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Aiming at efficient numerical treatment of tunneling ionization of atoms and molecules by midinfrared
(IR) lasers, exterior time-scaling (ETS) theory is formulated as a generalization of the time-scaled coordinate
approach. The key idea of ETS is the division of the spatial volume into a small region around the nucleus
and its outside; the radial coordinates are time scaled only in the outer region. The continuum components of
photoelectron wave packets are prevented from reaching the edge of the spatial simulation volume, enabling
the long-time evolution of wave packets with a relatively small number of basis functions without concerns of
electron reflections. On the other hand, the bound-state components are free from shrinking toward the origin
because of non-time-scaling in the inner region. Hence, the equations of motion in ETS are less stiff than the ones
in the original time-scaled coordinate approach in which the shrinking bound states make the equations of motion
seriously stiff. For numerical implementation of ETS, the working equations are derived in terms of finite-element
discrete-variable-representation functions. Furthermore, the stiffness-free Lanczos time propagator is introduced
to remove any persistent stiffness in the treatment of mid-IR lasers due to the involvement of hundreds of angular
momentum states. The test calculations for atomic hydrogen interacting with linearly polarized mid-IR pulses
demonstrate the accuracy and numerical efficiency of this scheme and exhibit its special capability if there is no
recollision with the parent ion. Hence, ETS will show its true potential for the detailed analysis of photoelectron
wave-packet dynamics in circularly or near-circularly polarized mid-IR fields.
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I. INTRODUCTION

The recent advance of intense few-cycle light sources in the
midinfrared (IR) region (wavelength: λ � 3 μm) is leading
strong-field physics to a new direction [1]. Its extreme nonlin-
ear effect on matter generates high-order harmonic radiation
covering the x-ray region [2,3] with potentially narrowing the
pulse width down to the zeptosecond [4], and is hence of
very practical importance. Longer wavelength also ensures
more detailed analysis and interpretation of experimental and
numerical results, based on semiclassical (see, e.g., Refs. [5–
8]) and adiabatic [9,10] theories. Circularly or near-circularly
polarized mid-IR pulses are ideal for precise attoclock mea-
surements to elucidate tunneling dynamics [11,12], and for
obtaining the information of molecular orbital structure from
the photoelectron momentum distribution perpendicular to
the polarization plane [13]. Combing mid-IR lasers having
different polarizations and colors may realize new means to
reveal and control electron dynamics (see, e.g., recent refer-
ences [14–17]). Numerical treatment of atoms and molecules
in the mid-IR region, however, remains very challenging even
within the single-active-electron (SAE) approximation [18].
The reason comes not only from the involvement of many
angular momentum states in the wave function but also from
the need to set the size of spatial volume proportional to
λ2, and also from the ponderomotive energy Up ∝ λ2 which
requires the use of denser grids or many basis functions as λ

increases [19].
To manage the increasing numerical difficulty for large

λ, the spatial volume is usually set as small as possible
by employing a complex absorbing potential (CAP) [20] or
exterior complex scaling (ECS) [21,22], which prevents the
high-energy continuum part of electron wave packets from
reflection. This strategy is well suited for the analysis of

low-energy photoelectrons and for computing dipole accelera-
tions to investigate high-order-harmonic generation (HHG).
An alternative strategy is to enlarge the spatial volume
as time grows to prevent the reflection without losing the
norm of the wave function. Treatment of the time-dependent
Schrödinger equation (TDSE) by periodic von Neumann basis
with biorthogonal exchange [23] enables the extension of
volume, which, however, results in a gradual increase of
numerical cost. On the other hand, the time-scaled coordinate
approach causes no such cost increase, and has, after its
introduction in collision physics [24,25], been developed
aiming at efficient treatment of ionization by photoabsorption
and electron impact [26–32]. After a long-time propagation
under field-free conditions, the photoelectron wave packet
in the scaled coordinate becomes stationary, from which the
ionization cross section is extracted without projection onto the
scattering wave function. This is advantageous in the treatment
of many-electron systems, in particular, for the computation
of the double or multiple ionization cross section [29,30].
However, the time-scaled coordinate approach has a very
serious shortcoming: The bound-state part of the electron wave
packet shrinks toward the origin as time goes. Using dense
grids or many basis functions around the origin to account for
this shrinking makes the equations of motion stiff (see, e.g.,
Ref. [33] for a discussion of stiffness of differential equations).
In description of tunneling ionization at large λ, the equations
become much stiffer and numerically untractable due to the
involvement of hundreds of angular momentum states and the
increase of the centrifugal potential barrier in the Hamiltonian.
Although employing, e.g., Fatunla’s method [31,32,34,35] or
other elaborate time propagators may manage the problem, it
is unfavorable to deploy many basis functions for the bound
states since the research interest is in the description and
analysis of the outgoing continuum part of the wave packet.
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The aim of this paper is twofold: (i) formulation of
exterior time-scaling (ETS) theory for extending numerical
exploration toward the mid-IR region and (ii) establishment of
its stiffness-free numerical implementation. The ETS theory
is a generalization of the original time-scaled coordinate
approach which is hereafter, for comparison, referred to as
global time scaling (GTS). The idea of ETS is to divide
the spatial volume into two parts: a small domain around
the nucleus, and its outside. The time scaling is carried out
only to radial coordinates in the outer region. The continuum
components in the outer region are hence prevented from
reaching the edge of the spatial simulation volume, enabling
the long-time evolution of the wave packet with a relatively
small number of basis functions. In the inner region, on
the other hand, the bound states are free from shrinking
because of non-time-scaling, and the equations of motion
are expected to be less stiff than the ones in GTS. As
many angular momentum states are involved, however, the
equations in ETS inevitably become stiff. To address this
problem, we propose a stiffness removal procedure which is
in particular suitable for wave functions expanded in terms
of finite-element discrete-variable-representation (FEDVR)
functions (see, e.g., Ref. [36]) and time propagated by the
Lanczos algorithm [37]. This procedure is not specific to
the ETS implementation but will also be applicable to a
general class of equations appearing in atomic and molec-
ular physics. Also note that, although in the following this
paper aims at the treatment of one-electron atoms, the ETS
method with the stiffness-free time propagation is applicable
to the TD (restricted/generalized)-active-space configuration-
interaction [TD-(RAS/GAS)CI] approach [38,39] and may
also be so to the R-matrix theory including time dependence
(RMT) [40–42], for instance, and can therefore be flexibly
used to investigate many-electron atoms and molecules.

This paper is organized as follows. The ETS theory is
formulated for atomic hydrogen in Sec. II. Expanding the
wave function in terms of FEDVR functions, Sec. III shows

the derivation of the working equations for practical ETS
implementation. Then Sec. IV is devoted to the analysis of
stiffness and the discussion of its removal; the stiffness-free
FEDVR-based Lanczos algorithm proposed in this section has
a wide range of applicability. Based on the ETS theory with
the stiffness-free procedure, Sec. V demonstrates the tunneling
ionization of atomic hydrogen in linearly polarized mid-IR
lasers, and shows the accuracy and numerical efficiency of
ETS. Section VI concludes this work and provides an outlook.
Atomic units are used throughout unless otherwise stated.

II. FORMULATION

We consider atomic hydrogen prepared in the ground
state which then starts interacting with a light pulse linearly
polarized along the z axis. This simple case is considered just
for notational simplicity in the formulation; the generalization
to many-electron atoms and molecules in arbitrarily polarized
light fields is, at least formally, straightforward in any
coordinate system. Expanding the wave function in terms of
spherical harmonics with magnetic quantum number m = 0,

�(r,t) = 1

r

∑
�

ψ�(r,t)Y�0(�), (1)

the TDSE leads to a set of coupled equations for the radial
functions:

i

(
∂

∂t

)
r

ψ�(r,t) =
[

− 1

2

∂2

∂r2
+ V�(r)

]
ψ�(r,t)

+
∑
�′

W��′(t)ψ�′(r,t), (2)

where

V�(r) = �(� + 1)

2r2
− 1

r
, (3)

and the light-atom interaction operator is treated within the
dipole approximation:

W��′(t) =
⎧⎨
⎩

WL
��′(r,t) = g��′F (t)r, in length gauge

WV
��′(r,∂r ,t) = −ig��′A(t)

[
∂

∂r
+ �′(�′ + 1) − �(� + 1)

2r

]
, in velocity gauge

(4)

with g��′ = √
4π/3

∫
Y ∗

�0(�)Y10(�)Y�′0(�)d�, and the vector
potential A(t) and the electric field F (t)( = −dA(t)/dt) of
light. The gauge-specific notation, WL

��′(r,t) and WV
��′(r,∂r ,t), is

in the following used only when their distinction is necessary.
Note that (∂/∂t)x denotes the partial time derivative for a fixed
value of x(= r or ξ ). Such an explicit notation is not needed in
Eq. (2) but in the following helps avoid unnecessary confusion.

