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Correlation and polarization effects in two-photon photoionization of Ar
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A method for the calculation of transition amplitudes of two-photon ionization processes is developed. It is
based on computing a correlation function, which enables the summation over intermediate states of two-photon
transitions. Two-photon ionization transition amplitudes were calculated in the lowest order of perturbation theory
with taking into account many-electron correlations. The noniterative numerical scheme provided a solution of
the differential equation for the correlation function at exciting-photon energies close to the intermediate discrete
resonance states. Cross section and angular distribution parameters for photoelectrons of the two-photon 3p

photoionization of Ar were calculated. The exciting-photon energy ranged from 8 eV to 15 eV. For the first time
an ab initio polarization potential considers the polarization of the atomic core by the excited photoelectron was
included in the calculation. This effect increases the photoionization cross section at the photon energy from 8 eV
to 10 eV by approximately 15% and shifts the computed energies of the intermediate discrete-state resonances,
bringing them to excellent agreement with the experimental energies.

DOI: 10.1103/PhysRevA.93.033408

I. INTRODUCTION

The progress in the development of free-electron laser
facilities achieved during recent years [1,2] revived the interest
in the description of multiphoton ionization processes. The
most important parameter for the theoretical interpretation
of the experimental data is the absolute value of the atomic
multiphoton photoionization cross section (PICS). Several
different semiempirical and model approaches have been
applied to compute PICS, e.g., the scaling method based on
known photoionization cross sections of He [3–6] or the local
approximation for the exchange electron-electron interaction
in the calculation of single-electron wave functions [7–10].
More accurate but much more complex are ab initio methods
within the Hartree-Fock (HF) approximation with inclusion
of many-electron correlations. Several particular techniques
were created to perform the ab initio calculation of the
multi-photon ionization cross sections with taking into account
many-electron correlations. Thus, in Ref. [11] the multiphoton
ionization cross section of atomic Mg were calculated applying
the L2 basis constructed from B splines. The 250 configura-
tions of the 3sn� and 3pn�′ series were considered. However,
the method is restricted to the case of bivalent atoms. For
the case of the two-photon ionization of Ar those calculations
were performed in Refs. [12–15]. The main difficulty in the
calculation of the two-photon transition amplitude to the final
state with the k� photoelectron is the summation over the
complete set of intermediate states including the continuum
ones. Pindzola and Kelly [12] tried to avoid this problem in
the direct calculation by a proper selection of the upper limit
of spatial integration and a large set of intermediate states
in the numerical integration. Nevertheless, the photon-energy
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dependence of the two-photon PICS computed in Ref. [12]
demonstrated some nonphysical curvatures (see Sec. III B
below).

In Ref. [13] the two-photon ionization cross section has
been calculated by the transition-matrix method where the
transition amplitudes were determined applying the Dalgarno-
Lewis technique [16]. Several many-electron corrections to the
two-photon transition amplitude computed in the lowest order
of perturbation theory (LOPT) were included. In Ref. [13]
the intermediate-state integration has been made via an
effective function, which was determined by the solution of an
inhomogeneous integrodifferential equation. This equation is
widely applicable in atomic and nuclear physics. The effective
function has been differently referred to in the literature, e.g.,
“the perturbed-function” [17,18], “effective wave function”
[13,19], “correlation function” [20]. In the present paper we
call this function the “correlation function” (CF) as earlier [20].
The CF method is more precise as compared to the one of direct
summation over the intermediate states [12]. However, the nu-
merical algorithm to solve the inhomogeneous integrodifferen-
tial equation did not converge at any energy [13]. In particular,
it was not possible to calculate the two-photon ionization cross
section for energies close to intermediate discrete resonances
acting as dominating states for the multiphoton PICS.

