics of the decay of persistent currents with κ = 5 in a GS2 configuration with g12 = 1.5g and �R = 0.5 ω⊥.
The initial state is built using Eq. (12) with ε = 0.01, using the eigenmode with � = −5 with minority component character (mainly spinlike).
Left panels show the angular momentum and the numbers of particles, respectively. The density plots (in harmonic oscillator units) show the
majority (top row) and minority (bottom row) components at times t = 80 ω−1

⊥ (left), t = 140 ω−1
⊥ (middle), and t = 228 ω−1

⊥ (right). The color
scale is normalized to the maximum density.

033603-8



PERSISTENT CURRENTS IN COHERENTLY COUPLED . . . PHYSICAL REVIEW A 93, 033603 (2016)

FIG. 10. Density (top panels) and phase (bottom panels) of a
symmetry broken configuration with κ = 4, �R = 1.7 ω⊥, and g12 =
1.5g.

without losing its coherence. This leads to the spikes of
angular momentum of the minority component, as well as
to exchange dynamics between the components. As happened
when the decay in the GS1 was driven by spin excitations,
the vortices in both components seem to form intercomponent
bound states, where the cores are very close to each other
and move in pairs. When the vortices are finally expelled,
the system regains equilibrium at a new value of the angular
momentum. Notice that the change in density in the minority
component is huge when the condensate fills the vortex cores
of the other component.

As �R increases and the polarization of the mixture
decreases, the spin and density characters of the excitation
modes are recovered. Avoided crossings may take place
between modes with density and spin characters and the same
quantum number �. These avoided crossings occur at lower
values of � as the phase transition is approached, reflecting
the behavior of the homogeneous condensate [28]. For high
enough �R some modes (typically with spin character) may
become energetically unstable, and the persistent currents
decay.

For �R above the highly unstable region, the spin mode
drives a symmetry breaking that breaks the rotational symme-
try and creates inhomogeneous densities along the azimuthal
direction. These density structures can be understood as
follows. When �R decreases towards the phase transition from
the GS1 side, there is an energetic instability of the persistent
currents with centered singularities (vortices), as implied
in Fig. 8 for �R < 1.95 ω⊥. The system then undergoes a
symmetry breaking of the phase distribution and starts the
decay process by expelling the vortices in both components
away from the center. As soon as the vortices have started
moving, they induce a change in the density which is magnified
by the large fluctuations close to the critical point. The
azimuthal dependence of the density induces a redistribution
of energy contributions that allows the two-component BEC

to keep the currents, and guarantees a zero global polarization
even below the phase transition. In this new situation, the
system becomes both energetically and dynamically stable,
with all eigenfrequencies positive and real (shaded area in
Fig. 8), although they may be very small. We have checked
the stability of these structures by evolving them in real-time
simulations of Eqs. (1) and (2), and finding no appreciable
change. An example of a symmetry broken configuration
is shown in Fig. 10, where we plot the density and phase
distributions for �R = 1.7 ω⊥ and κ = 4. Four clear out-of-
phase density peaks are formed in both components, reflecting
the spin-density character.

VI. DISCUSSION AND CONCLUSIONS

We have studied the mean-field theory of persistent currents
in a coherently coupled two-component condensate in a ring
trap, both in the neutral and the polarized phases (in our
notation, GS1 and GS2). In the neutral phase we have seen that
by modifying the intensity of the lasers generating the coupling
(that is the Rabi frequency), or equivalently by modifying the
ratio of inter- and intracomponent scattering lengths (via, for
instance, a Feshbach resonance), the decay of the persistent
currents is related to an energetic instability of the density or
the spin-density modes.

When the decay in GS1 is driven by the density mode,
diagonalization of the full Bogoliubov operator shows that
close to instability there appears a rotonlike structure that is
linked to the nucleation of excitations in the internal surface,
similarly to what has been predicted in single components [8]
and spinor condensates [9]. This rotonlike structure induces a
minimum in the Doppler-shifted excitation spectrum at finite �,
which leads to the decay of the persistent current through phase
slips (vortices) when the lowest frequency becomes negative.
Instead, when the decay in GS1 is driven by the spin-density
mode, the finite-� energetic instability emerges naturally due
to the presence of the gap in the excitation spectrum and no
rotonlike minimum can be seen.

Roton minima in the excitation spectrum are very well
known in helium superfluids, and are an effect of the many-
body character of the interactions. In BECs they have been
predicted not only in static situations such as in dipolar
condensates [54], but also in the presence of currents in the
ground state, such as in spin-orbit coupled condensates [55,56]
or the results presented here and in Refs. [8,9]. In the dipolar
case, the roton mode touching zero is generally associated
to density-wave or supersolid configurations (see the recent
experiment [57]). Instead, in the case presented in this article,
the roton mode touching zero drives an energetic instability
that leads to the nucleation of vortices in the internal surface
of the ring and the subsequent decay of the persistent currents.
The finite quasimomentum associated with the roton is a
necessary ingredient to allow the process of vortex nucleation
which causes the superflow decay. The absence of the roton in
the noninteracting limit reflects the fact that in a noninteracting
Bose gas, described by the (linear) Schrödinger equation,
symmetry breakings do not take place and all states of finite
winding number are (meta)stable states.

In the polarized phase the conditions for stability and decay
of persistent currents are more complicated. At large values
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of �R an unstable spin-density mode can drive a symmetry
breaking in the densities of the two components that allows the
system to preserve the zero polarization and keep the currents.
At smaller values of �R , the system shows a finite polarization
and energetic instabilities drive the decay of the currents. The
character of these unstable modes is not purely density or spin,
but may be hybridized or, typically for very large polarizations,
may acquire the character of minority or majority excitation
modes. In all the cases, however, the final state of the decay
process gives equal angular momentum to both components.

Notice that the situation we have considered studies the
system close to its ground state or stationary metastable
states, that is the phase difference between components is
always locked to π (except for small fluctuations) and no
counterflow is allowed. Relaxation of these conditions leads
to very interesting soliton and vortex dynamics [40,41], closely
related to the special kind of soliton introduced in [37].

It would be very interesting to test the results found in this
work experimentally, especially what concerns the different
nature of the density and spin excitations and the symmetry
breaking driven by the closeness to the transition to the GS2
phase. In particular, the latter would be an indirect proof of
the fact that it is vortices (hidden in the inner empty region)

that create the persistent currents. The different technologies
required are available: condensates in ring traps are made
in laboratories, coherently coupled condensates have been
experimentally studied, and both Feshbach resonances and
Rabi couplings have been used. In Ref. [31] persistent currents
with κ = 3 were shown to be stable in a two-component 87Rb
mixture when the Rabi coupling was kept during the time
evolution, reflecting the fact that the opening of the gap in
the spin mode in the presence of �R drove the system away
from the spin instability. By studying a higher winding number
and different values of �R , the GS1 decay dynamics could be
tested. Recent experiments and techniques on the measurement
of phonon modes in persistent currents [13,58] also offer
different perspectives, and might allow an observation of the
current-induced roton mode.
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