The formulation of ETS commences with introducing a
spherical surface, 
, the radius of which is r
 . Setting the
center of 
 at the origin, the configuration space is divided
into its inner and outer regions. Let 
 itself belong to the inner
region. We then define an ETS map by

ξ (r,t) =
{

r, (0 � r � r
)

r
 + (r − r
)/R(t), (r
 < r < ∞)
(5)

where R(t)(� 1) is a smooth increasing function of time; its
explicit form is given later [see Eq. (33) in Sec. V]. Noting the
mutual dependence between r and ξ , i.e., r = r(ξ,t) and ξ =
ξ (r,t), the differentiation of Eq. (5) reads dr(ξ,t) = dξ (r,t) for
0 � r � r
 , and dr(ξ,t) = [ξ (r,t) − r
]dR(t) + R(t)dξ (r,t)
for r
 < r < ∞. Hence the differential equation, dr(ξ,t) = 0,
leads to relations

(
∂

∂t

)
r

=

⎧⎪⎪⎨
⎪⎪⎩

(
∂

∂t

)
ξ

, (0 � r � r
)(
∂

∂t

)
ξ

− Ṙ(t)

R(t)
(ξ − r
)

∂

∂ξ
, (r
 < r < ∞)

.

(6)

In 0 � r � r
 , Eq. (5) is just an identity mapping. The coupled
equations obeyed by the radial functions in 0 � ξ � r
 are
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thus obtained from Eq. (2) by simply replacing r by ξ :

i

(
∂

∂t

)
ξ

ψ�(ξ,t) =
[

− 1

2

∂2

∂ξ 2
+ V�(ξ )

]
ψ�(ξ,t) +

∑
�′

W��′(t)ψ�′(ξ,t), (0 � ξ � r
). (7)

In r
 < r < ∞, on the other hand, using the second lines of Eqs. (5) and (6) in Eq. (2) leads to

i

(
∂

∂t

)
ξ

ψ�[r
 + R(t)(ξ − r
),t] =
[

− 1

2[R(t)]2

∂2

∂ξ 2
+ V�[r
 + R(t)(ξ − r
)] + i

Ṙ(t)

R(t)
(ξ − r
)

∂

∂ξ

]
ψ�[r
 + R(t)(ξ − r
),t]

+
∑
�′

W��′(t)ψ�′[r
 + R(t)(ξ − r
),t], (r
 < ξ < ∞). (8)

Defining new radial functions by

φ�(ξ,t) =
√

R(t) exp[−iR(t)Ṙ(t)(ξ − r
)2/2]ψ�(r,t), (r
 < r < ∞), (9)

Eq. (8) is recast into a concise form:

i

(
∂

∂t

)
ξ

φ�(ξ,t) =
[

− 1

2[R(t)]2

∂2

∂ξ 2
+ V�[r
 + R(t)(ξ − r
)

] + R(t)R̈(t)

2
(ξ − r
)2

]
φ�(ξ,t) +

∑
�′

W��′(t)φ�′(ξ,t),

(r
 < ξ < ∞), (10)

with

W��′(t) =
{

WL
��′[r
 + R(t)(ξ − r
),t

]
in length gauge

WV
��′[r
 + R(t)(ξ − r
),∂R(t)ξ ,t] + g��′A(t)Ṙ(t)(ξ − r
) in velocity gauge

(11)

where g��′A(t)Ṙ(t)(ξ − r
) comes from the exponent in
Eq. (9) (a corresponding factor, A(t)Ṙ(t)ξ , is missing in
Eq. (8) of Refs. [31,32] where GTS is formulated for
one-dimensional systems). Importantly, although Eqs. (7)
and (10) are defined in nonoverlapping radial intervals,
0 � ξ � r
 and r
 < ξ < ∞, respectively, and may seem
to be independent of each other, the equations are indeed
coupled by the requirement of continuous differentiability of
the wave function across 
: �(r,t)|r=r


= �(r,t)|r=r
+0 and
∂�(r,t)/∂r|r=r


= ∂�(r,t)/∂r|r=r
+0, i.e., for each �,

ψ�(r
,t) = 1√
R(t)

φ�(r
 + 0,t), (12a)

∂

∂ξ
ψ�(ξ,t)

∣∣∣∣
ξ=r


= 1

[R(t)]3/2

∂

∂ξ
φ�(ξ,t)

∣∣∣∣
ξ=r
+0

. (12b)

It is readily seen that ETS is a generalized concept of
GTS; setting r
 = 0 reduces the ETS map [Eq. (5)] to the
original GTS map, ξ (r,t) = r/R(t); Eq. (10) becomes, e.g.,
Eq. (8) in Refs. [31,32] except for the missing factor in
the velocity gauge. As in the equations of motion in the
conventional GTS, Eq. (10) indicates the introduction of
an effective nucleus charge, 1/R(t), an effective electron
mass, [R(t)]2, and a temporal harmonic potential only while
R̈(t) > 0, preventing the electron from escaping to infinity.
An important difference of ETS from GTS is that ETS avoids
the complication of the shrinking of the bound states toward
the origin present in GTS because of the time scaling only
in the outer region. Figure 1 gives the comparison by illustrat-
ing the Coulomb potential function, 1/r(ξ,t), and the radial
part of the ground-state wave function of atomic hydrogen,
ψ1s[r(ξ,t)] = 2r(ξ,t) exp[−r(ξ,t)]. The plot is made under
laser-free conditions, but, supposing the application to mid-IR

lasers with λ = 3 μm = 5.669 × 104 (see Sec. V A), the
temporal unit is measured in its optical cycle (o.c.), 2π/ω =
413.7, where ω = 2π/αλ = 0.01519 with the fine-structure
constant α = 1/137.036. The time-scaling factor R(t) is
specified by Eq. (33) with R∞ = 0.01 (see the discussion in
Sec. V). While the Coulomb potential function and the radial
function in GTS shrink toward the origin in the ξ coordinate
[Figs. 1(a1)–1(a3)], they remain almost unchanged in ETS
[Figs. 1(b1)–1(b3)] even across r
 = 30.

III. PRACTICAL FEDVR-BASED FORMALISM

The numerical implementation of ETS requires the expan-
sion of the radial functions, ψ�(ξ,t) and φ�(ξ,t) of Eqs. (7)
and (10), in terms of a set of basis functions. There may be
several options: grids, B splines, a variety of DVR functions,
and combinations of them in the inner and outer regions.
Among the various possibilities, we choose the FEDVR
functions and derive the working equations for the ETS
implementation.