In the papers [21,22] the two- and three-photon ionization
of H and Li were calculated. A particular approach has been
applied to avoid a divergence in the Dalgarno-Lewis method
in the “close-to-resonance” region. The corresponding
differential equation has been solved precisely in the
“between-resonance” energy regions. Then the transition
amplitude was divided by nonresonant and resonant parts. The
smoothly varying functions of both parts were interpolated to
the regions of the intermediate resonances and the respective
cross sections were obtained.
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A further method using variationally stable procedures with
a Slater orbital basis has been applied in Ref. [14] for similar
calculations. There, an important intermediate-state monopole
(shake) correlation, omitted in Ref. [13], was incorporated
in the calculation. That correction changed dramatically
the theoretical multiphoton PICS for the transition to the
3p5εs(1S) channel. The numerical procedure enabled us to
calculate photoionization cross sections at all photon energies
including intermediate resonances. However, the restriction
of the Slater orbital basis set led to some inaccuracy in the
calculated PICS (see Sec. III B below). Finally, in Ref. [15]
the angular-distribution parameters for photoelectrons were
calculated in the same approximation.

Here we introduce a method for the calculation of two-
photon cross sections, which is based on the CF technique and
which solves the described difficulties. It applies a noniterative
numerical procedure for the solution of the inhomogeneous
integrodifferential equation. The procedure is based on the
reduction of the single nonlocal integrodifferential equation
to a system of local differential equations as described,
e.g., in [23]. The stability of this technique was recently
demonstrated in the calculation of two-photon ionization
of the H2 molecule [24] in the LOPT approximation. In
addition to the many-electron correlations taken into account
in Refs. [14,15], the effect of atomic core polarization by the
outgoing photoelectron [25] is considered.

The paper is organized as follows. In Sec. II we describe
the calculation method of the two-photon ionization transition
amplitudes of Ar in the LOPT applying the CF technique. In
Sec. III we calculate partial and total 3p two-photon ionization
cross sections of Ar and angular-distribution parameters for
the photoelectrons. In Secs. III A and III B the details of the
calculations of atomic orbitals (AOs), correlation functions,
and final-state photoelectron wave functions are discussed
demonstrating the advantage of the used noniterative numeri-
cal method for the CF calculation.

The calculated 3p two-photon ionization cross sections of
Ar are presented in Sec. III C. In Sec. III D the influence of
the polarization of the atomic core induced by the outgoing
electron is studied in addition to the direct ionization and
correlation effects. The influence of all mentioned effects on
the angular-distribution parameters for the photoelectrons is
studied in Sec. IV. We conclude with a brief summary in
Sec. V. In the Appendix we present the equations for the
CFs and the geometrical factors used in the calculation of
many-electron correlations.

II. TWO-PHOTON IONIZATION TRANSITION
AMPLITUDES CALCULATED BY THE CORRELATION

FUNCTION METHOD

We study two-photon ionization of the 3p shell of Ar which
can be presented by the scheme

Ar 3p6(1S) + 2γ → Ar+ 3p5(2P )ε�(1L) (L = 0,2). (1)

The amplitude of the two-photon ionization transition i →
f with photon energy ω in the LOPT is [13,21,22]

Ti→f =
∑
m

〈f |D|m〉〈m|D|i〉
Ei + ω − Em

(2)

where Ei and Em are energies of the initial and intermediate
states respectively, D is the electric dipole operator, and the
sum over the intermediate states m includes integration over
the continuum states. The LOPT processes are

3p6 ��� 3p5ε′�′ ��� 3p5ε� (Ia),

3s23p6 ��� 3s13p6ε� ��� 3s23p5ε� (Ib),

where the dashed arrows denote electric dipole interaction.
The solid arrow in the following equations denote Coulomb
interaction. In the LS coupling scheme the general expression
(2) for the process, e.g., (Ia), becomes

T =
∑
ε′>F

∑
�′

〈3p5ε�|D|3p5ε′�′〉〈3p5ε′�′|D|3p6〉
ω − E

(i)
3p − ε′ , (3)

where E
(i)
3p is the ionization potential of the 3p electron.