A. FEDVR functions

Let a closed interval, [0,ξmax], with ξmax > r
 , be the range
of the scaled-radial coordinate, ξ . We then define a set of
FEDVR functions over the interval as follows: Let the two
intervals, [0,r
] and (r
,ξmax], divided at ξ = r
 , be further
subdivided into N̂fe and Ňfe intervals (FEs), respectively:

[0,r
] = [ξ0,ξ1] ∪ (ξ1,ξ2] ∪ · · · ∪ (
ξN̂fe−1,ξN̂fe

]
, (13a)

(r
,ξmax] = (
ξN̂fe

,ξN̂fe+1

] ∪ · · · ∪ (
ξN̂fe+Ňfe−2,ξN̂fe+Ňfe−1

]
∪(

ξN̂fe+Ňfe−1,ξN̂fe+Ňfe

]
, (13b)
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FIG. 1. Illustration of the shrinking of the ground-state wave function in GTS and the nonshrinking in ETS. The Coulomb potential function,
1/r(ξ,t) (thin lines), and the radial part of the ground-state wave function of atomic hydrogen, ψ1s[r(ξ,t)] = 2r(ξ,t) exp[−r(ξ,t)] [thick (red)
lines, shifted −0.5 downward], are plotted at zeroth, first, second, and third optical cycles (o.c.), i.e., at t = (2π/ω) × n (n = 0,1,2, and 3).
The temporal unit is measured in terms of one optical cycle of a mid-IR laser with λ = 3 μm = 5.669 × 104. The plot is made under laser-free
conditions, but, in connection with the numerical demonstration later, the top-right corner displays the electric field F (t) = (−dA(t)/dt) of the
same three-cycle pulse used in Sec. V A. The time-scaling factor R(t) is specified by Eq. (33) with R∞ = 0.01, which is also the same as in
Sec. V A. The value of r
 is set to zero in GTS [(a1–a3)] and 30 in ETS [(b1–3)]. The shaded region in (b1–b3) indicates the radial interval of
the inner region (0 � r � r
) where the bound states are free from shrinking because of non-time-scaling. The top and bottom of each panel
represent the r[ = r(ξ,t)] and ξ coordinates, respectively.

where ξ0 = 0, ξN̂fe
= r
 , and ξN̂fe+Ňfe

= ξmax. Let every
interval have the same width �ξ = ξmax/(N̂fe + Ňfe). Let
us then define the Lobatto DVR functions with Ndvr

quadrature points. Following the standard prescription
(see, e.g., Ref. [36]), a set of the FEDVR functions,
{χκ (ξ )|κ = 1, · · · ,(Ndvr − 1)(N̂fe + Ňfe) − 1}, is composed.
In the construction, two Lobatto DVR functions having
quadrature points at ξ0 and ξmax are removed; consequently,
every FEDVR function is zero at both edges of the domain,
i.e., χκ (0) = χκ (ξmax) = 0.

The FEDVR functions are then classified into three
groups: {χκ̂ (ξ )|κ̂ = 1, · · · ,(Ndvr − 1)N̂fe − 1}, {χb(ξ )( ≡
χ(Ndvr−1)N̂fe

(ξ ))}, and {χκ̌ (ξ )|κ̌ = (Ndvr − 1)N̂fe + 1, · · · ,

(Ndvr − 1)(N̂fe + Ňfe) − 1}. Note that the FEDVR functions
belonging to the first and third groups, respectively, are
nonvanishing only below and above r
 , and are distinguished,
if need be, by the accent symbols hat, “ ˆ ,” and check, “ ˇ ,”
atop the index κ . On the other hand, the second group consists
only of χb(r), which is the bridge function across r
 (see, e.g.,
Ref. [36] for a discussion of the bridge function). Figure 2
illustrates the setup of the FEDVR functions.

B. Exterior time scaling with FEDVR functions

Let �max be the maximum value of � in the expansion
of �(r,t) [Eq. (1)]. The radial function for each � is
then expanded in terms of the FEDVR functions defined in
Sec. III A:

ψ�(ξ,t) =
∑

κ̂

aκ̂�(t)χκ̂ (ξ ) +
√

2

1 + R(t)
a�(t)χb(ξ ),

(0 � ξ � r
), (14a)

φ�(ξ,t) =
∑

κ̌

bκ̌�(t)χκ̌ (ξ ) + b�(t)χb(ξ ),

(r
 < ξ � ξmax), (14b)

where the extra factor,
√

2/[1 + R(t)], attached to a�(t) is not
just cosmetic but helps construct the working equations in
Hermitian matrix form (as discussed in the last paragraph in
this section). The continuity condition of the wave function,

033420-4



EXTERIOR TIME SCALING WITH THE STIFFNESS-FREE . . . PHYSICAL REVIEW A 93, 033420 (2016)

≈ ≈O
ξ0 ξ1 ξN̂fe−1

{χκ̂(ξ)}κ̂

ξN̂fe
ξN̂fe+1 ξN̂fe+Ňfe−1

{χκ̌(ξ)}κ̌

ξN̂fe+Ňfe

ξmax

χb(ξ)

rΣ

Radial interval of the scaled outer regionRadial interval of the inner region

FIG. 2. Setup of the FEDVR functions in the ξ coordinate. Dividing the interval [0,ξmax] into two parts, [0,r
] (shaded area) and
(r
,ξmax], they are further subdivided into N̂fe and Ňfe intervals, respectively, having the same width �ξ . Defining a set of Lobatto
DVR functions with Ndvr quadrature points in each FE, the FEDVR functions are constructed along the standard prescription (cf.
Ref. [36]). The FEDVR functions are classified into three categories, {χκ̂ (ξ )|κ̂ = 1, · · · ,(Ndvr − 1)N̂fe − 1}, {χb(ξ )( ≡ χ(Ndvr−1)N̂fe

(ξ ))}, and
{χκ̌ (ξ )|κ̌ = (Ndvr − 1)N̂fe + 1, · · · ,(Ndvr − 1)(N̂fe + Ňfe) − 1}, and illustrated by solid, thick solid (red), and dashed (blue) lines, respectively.
Although the domain of every FEDVR function extends over the whole interval, [0,ξmax], each function is explicitly illustrated only in its
nonvanishing region.

Eq. (12a), now leads to√
2

1 + R(t)
a�(t) = 1√

R(t)
b�(t). (15)

We should thus derive the equations obeyed by the expansion
coefficients, {aκ̂�(t)}κ̂�, {bκ̌�(t)}κ̌�, and {a�(t)}� [or alternatively
{aκ̂�(t)}κ̂�, {bκ̌�(t)}κ̌�, and {b�(t)}�; in this latter case, the
factor,

√
2/[1 + R(t)], attached to a�(t) in Eq. (14a) should

be replaced by 1/
√

R(t)]. For simplicity, the rest of this
subsection is devoted to the derivation only in the length
gauge. The Appendix lists the instructions for formulating
the working equations in the velocity gauge.

It is straightforward to derive the equations for evaluating
the time derivative of aκ̂�(t) and bκ̂�(t). Substituting Eq. (14a)
into Eq. (7), and multiplying both sides by χκ̂ (ξ ), we integrate
them with respect to ξ over [0,r
] and obtain

i
d

dt
aκ̂�(t) =

∑
κ̂ ′�′

{[
1

2

∫ ξmax

0

dχκ̂ (ξ )

dξ

dχκ̂ ′(ξ )

dξ
dξ + δκ̂κ̂ ′V�(ξκ̂ )

]
δ��′ + δκ̂κ̂ ′WL

��′(ξκ̂ ,t)

}
aκ̂ ′�′(t)

+ a�(t)√
2[1 + R(t)]

∫ ξmax

0

dχκ̂ (ξ )

dξ

dχb(ξ )

dξ
dξ. (16)

Similarly, substituting Eq. (14b) into Eq. (10), and multiplying both sides by χκ̌ (ξ ), the integration of them with respect to ξ over
(r
,ξmax] results in

i
d

dt
bκ̌�(t) =

∑
κ̌ ′�′

{
δ��′

[
1

2[R(t)]2

∫ ξmax

0

dχκ̌ (ξ )

dξ

dχκ̌ ′ (ξ )

dξ
dξ + δκ̌κ̌ ′

(
V�[r
 + R(t)(ξκ̌ − r
)] + R(t)R̈(t)

2
(ξκ̌ − r
)2

)]

+ δκ̂κ̂ ′WL
��′[r
 + R(t)(ξκ̌ − r
),t]

}
bκ̌ ′�(t) + a�(t)√

2[R(t)]3[1 + R(t)]

∫ ξmax

0

dχκ̌ (ξ )

dξ

dχb(ξ )

dξ
dξ, (17)

where Eq. (15) was used in obtaining the last term of Eq. (17). Note that, after integrating by parts in deriving Eqs. (16) and (17),
every surface term vanishes due to χκ̂ (0) = χκ̂ (r
) = χκ̌ (r
) = χκ̌ (ξmax) = 0. Then the integrals,

∫ r


0 and
∫ ξmax

r
+0, respectively, in

Eqs. (16) and (17), are all replaced by
∫ ξmax

0 because the FEDVR functions, χκ̂ (ξ ) and χκ̌ (ξ ), are, albeit nonvanishing only below
and above r
 , respectively, defined over the whole interval, [0,ξmax].

The derivation of the rest of the equations follows a procedure similar to the above, but requires a little more effort. After the
substitution of Eq. (14a) into Eq. (7), now multiplying both sides by 2χb(ξ ), we integrate them with respect to ξ over [0,r
] to
obtain

i
d

dt

[√
2

1 + R(t)
a�(t)

]
=

∑
�′

{[
1

2

∫ ξmax

0

(
dχb(ξ )

dξ

)2

dξ + V�(r
)

]
δ��′ + WL

��′(r
,t)

}√
2

1 + R(t)
a�′(t)

+
∑

κ̂

aκ̂�(t)
∫ ξmax

0

dχb(ξ )

dξ

dχκ̂ (ξ )

dξ
dξ − χb(r
)

∂

∂ξ
ψ�(ξ,t)

∣∣∣∣
ξ=r


. (18a)
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Similarly, substituting Eq. (14b) into Eq. (10), multiplying both sides by 2χb(ξ ), and integrating them with respect to ξ over
(r
,ξmax], we arrive at

i
d

dt
b�(t) =

∑
�′

{[
1

2[R(t)]2

∫ ξmax

0

(
dχb(ξ )

dξ

)2

dξ + V�(r
)

]
δ��′ + WL

��′(r
,t)

}
b�′(t)

+
∑

κ̌

bκ̌�(t)

[R(t)]2

∫ ξmax

0

dχb(ξ )

dξ

dχκ̌ (ξ )

dξ
dξ + 1

[R(t)]2
χb(r
)

∂

∂ξ
φ�(ξ,t)

∣∣∣∣
ξ=r
+0

. (18b)

In obtaining Eqs. (18a) and (18b), we used the relation

2
∫ r


0

(
dχb(ξ )

dξ

)2

dξ =
∫ ξmax

0

(
dχb(ξ )

dξ

)2

dξ = 2
∫ ξmax

r


(
dχb(ξ )

dξ

)2

dξ, (19)

as well as the DVR quadrature rule for the bridge function:
For an arbitrary integrable function f (ξ ) defined in [0,ξmax],

2
∫ r


0
χb(ξ )f (ξ )χκ (ξ )dξ ≈

∫ ξmax

0
χb(ξ )f (ξ )χκ (ξ )dξ

≈ 2
∫ ξmax

r


χb(ξ )f (ξ )χκ (ξ )dξ, (20a)

and ∫ ξmax

0
χb(ξ )f (ξ )χκ (ξ )dξ ≈ δκ,(Ndvr−1)N̂fe

f (r
), (20b)

where all the almost-equal signs in Eq. (20) become exact-
equal signs if f (ξ ) is linear in ξ in (ξN̂fe−1,ξN̂fe

] ∪ (ξN̂fe
,ξN̂fe+1]

(see, e.g., Ref. [43]). Differently from Eqs. (16) and (17),
Eqs. (18a) and (18b) contain the surface terms at r
 because
of χb(r
) 
= 0. In dealing with the surface terms, the Bloch
operator, L = 1

2δ(ξ − r
) ∂
∂ξ

, is a useful device as in the for-
mulation of R-matrix-related theories (see, e.g., Refs. [44,45]).
In the interest of keeping the derivation mathematically clear,
however, we do not employ the Bloch operator the delta
function of which could cause an ambiguity about whether

 belongs to its inside or outside or, perhaps, both sides or
neither side. Getting back to the derivation, canceling out the
surface terms in Eqs. (18a) and (18b) using Eq. (12b), we
finally obtain

i
d

dt
a�(t) =

∑
�′

{[
1

2R(t)

∫ ξmax

0

(
dχb(ξ )

dξ

)2

dξ + V�(r
)

]
δ��′

+WL
��′ (r
,t)

}
a�′(t) +

∑
κ̂

aκ̂�(t)√
2[1 + R(t)]

×
∫ ξmax

0

dχb(ξ )

dξ

dχκ̂ (ξ )

dξ
dξ

+
∑

κ̌

bκ̌�(t)√
2[R(t)]3[1 + R(t)]

×
∫ ξmax

0

dχb(ξ )

dξ

dχκ̌ (ξ )

dξ
dξ, (21)

where Eq. (15) was used to express b�(t) in terms of a�(t).
Assembling the expansion coefficients, {aκ̂�(t)}κ̂�,

{bκ̌�(t)}κ̌�, and {a�(t)}�, into a vector, �(t), the set of
working equations, Eqs. (16), (17), and (21), is expressed

in matrix form, i�̇(t) = H(t)�(t), where H(t) is real and
symmetric in the length gauge (Hermitian in the velocity
gauge; see the Appendix). Hence the short-time iterative
Lanczos method [37,46] is a very efficient algorithm for the
time propagation. Note that, in the numerical implementation,
several elements of H(t) attached by R(t) need updates at each
time step. The CPU time for this extra operation, which is
absent in the usual non-time-scaled method, is, however, not
so large and causes no major problem. Section V A shows the
efficiency of ETS compared with the non-time-scaled method
based on practical test calculations.

Finally note the normalization condition of the wave
function:

∫
|�(r,t)|2d r

=
∑

�

[∫ r


0
|ψ�(ξ,t)|2dξ +

∫ ξmax

r
+0
|φ�(ξ,t)|2dξ

]

=
∑

�

[∑
κ̂

|aκ̂�(t)|2 + |a�(t)|2 +
∑

κ̌

|bκ̌�(t)|2
]

= ‖�(t)‖2 = 1, (22)

where Eq. (15) was used in obtaining the third
line. The extra factor,

√
2/[1 + R(t)], attached to a�(t)

in Eq. (14a), serves to provide the conclusion of
Eq. (22):

∫ |�(r,t)|2d r = ‖�(t)‖2 = 1. In the formula-
tion without this factor, we arrive at another normal-
ization condition,

∫ |�(r,t)|2d r = ∑
� [

∑
κ̂ |aκ̂�(t)|2 + [1 +

R(t)]|a�(t)|2/2 + ∑
κ̌ |bκ̌�(t)|2] = 1 
= ‖�(t)‖2, which indi-

cates the decrease of ‖�(t)‖2 as R(t) grows. To fulfill
the normalization condition, a complex term, −iṘ(t)/{2[1 +
R(t)]}a�(t), shows up in an equation corresponding to Eq. (21)
on its right-hand side. Consequently, the working equations
turn out to be non-Hermitian in matrix form if the factor√

2/[1 + R(t)] is not included. The time propagation can
still be implemented by the Arnoldi algorithm [46,47] or the
Runge-Kutta method [33], for instance, but not by the simple
Lanczos algorithm. The factor,

√
2/[1 + R(t)], is hence better

attached to a�(t) in Eq. (14a) to prevent such unnecessary
complications.
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IV. STIFFNESS-FREE FEDVR-BASED LANCZOS
ALGORITHM

As seen from the formulation in Sec. II and the explicit form
of the working equations of Sec. III, ETS is a generalization of
GTS aiming at the reduction of stiffness; non-time-scaling
in the inner region avoids shrinking of most bound states
and hence, differently from GTS, allows the use of less
dense basis functions around the origin. In the treatment of
strong-field ionization at mid-IR wavelengths, corresponding
to the tunneling regime, the equations of motion in ETS
inevitably still become stiff as many angular momentum states
are involved. To resolve this remaining problem, this section
provides a detailed analysis to identify the origin of the
stiffness, and proposes a procedure for its removal. Note that
this section holds some independence from the other sections.
The discussion in the following is not only applicable to ETS
implementation but also to a wider class of equations of motion
appearing in atomic and molecular physics.