In addition to the LOPT amplitudes (Ia, Ib), the com-
plementary amplitudes of the first order over the electron-
electron interaction were also included in the calculation.
Those amplitudes involve all possible one- and two- electron
excitations allowed by selection rules in the initial, final, and
intermediate states and are listed in Ref. [14]. Two-photon
transitions including many-electron correlations with the same
numbering as in Ref. [14] are intermediate-state interchannel
correlation:

3p6 ��� 3p5ε′′�′′ → 3p5ε′�′ ��� 3p5ε� (II);

ground-state correlations:

3p6 → 3p4ε′�′ε′′�′′ ��� 3p5ε′�′ ��� 3p5ε� (IIIa),

3p6 → 3p4ε′�′ε′′�′′ ��� 3p4ε�ε′′�′′ ��� 3p5ε� (IIIb),

3p6 → 3p4ε�ε′′�′′ ��� 3p4ε�ε′�′ ��� 3p5ε� (IIIc);

intermediate-state shake-up correlation:

3p6 ��� 3p5ε′�′ → 3p4ε�ε′�′ ��� 3p5ε� (IV);

intermediate-state electron-scattering correlation:

3p6 ��� 3p5ε′�′ → 3p4ε�ε′′�′′ ��� 3p5ε� (V);

final-state electron-scattering correlations:

3p6 ��� 3p5ε′�′ ��� 3p4ε′�′ε′′�′′ → 3p5ε� (VIa),

3p6 ��� 3p5ε′′�′′ ��� 3p4ε′�′ε′′�′′ → 3p5ε� (VIb).
The explicit expressions for the correlation amplitudes (II–

VI) are more cumbersome than Eq. (3). For example, transition
amplitude (II) is expressed as

T =
∑

ε′,ε′′>F

∑
�′,�′′

〈3p5ε�|D|3p5ε′�′〉〈3p5ε′�′|V |3p5ε′′�′′〉〈3p5ε′′�′′|D|3p6〉
(ω − E

(i)
3p − ε′) (ω − E

(i)
3p − ε′′)

, (4)
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where V is the perturbation operator

V =
∑
i<j

r−1
ij − uHF, (5)

and uHF in Eq. (5) is the HF potential (13). The amplitude
(4) can be interpreted as an excitation of the 3p-core electron
to the virtual ε′′�′′ state by the first photon, the following
transfer of the ε′′�′′ electron to the ε′�′ state by the Coulomb
interaction with the core, and, finally, the transfer of the virtual
ε′�′ electron to a real final state ε� by the second photon. Other
correlations shown above can be interpreted similarly.

Applying the method of [26] the expressions (3) and (4)
can be simplified and presented as a product of two factors,
depending on angular and radial variables respectively. The
radial part of the transition amplitude can be calculated
applying the CF technique which is described below.

A. LOPT process (Ia)

The transition amplitude of the process (Ia) is a product of
a geometrical factor (fq) and a radial part (tω):

T (Ia)
q,ω (L,�) =

∑
�′

fq(L,�,�′) t (Ia)
ω (L,�,�′), (6)

where q = 0 corresponds to the linearly polarized incident
radiation and q = ±1 corresponds to circularly polarized
radiation.

The geometrical factor fq in Eq. (6) was calculated using
the methods described in Ref. [26]:

fq(L,�,�′) =
√

2(2L + 1)

(
L 1 1

−2q q q

){
� L 1
1 �′ 1

}

×(�‖C(1)‖�′)(�′‖C(1)‖1) (7)

The quantities in round brackets and curly braces in Eq. (7)
are 3j symbols and 6j symbols, respectively, and (�‖C(1)‖�′)
is a submatrix element of the spherical function operator,
determined in the standard phase system [26]. The numerical
values of fq for the considered cases are listed in Table I.