A. Error and stiffness analysis on Lanczos algorithm

This subsection focuses on stiffness (see, e.g., Ref. [33]),
i.e., the degree of difficulty in a numerical treatment of the
working equations, to see how it poses problems, and to
identify its origin for seeking the resolution. Toward this
end, the discussion commences with an error analysis on the
short-time iterative Lanczos algorithm. For a given vector,
�(t), the evolution in a small time step �t is given by

�(t + �t) =
K−1∑
k=0

1

k!
[−iH(t)�t]k�(t), (23)

with error

‖�exact(t + �t) − �(t + �t)‖2

≈
∣∣∣∣β1(t)β2(t) · · ·βK−1(t)

(K − 1)!
(�t)K−1

∣∣∣∣
2

< ε, (24)

where {βk(t)}K−1
k=1 is a set of subdiagonal elements in a reduced

form of H(t) on the K-dimensional Krylov subspace [37],
and the last inequality requires the error to be less than, say,
ε ≡ 10−15. Setting �t much smaller than the characteristic
time scale of external fields, Eq. (24) serves as a criterion
at every time step to determine the smallest integer for K .
If the time propagation starts with the ground state, the
product β1(t)β2(t) · · ·βK−1(t) is zero at t = 0, but in due
course reaches its maximum, when the Krylov subspace
acquires the largest dimension, Kmax; the computation faces
difficulty if Kmax is too large. Let B denote the maximum
of K−1

√
β1(t)β2(t) · · ·βK−1(t) during time evolution. Note that,

although field-free atomic states, the energy eigenvalues of
which are well above the energy range of physical interest,
could participate in construction of the Krylov subspace, the
populations of such high-energy states are virtual excitations
which happen more likely for larger �t . Supposing the worst
case such that every energy eigenstate is accessed in the virtual
excitations, let the analysis in the following be based upon an
assumption, B = max{En�}n�, i.e., B reaches the maximum
eigenvalue of H(0) [48]. In this assumption, the working
equations become stiffer as max{En�}n� increases.

Meanwhile, looking at the working equations (16), (17),
and (21), we notice that V�(ξκ̂ ) in Eq. (16) takes very large
values in the vicinity of the nucleus [see Eq. (3)] and is the
decisive factor of max{En�}n�; hence, Eq. (16) is responsible
for the stiffness. To discuss more quantitatively, we define a
set of field-free Hamiltonian matrices around the nucleus:

(h�)κ̂ κ̂ ′ ≡ 1

2

∫ ξmax

0

dχκ̂ (ξ )

dξ

dχκ̂ ′ (ξ )

dξ
dξ + δκ̂κ̂ ′V�(ξκ̂ ),

(κ̂,κ̂ ′ = 1, · · · ,Ñ, � = 0, · · · ,�max), (25)

where Ñ = (Ndvr − 1)Ñfe − 1 with Ñfe � N̂fe, and note the
boundary condition, χκ̂ [ξ (� ξÑ )] = 0 for κ̂ = 1, · · · ,Ñ . Di-
agonalizing these small matrices and obtaining uT

� h�u� =
diag(e1�,e2�, · · · ,eÑ�), the eigenvalues for a first few integers
of n represent the bound-state energies, en� ≈ −[2(n + �)2]−1.
The rest of the eigenvalues are positive and could, in particular
for large �, be too large to be of importance in the physical
process of interest. We then suppose

max{En�}n� ≈ max{en�}n� ≈ �max(�max + 1)

2ξ 2
1

, (26)

i.e., max{en�}n� is not sensitive to Ñ and almost determined
by the centrifugal part of V�max (ξ1) in Eq. (3). This conjecture
is verified by numerical examples: Setting Ñ = 89 (Ndvr =
10 and Ñfe = 10) and �ξ = 1.5, the greatest eigenvalue for
each �, max{en�}n = e89,�, is, after divided by �(� + 1), plotted
in Fig. 3(a). This kind of plot is, for fixed Ndvr = 10 and
�ξ = 1.5, insensitive to the change of Ñfe (not shown in the
figure), and, in every case, approaching (2ξ1)−1 = 137.28 at
large �. Hence, using Eq. (26) in Eq. (24) with assuming B =
max{En�}n� gives

Kmax − 1

�t
> e[2π (Kmax − 1)ε]−1/[2(Kmax−1)] �max(�max + 1)

2ξ 2
1

,

(27)

where (Kmax − 1)! >
√

2π (Kmax − 1) [(Kmax − 1)/e]Kmax−1 is
used (Stirling’s formula; see, e.g., Ref. [49]). Noting that
the numerical cost is proportional to (Kmax − 1)/�t , and
also [2π (Kmax − 1)ε]−1/[2(Kmax−1)] → 1 + 0 as Kmax → ∞,
Eq. (27) indicates the growing numerical efficiency by setting
�t as large as possible (as long as it is still much smaller than
the characteristic time scale of external fields). Equation (27)
at the same time manifests the overwhelming stiffness for
large �max and/or small ξ1. Although the assumption B =
max{En�}n� is so naive that Eq. (27) may overestimate Kmax,
a more rigorous theoretical analysis is beyond the scope of
this paper. Let us verify Eq. (27) numerically instead; Fig. 4(a)
shows Kmax as a function of �max and �t . The color code
and solid black lines represent the contour based on Eq. (24)
with ε = 10−15; Kmax is calculated for each pair of � and �t

as max{Ki}100
i=1, where Ki is the smallest integer satisfying

Eq. (24) in obtaining � i(�t) from � i(0) which is every time
(i = 1, · · · ,100) constructed by random-number elements
and normalized. The calculation is based on a field-free
non-time-scaled Hamiltonian matrix H(0) with the following
parameters: r
 = ξmax = 60, Ndvr = 10, N̂fe = 40, Ňfe = 0,
and �ξ = 1.5. The same calculation with a Hamiltonian
matrix including light-atom interaction term (with fixed light
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FIG. 3. (a) Plot of max{en�}n/[�(� + 1)] as a function of � (in this case, max{en�}n = e89,�). Every ten data are shown by open circles. The
solid gray line indicates (2ξ 2

1 )−1 = 137.28. (b) Eigenvectors of h�, satisfying en� > Ecut = 900 (� = 0, · · · ,200(= �max)). The plot is made

in terms of the FEDVR expansion, ϕn�(ξ ) ≡ ∑Ñ

κ̂=1(u�)nκ̂χκ̂ (ξ ). Both (a) and (b) are obtained under the same numerical condition: Ñ = 89
(Ndvr = 10 and Ñfe = 10) and �ξ = 1.5.

intensity I = 1014 W/cm2) in the length gauge causes no
visible change. The dashed (red) lines in Fig. 4(a), representing
the contour based on Eq. (27), show obvious overestimation but
capture the gross feature of the landscape, verifying Eq. (27)
despite its simplicity.

Equation (27) provides explicitly the following insights:
Achieving high accuracy in the description of electronic
structure and tunneling dynamics requires many FEDVR
functions in the fixed interval, [0,ξmax], as well as many
angular momentum states. With improved accuracy, however,
�max(�max + 1)/(2ξ 2

1 ) rapidly increases, requiring larger Kmax,
which leads to a growing stiffness in the working equations.
Note that the stiffness problem is not peculiar in atomic
systems with the FEDVR-based Lanczos algorithm, but rather
inherently appears in a variety of differential equations in
numerical treatments.

B. Stiffness removal

As shown in Sec. IV A, the stiffness is mainly caused by
high-angular-momentum states, and due to the large value of
the centrifugal potential around the vicinity of the nucleus. This
conclusion suggests a clear strategy to remove the stiffness;
setting a cutoff energy Ecut well above the range of physical
interest, the eigenvectors of h� should be excluded from the
calculation if en� > Ecut. Figure 3(b) depicts eigenvectors of
h�, the eigenvalues of which are above the cutoff, en� > Ecut =
900. Such high-energy states localize only around the nucleus,
hence they can be safely excluded as follows. Defining a set
of Ñ × Ñ matrices by

(ũ�)nκ̂ ≡
{

(u�)nκ̂ for en� � Ecut

0 for en� > Ecut
(28)

(n,κ̂ = 1, · · · ,Ñ ; � = 0, · · · ,�max),

50 100 150 200
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FIG. 4. (a) Contour plot of Kmax as a function of �max and �t . The color code and solid black lines represent the contour based on Eq. (24)
with ε = 10−15. The blank area indicates Kmax > 1000. This estimation is obtained for field-free Hamiltonian H(0) under the numerical
condition: r
 = ξmax = 60, Ndvr = 10, N̂fe = 40, Ňfe = 0, and �ξ = 1.5. The dashed (red) lines show the contour based on Eq. (27). (b) The
same as (a) except that the stiffness is removed by setting Ñfe = 10 and Ecut = 900. See the main text for details.
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0
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0