The radial part of the amplitude (6) is

t (Ia)
ω (L,�,�′) =

∑
ε′>F

〈ε�|d|ε′�′〉〈ε′�′|d|3p〉
ω − E

(i)
3p − ε′ . (8)

The notation ε′ > F denotes the summation over all unoc-
cupied single-electron states. In Eq. (8) the term-dependent

TABLE I. Geometrical factors fq (L,�,�′) [Eq. (7)] for the
case of linearly polarized incoming radiation (q = 0). In
the case of circular polarization the factors are f1(2,�,�′) =√

3/2 f0(2,�,�′); f1(0,�,�′) = 0

1L � �
′

f0

1S p s −
√

2
3
√

3
1S p d − 2

√
2

3
√

3
1D p s 2

3
√

3
1D p d 2

15
√

3
1D f d 2

√
2

5

ε� AOs were computed in the configuration 3p5ε�(1L).
〈ε′�′|d|n�〉 is the radial integral determined either in length
(d = r) or velocity form (d = d

dr
∓ �max

r
, �max = max(�,�′),

and the signs “−” or “+” correspond to the transitions
� → � − 1, � → � + 1) where the operator d acts on the ε′�′
function.

The radial integral 〈ε�|d|ε′�′〉 is divergent if it contains two
continuum wave functions. This divergence can be avoided if
the CF method is applied.

The CF is defined as

φ�′(r) =
∑
ε′>F

Pε′�′(r)〈ε′�′|d|3p〉
ω − E

(i)
3p − ε′ . (9)

It is calculated by solving the inhomogeneous integrodiffer-
ential equation. In the length and in the velocity form this
equation is

(h�′ − ω + E
(i)
3p)φ�′(r)

= −rP3p(r) +
∑
n′<F

Pn′�′(r)〈n′�′|d|3p〉, (10)

(h�′ − ω + E
(i)
3p)φ�′(r)

= dP3p(r)

dr
± �max

r
P3p(r) +

∑
n′<F

Pn′�′(r)〈n′�′|d|3p〉, (11)

respectively, where h�′ is the Hartree-Fock operator for the ε′�′
function in the configuration 3p5ε′�′(1P ). The notation n′ < F

means the summation over all occupied states of the atomic
core.

We introduce the HF operator as in Ref. [27] Eqs. (5.32)
and (5.33):

hHF = −	2

2
− Z

r
+ uHF, (12)

where the HF potential is determined via its matrix element

〈i|uHF|j 〉 =
∑
b<F

(〈ib|r−1
12 |jb〉 − 〈bi|r−1

12 |jb〉). (13)

After the integration over the angular variables the radial part of
the HF operator acting on the radial orbital P�(r) is determined
as

h�P�(r) =
(

− 1

2

d2

dr2
− Z

r
+ 1

2

�(� + 1)

r2

+V�(r) − X�(r)

)
P�(r). (14)

Here V�(r) is the local part of the Coulomb interaction with
the core electrons; X�(r) is the nonlocal part of the Coulomb
interaction.

The signs in Eq. (11) correspond to the above comments to
Eq. (8): in this case the sign “+” is taken if �′ = 0 and “−” is
taken if �′ = 2. After computing the correlation function the
expression for the radial part of the transition amplitude (6)
becomes

t (Ia)
ω (L,�,�′) = 〈ε�|d|φ�′ 〉. (15)
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B. LOPT process (Ib)

Similar to Eq. (6), the transition amplitude of the process
(Ib) is a product of two terms:

T (Ib)
q,ω (L) = −fq(L,1,0) t (Ib)

ω (L), (16)

where the fq(L,1,0) are listed in Table I.
The radial part of the transition amplitude (16) is

t (Ib)
ω (L) = 〈εp|d|3s〉〈3s|d|3p〉

ω − E
(i)
3s − ε

, (17)

where E
(i)
3s is the ionization potential of the 3s electron.

It is well known [28,29] that 3s single-electron ionization
of Ar is strongly influenced by 3p3p-3sεd/s excitations. This
many-electron effect shifts the main peak in the 3s photo-
electron spectrum and provides an extended satellite structure.
However, the mean energy of the structure is approximately
equal to the HF 3s-ionization energy. Therefore, we set the
ionization potential E

(i)
3s to its HF value which equals 2.555

Ry. This substitution of the HF value of E
(i)
3s (HF) = 2.555 Ry

on the experimental one E
(i)
3s (expt.) = 2.149 Ry [30] leads to a

very small change in the calculated generalized cross sections.
Thus, for the 3p5εp(1S) channel it does not exceed 0.01%.