FIG. 5. Structure of the stiffness-free matrix, H̃(t). This is an illustrative example in the length gauge for the first three angular momentum
states (� = 0,1, and 2) in a situation of h0 = h̃0 and h� 
= h̃� (� � 1). Before the stiffness removal, each angular momentum diagonal block
(� = �′) has block-diagonal structure with respect to ξ , and each angular momentum subdiagonal block (� = |�′ ± 1|) is just diagonal (because
of the length gauge). After the stiffness removal, h� is replaced by h̃� for � � 1 [see Eq. (29)], and every light-atom interaction block F (t)w��′

is replaced by F (t)w̃��′ [see Eq. (31)]. Consequently, the top-left corners of angular momentum diagonal- and subdiagonal blocks become full.
This figure is consistent with Fig. 2 in color code; the shaded, nonshaded (blue), and filled (red) parts, respectively, indicate the matrix elements
formed by {χκ̂ (ξ )}κ̂ , {χb(ξ )}, and {χκ̌ (ξ )}κ̌ .

let us approximately reconstruct h� as

h� = u�uT
� h�u�uT

�

≈ ũ�uT
� h�u�ũT

� ≡ h̃�. (29)

The light-atom interaction should accordingly be modified
around the nucleus; canceling out the TD field factor in
the light-atom interaction operator, and defining the time-
independent matrix by [see Eq. (4)]

(w��′)κ̂ κ̂ ′ ≡ 1

G(t)

∫ ξmax

0
χκ̂ (ξ )W��′(t)χκ̂ ′(ξ )dξ,

(30)
(κ̂,κ̂ ′ = 1, · · · ,Ñ, �,�′ = 0, · · · ,�max),

with G(t) denoting F (t) [A(t)] in the length (velocity) gauge,
let Eq. (30) then be approximated as

w��′ = u�uT
� w��′u�′uT

�′

≈ ũ�uT
� w��′u�′ ũT

�′ ≡ w̃��′ . (31)

The set of working equations is now approximated as i�̇(t) =
H̃(t)�(t), where H̃(t) is constructed using h̃� and G(t)w̃��′

(see Fig. 5) and is hence expected to be stiffness free and
to lead to a reduction in Kmax. Look at the contour plot of
Kmax in Fig. 4(b), which is computed in the same numerical
condition as in Fig. 4(a) after the application of stiffness
removal procedure with Ñfe = 10 and Ecut = 900. Figure 4(b)
confirms our expectation.

Note that h� is structured block diagonal, and w� is diagonal
(block diagonal) in the length (velocity) gauge, whereas both
h̃� and w̃��′ are full. Hence, the stiffness removal partly destroys
the sparseness of H(t), but H̃(t) is still largely sparse and can
be efficiently handled in Harwell-Boeing format (see, e.g.,
Ref. [33]). In most cases, Ñfe(� N̂fe) will be set around 10
to safely remove the stiffness. Setting Ñfe smaller makes H̃(t)
sparser. However, we always need to check before starting
the time propagation that the removed high-energy states do
not localize near the right edge of this small interval [around
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FIG. 6. (a) Radial electron densities, ρ(r,t) [Eq. (35)], at first, second, and third optical cycles (o.c.), i.e., at t = (2π/ω) × n (n = 1,2, and
3). The inset shows the radial density around the origin; the shaded area indicates the radial interval of the inner region (0 � ξ (= r) � r
 = 30).
(b) HHG intensity, S(�), computed as a normed square of the Fourier transformation of dipole acceleration [Eq. (36)]. The harmonic photon
energy is shown in units of the ponderomotive energy Up = F 2

0 /(4ω2) = 3.088. Both (a) and (b) are computed in the velocity gauge for atomic
hydrogen interacting with a three-cycle mid-IR laser pulse (λ = 3 μm, I = 1014 W/cm2, and N = 3). The thin lines are the results of an ETS
calculation, and the thick (pink) lines represent the ones of a non-time-scaled calculation. See the main text for details.

ξ = 15 in the case of Fig. 3(b)]. If not, it is safe, but if so, Ñfe

and/or Ecut must be set larger.
The stiffness removal procedure given above is not easily

applicable to GTS because in GTS every element of the
Hamiltonian matrix depends on time. Also note that the
stiffness removal itself is not a new concept. One can find
a discussion for the (without-space-partition) TD B-spline
R-matrix approach in Ref. [50]. Similar procedures have there-
after been proposed by several researchers. Reference [51],
for instance, suggests a procedure for TD many-electron
calculations based on the FEDVR functions. The stiffness
is removed, however, over the whole spatial simulation
volume. The total Hamiltonian matrix becomes completely
full, spoiling the benefit of FEDVR functions. One can see
another procedure more similar to ours in Ref. [52], where
the authors investigate the photoionization of Ne+ by means
of RMT [40–42]. Based upon the space-partition concept, the
radial wave functions are expressed in terms of the R-matrix
basis functions and grids, respectively, inside and outside a
spherical sphere the radius of which is r
 = 15. The working
equations are free from stiffness by setting Ecut = 1345
and composing the R-matrix basis functions of field-free
eigenstates.

V. NUMERICAL DEMONSTRATION

By solving the ETS working equations (16), (17), and (21)
with the stiffness-free procedure discussed in Sec. IV B, let
atomic hydrogen, prepared in the ground state at t = 0, time
evolve under an N -cycle mid-IR (λ = 3 μm = 5.669 × 104)
pulse the envelope of which is defined by

fN (t) =
{

sin2
(
πt/T

)
(0 � t � T )

0 (T < t)
(32)

where T = 2πN/ω = 413.7 × N . In due care of Eq. (32), the
time-scaling factor is now defined by

R(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

R∞
2T

{
t2 + T 2

2π2

[
cos

(
2πt

T

)
− 1

]}
+ 1

(0 � t � T )

R∞(t − T ) + T R∞
2

+ 1 (T < t)

(33)

which gives nonvanishing R̈(t) only during the presence of the
light field: R̈(t) = (2R∞/T )fN (t) for 0 � t � T , and R̈(t) =
0 for t > T . The original idea of time scaling appeared in
search of suitable adiabatic parameters for describing atom-
diatom collisions [24]. In our case, supposing some adiabatic
action of the mid-IR pulse on the electron, the time-scaling
factor will be better specified by the carrier envelope function.
Note that Refs. [26–32] propose another form, R(t) = {1 +
[R∞(t − t0)]n}1/n (n = 2,3, or 4), for investigating ionization
by high-energy photoabsorption (in the extreme ultraviolet
region) and fast-electron impact (in the keV region); Ref. [31]
also reports the insensitivity of the calculation to the starting
time t0. For mid-IR laser pulses, however, this definition is not
well suited because R(t) changes so much faster than fN (t)
that it can be a source of numerical instability; the calculation
is very sensitive to n and t0. The choice of R(t) in Eq. (33)
gives good properties in the present case. Studies of process-
dependent optimal forms of R(t) could be interesting in the
future.

A. Interaction with a three-cycle pulse

Let us consider a three-cycle (N = 3) pulse the vector
potential of which is given by

A(t) = F0

ω
f3(t) sin ωt, (34)

where F0 = √
I = 5.338 × 10−2 with the intensity I =

1014 W/cm2 = 2.849 × 10−3. Figure 1 depicts the profile of
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the electric field in the top-right corner. Figure 6(a) displays
the radial electron densities of atomic hydrogen,

ρ(r,t) =
�max∑
�=0

|ψ�[ξ (r,t),t]|2, (35)

computed in the velocity gauge by the ETS method and the
usual non-time scaled method. The snapshot at each end
of cycles [t = (2π/ω) × n, (n = 1,2, and 3)] exhibits the
extension of the spatial radius in the ETS calculation, while the
radius in the non-time-scaled calculation keeps 3000, constant.
The inset of Fig. 6(a) displays the smooth continuity of the
radial density across r
 , showing the stability of the ETS
implementation. As a realistic observable, Fig. 6(b) displays
the HHG spectrum computed as a normed square of the Fourier
transformation of the dipole acceleration along the z axis
(polarization of the incoming pulse):

S(�) =
∣∣∣∣
∫ T

0
〈�(t)|

(
∂

∂z

1

r
− F (t)

)
|�(t)〉ei�tdt

∣∣∣∣
2

. (36)

The HHG spectrum consists of three plateaus: (1) 0 <

�/Up < 0.1, (2) 0.2 < �/Up < 1.8, and (3) 1.9 < �/Up <

3.2. Based upon the simple man’s model (a simple classical
simulation) [53], the electron trajectory characterized by the
ionization and return times, t

(n)
i and t (n)

r , respectively, has
the main responsibility to the nth plateau (n = 1,2, and 3):
2.03 < t

(1)
i < 2.20 and 2.20 < t (1)

r < 3.00, 1.52 < t
(2)
i < 1.74

and 1.74 < t (2)
r < 2.77, and 1.00 < t

(3)
i < 1.26 and 1.26 <

t (3)
r < 1.98 (in units of o.c.); also see the electric field-profile

in the top-right corner of Fig. 1. Such a clear time-to-energy
mapping reflects the validity of the semiclassical picture of
electron dynamics under the mid-IR lasers, and becomes less
clear if λ = 3 μm is replaced by λ = 0.8 μm (not shown). A
similar triple plateau in HHG spectra was recently reported
for a different three-cycle pulse with λ = 1.6 μm in Ref. [54],
where more detailed discussions are given based on the wavelet
analysis with the help of the quantum orbit model.

In the ETS calculation for obtaining the results in Fig. 6,
the wave function is parametrized as follows: �max = 200,
r
 = 30, ξmax = 450, Ndvr = 10, N̂fe = 20, Ňfe = 280, �ξ =
1.5, and R∞ = 0.01. The non-time-scaled calculation uses the
same parameters except ξmax = 3000, Ňfe = 1980, and R∞ =
0. The parameters for the stiffness-free time propagation
are common in both calculations: �t = 0.05, ε = 10−15,
Ecut = 900, and Ñfe = 10 [i.e., Ñ = 89, which is the same
as in Figs. 3(b) and 4(b)]. The dimension of the Krylov
subspace is adapted at each time step based on Eq. (24).
Figure 7 shows K as a function of time in three ETS
calculations with different time steps: �t = 0.01, 0.05, and
0.1 (the rest of parameters are the same). In every case,
K increases with the start of the laser pulse, but keeps
smaller than the estimated maximum in Fig. 4(b). These
three calculations exemplify the decrease of (Kmax − 1)/�t

as �t increases: (9 − 1)/0.01 = 800, (33 − 1)/0.05 = 640,
and (64 − 1)/0.1 = 630, i.e., decreasing numerical cost as
a function of �t [see Eq. (27)]. That is, setting �t larger
improves the numerical efficiency as long as it is much smaller
than the characteristic time scale of external fields; in this
case, �t � 2π/ω = 413.7 should be satisfied. Also note that,

K

Time (o.c.)

Δt = 0.1
Δt = 0.05
Δt = 0.01

0

20

40

60

0 1 2 3

λ = 3 μm, I = 1014 W/cm2, N = 3

FIG. 7. Adapted dimension of the Krylov subspace, K , as a
function of time [in units of optical cycle (o.c.)] in three ETS
calculations using the same numerical parameters except the time
step: �t = 0.01, 0.05, and 0.1. The value of K is determined based
on Eq. (24) to ensure the error less than ε = 10−15 at every time
step. The calculations are carried out in the velocity gauge for
atomic hydrogen interacting with a three-cycle mid-IR laser pulse
(λ = 3 μm, I = 1014 W/cm2, and N = 3). See the main text for
details.

without the stiffness removal, the time propagation is virtually
infeasible because Eq. (24) requires K to be much greater than
1000 [the blank area in Fig. 4(a)].

Due to the presence of R(t), the numerical implementation
of the ETS working equations (16), (17), and (21) consumes
an extra CPU time, which is absent in the usual non-time-
scaled calculation, for updating several matrix elements in
the outer region [the block-diagonal part, shown by dashed
(blue) lines in Fig. 5, at each of the angular momentum
blocks along � = �′]. However, this operation does not cause
a major problem. In the above calculations, for instance,
the time propagation by the non-time-scaled method takes
about six times more CPU time than by the ETS method.
On the other hand, the number of nonzero elements of H̃(t)
in the non-time-scaled calculation is 123 135 659, which is
5.6 times larger than in the ETS calculation, 21 987 359. The
efficiency by ETS is almost proportional to the reduction of
nonzero matrix elements. However, we also need to mention
a weak point of ETS; the ETS calculation is sensitive to the
numerical condition, and finding a proper set of parameters,
especially a proper value of R∞ [see Eq. (33)], is not straight-
forward. Assuming r ∼ kt , i.e., a classical relation between
the radial position and momentum of the photoelectron at
large times, Eq. (33) then indicates k ∼ R∞ξ [26–32]. Thus
one may estimate R∞ = √

2 × 10Up/ξmax = 0.017, where
Up = F 2

0 /(4ω2) = 3.088, and 10Up is the maximum kinetic
energy the photoelectron acquires by recollisions with the
parent ion [55,56]. The replacement of R∞ = 0.01 by 0.017
in the above ETS calculation, however, gives some numerical
instability; R∞ = 0.017 results in too fast growth of the r

coordinate, and hence requires a larger number of FEDVR
functions for the accurate description of recollisions; this is
numerically unfavorable. The numerical stability also depends
on the value of r
 . Although Figs. 1(b1)–1(b3) show smooth
continuity of the Coulomb potential function and ψ1s[ξ (r),t]
across r
 = 30 and seemingly imply their stable numerical
treatment, the accurate description of electron recollisions
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during the growth of the r coordinate is not so simple because
of the involvement of many excited states.

Finally note that, just for computing HHG, ETS is not so
useful; one can use a relatively small simulation volume in
the non-time-scaled calculation by employing a CAP or ECS,
because only the electron dynamics around the nucleus is
important to the dipole acceleration. The computation finishes
with the completion of the pulse and does not require a
long-time evolution any further. The true potential of ETS
is the capability of long-time propagation without losing the
norm of the wave function as illustrated in the next subsection.

B. Interaction with a half-cycle pulse

We now consider a half-cycle (N = 1/2) pulse defined by
the electric field,

F (t) = −F0f1/2(t) sin ωt, (37)

and track the long-time evolution of the tunnel-ejected electron
after the completion of the pulse. Note that Eq. (37) does
not comply with the condition for realistic light fields,∫ T

0 F (t)dt = 0 (see, e.g., Refs. [57,58]), and gives a nonvan-
ishing vector potential at t = 0 and t > T . Hence this artificial
pulse necessitates employing the length gauge. Figure 8
displays the time evolution of the radial electron density
[Eq. (35)]. At t = 0.5 o.c., i.e., just after the completion of
the pulse, the electron wave packet occupies a volume of
radius about 1000. Due to its broad energy spectrum, the wave
packet then spreads over a vast expanse of volume and reaches
55 000 at t = 20 o.c. There is neither difficulty nor instability
to continue the evolution as long time as one wishes. The inset
of Fig. 8 monitors the smooth radial density across r
 = 30.
The numerical condition in this ETS calculation is the same
as the one shown in Sec. V A except ξmax = 300, Ňfe = 180,
R∞ = 0.025, and the employment of the length gauge.

Based on the classical picture again, one may think of R∞ =√
2Up/ξmax = 0.0083, because now there is no recollision.

This estimation is, however, too little to take into account the
broad energy spectrum of the wave packet, and it is safer
to set R∞ a few times larger. In contrast to the three-cycle
pulse in Sec. V A, the calculation is not sensitive to R∞ and
other parameters; the same converged result as in Fig. 8 is
also obtained more easily by setting R∞ larger than 0.025

and employing smaller values for ξmax, N̂fe, and Ňfe. Such an
insensitivity to numerical condition is due to the absence of
recollision in the half-cycle pulse. That is, for the analysis of
long-time evolution of electron wave packets in circularly or
near-circularly polarized mid-IR pulses, ETS will show its true
potential without concerns of the numerical sensitivity to the
parameters.

Finally analysis of the radial function for each � will
be worthwhile for realizing how the ETS method enables
keeping numerical stability for very long-time evolution.
Figure 9 shows the real parts of ψ�[r(ξ,t),t] and φ�(ξ,t)/

√
R(t)

(multiplied by a constant; see the caption) for � = 1, 50,
and 100. At t = 0.5 o.c., although the spatial volume has
not much extended yet, the oscillation of Re[ψ�[r(ξ,t),t]] is
already so fast that it is almost invisible. After a long-time
evolution, the situation becomes worse because ψ�[r(ξ,t),t]
spreads over a vast interval in the r coordinate with increasing
its phase gradient outward from the center of the wave
packet [59]. Direct numerical treatment of ψ�(r,t) by the usual
non-time-scaled method is hence virtually infeasible. On the
other hand, because the phase transformation in Eq. (9) cancels
out the growing phase gradient (see the discussion in Ref. [26]),
Re[φ�(ξ,t)/

√
R(t)] exhibits not so fast oscillation in the ξ

coordinate even after a very long-time evolution. Figure 9
shows the increasing difficulty of direct numerical treatment
of ψ�(r,t) as it spreads without the help of the time scaling and
the phase transformation.

VI. CONCLUSION AND OUTLOOK

Aiming at an efficient numerical treatment of tunneling
ionization of atoms and molecules by mid-IR lasers, the ETS
theory is formulated as a generalization of GTS. The working
equations for numerical implementation are derived in terms
of FEDVR basis functions. The key idea of ETS is to divide
the spatial volume into two regions, a small spherical sphere
around the nucleus and its outside, and then to carry out the
time scaling only to the radial coordinates outside. As a result,
the continuum part of the photoelectron wave packet is time
scaled in the outer region and prevented from reflection. On the
other hand, the bound-state part in the inner region is not time
scaled and does not shrink toward the origin. Hence, ETS is less
stiff than GTS. Furthermore, the stiffness-free FEDVR-based

ρ
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FIG. 8. Radial electron densities, ρ(r,t) [Eq. (35)], at 0.5th (just after the end of the pulse), 5th, 10th, 15th, and 20th optical cycles (o.c.),
i.e., at t = (2π/ω) × n (n = 0.5, 5, 10, 15, and 20). The inset shows the radial density around the origin; the shaded area indicates the radial
interval of the inner region (0 � ξ (= r) � r
 = 30). These results are obtained by an ETS calculation in the length gauge for atomic hydrogen
interacting with a half-cycle mid-IR laser pulse (λ = 3, μm, I = 1014 W/cm2, and N = 1/2). After the completion of the pulse at t = 0.5 o.c.,
the system time evolved for 19.5 o.c. with no field. See the main text for details.
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FIG. 9. (a1–a3) Real parts of ψ�[r(ξ,t),t] (thick dark-gray lines) and φ�(ξ,t)/
√

R(t) (thin black lines) for � = 1, 50, and 100 at 0.5th
optical cycles (o.c.); (b1–b3) the same but at 20th o.c. The shaded area in each panel indicates the radial interval of the inner region (0 � ξ (=
r) � r
 = 30). For better visibility and comparison, each pair of curves is plotted after multiplication by the inverse of max |Re[ψ�[r(ξ,t),t]]|
as indicated in each panel. The nonsmooth appearance of Re[ψ�[r(ξ,t),t]] around r
 in (b1) is just due to the abrupt change of the scaling
in the r coordinate. The results in this figure and Fig. 8 are obtained from the same ETS calculation in the length gauge for atomic hydrogen
interacting with a half-cycle mid-IR laser pulse (λ = 3 μm, I = 1014 W/cm2, and N = 1/2). See the main text for details.

Lanczos algorithm is established to completely eliminate any
stiffness for the treatment of long-wavelength lasers. The
test calculations for atomic hydrogen interacting with linearly
polarized mid-IR pulses demonstrate the capability of ETS and
the stiffness-free time propagator. The method shows its true
potential for the detailed analysis of wave-packet dynamics in
nonrecollision situations.

The ETS method and the stiffness-free time propagator
can be flexibly used in several coordinate systems, e.g.,
in hyperspherical coordinates, as mentioned in Ref. [32],

to treat photoionization of atomic helium. Application to
RMT [40–42] may also be possible, but generalization to the
TD-(RAS/GAS)CI method [38,39] is most straightforward,
enabling the extension to many-electron systems. Setting aside
the many-electron problem, tunneling ionization of atoms and
molecules by strong mid-IR lasers with arbitrary polarizations
remains unexplored even within the SAE approximation.
Toward this direction of research, in particular for circular
or near-circular polarization, the potential of ETS is very
promising.
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APPENDIX: LIGHT-ATOM INTERACTION OPERATOR IN THE VELOCITY GAUGE

The FEDVR-based working equations are derived in the length gauge in Sec. III B. The following is a supplementary list of
instructions needed to rewrite the light-atom interaction terms in Eqs. (16), (17), and (21) in the velocity gauge.

In Eq. (16), WL
��′(ξκ̂ ,t)aκ̂�′(t)

→
∫ r


0
χκ̂ (ξ )WV

��′(ξ,∂ξ ,t)ψ�′(ξ,t)dξ

= −i
A(t)

2
g��′

{∑
κ̂ ′

aκ̂ ′�′(t)
∫ ξmax

0

[
χκ̂ (ξ )

dχκ̂ ′(ξ )

dξ
− dχκ̂ (ξ )

dξ
χκ̂ ′(ξ )

]
dξ

+
√

2

1 + R(t)
a�′ (t)

∫ ξmax

0

[
χκ̂ (ξ )

dχb(ξ )

dξ
− dχκ̂ (ξ )

dξ
χb(ξ )

]
dξ + �′(�′ + 1) − �(� + 1)

ξκ̂

aκ̂�′(t)

}
. (A1)

In Eq. (17), WL
��′[r
 + R(t)(ξκ̌ − r
),t]bκ̌�′(t)

→
∫ ξmax

r
+0
χκ̌ (ξ )

{
WV

��′[r
 + R(t)(ξ − r
),∂R(t)ξ ,t] + g��′A(t)Ṙ(t)(ξ − r
)
}
φ�′(ξ,t)dξ

= −i
A(t)

2
g��′

{∑
κ̌ ′

bκ̌ ′�′(t)

R(t)

∫ ξmax

0

[
χκ̌ (ξ )

dχκ̌ ′(ξ )

dξ
− dχκ̌ (ξ )

dξ
χκ̌ ′ (ξ )

]
dξ

+
√

2R(t)

1 + R(t)
a�′(t)

∫ ξmax

0

[
χκ̌ (ξ )

dχb(ξ )

dξ
− dχκ̌ (ξ )

dξ
χb(ξ )

]
dξ + �′(�′ + 1) − �(� + 1)

r
 + R(t)(ξκ̌ − r
)
bκ̌�′(t)

}

+ g��′A(t)Ṙ(t)(ξκ̌ − r
)bκ̌�(t). (A2)

In Eq. (21), WL
��′(r
,t)a�′(t)

→
√

2

1 + R(t)

[ ∫ r


0
χb(ξ )WV

��′(ξ,∂ξ ,t)ψ�′(ξ,t)dξ

+
√

R(t)
∫ ξmax

r
+0
χb(ξ )

{
WV

��′[r
 + R(t)(ξ − r
),∂R(t)ξ ,t] + g��′A(t)Ṙ(t)(ξ − r
)
}
φ�′(ξ,t)dξ

]

= −i
A(t)

2
g��′

{√
2

1 + R(t)

∑
κ̂

aκ̂�′(t)
∫ ξmax

0

[
χb(ξ )

dχκ̂ (ξ )

dξ
− dχb(ξ )

dξ
χκ̂ (ξ )

]
dξ

+
√

2

R(t)[1 + R(t)]

∑
κ̌

bκ̌�′(t)
∫ ξmax

0

[
χb(ξ )

dχκ̌ (ξ )

dξ
− dχb(ξ )

dξ
χκ̌ (ξ )

]
dξ + �′(�′ + 1) − �(� + 1)

r


a�′ (t)

}
. (A3)
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