C. Correlation processes of the third order of
perturbation theory

The equations for the transition amplitudes of all the
correlation processes (II)–(VI) have also a factorized form:

T (corr)
q,ω (L,�) =

∑
l′

fq(L,�,�′)
∑
�′′

t (corr)
ω (L,�,�′,�′′). (18)

The geometrical factor fq is identical for all correlation
processes (II)–(VI) and is listed in Table I. The radial
parts t (corr)

ω (L,�,�′,�′′) depend on both �′ and �′′ intermediate
quantum numbers. The calculation of t (corr)

ω is individual for
each correlation process (II)–(VI) and is described in detail in
the Appendix.

III. TWO-PHOTON IONIZATION CROSS SECTIONS
OF 3 p SHELL OF ARGON

The cross section describing two-photon ionization has the
dimension cm2 [12] and contains the photon flux. In order to
compare our calculation with results of work [13,14] we use,
as in these papers, the generalized two-photon ionization cross
section (G2PICS) which has the dimension cm4 s and does not
contain the photon flux. The G2PICS is a sum of partial cross
sections:

σq(ω) =
∑
L,�

σq(L,�,ω). (19)

where each of partial G2PICS is determined by

σq(L,�,ω) = 8π3αa5
0

c
ω±2|Tq,ω(L,�)|2. (20)

In Eq. (20) α = 1/137.036 is a fine-structure constant;
a0 = 5.291 77 × 10−9 cm is the Bohr radius; c = 2.997 92 ×
1010 cm/s is light velocity in vacuum; ω is exciting photon
energy in atomic units; + and − correspond to the length and

velocity form of the electrical dipole operator, respectively.
The two-photon transition amplitude Tq,ω(L,�) is then

Tq,ω(L,�)=T (Ia)
q,ω (L,�)+T (Ib)

q,ω (L,�)+
∑
(corr)

T (corr)
q,ω (L,�), (21)

where terms on the right-hand side are calculated via Eqs. (6),
(16), and (18), and the index “corr” denotes the correlation
amplitudes (II)–(VI). The radial parts tω of the transition
amplitudes (6), (16), and (18) contain electric dipole integrals
and energy denominators in atomic units.

A. Calculational details

Core AOs were obtained by solving the nonrelativistic HF
equation for the configuration 1s22s22p63s23p6 and remained
frozen in the calculation. Continuum electron wave function
were calculated by solution of the term-dependent HF equation
for the configurations 3p5εp(1S), 3p5εp(1D), and 3p5εf (1D).
These AOs have the following asymptotic form:

Pε�(r)
r→∞−→

√
2

πk
sin

(
kr − �π

2
+ Zas

k
ln(2kr) + δ�

)
. (22)

Here k is a wave vector of the continuum electron in a.u.; Zas is
the asymptotic charge of the ion; δ� represents the sum

δ� = arg�

(
� + 1 − ı

Zas

k

)
+ ϕ�, (23)

where ϕ� is the short-range phase shift.
The intermediate states were taken into account using

the CF method with the HF operator for the configurations
3p5ε′s(1P ) and 3p5ε′d(1P ). The HF operator h�′ for the ε′�′
function and corresponding CF [see, e.g., Eqs. (10) and (11)]
includes local Jk and nonlocal (exchange) Kk parts of the
Coulomb interaction operator with core electron (i):

Jk(Pi ; r)φ�
′ (r) = yk(Pi,Pi ; r) φ�

′ (r)

=
∫ ∞

0

rk
<

rk+1
>

Pi(r
′) Pi(r

′) dr ′ φ�
′ (r), (24)

Kk(Pi ; r)φ�
′ (r) = yk(Pi,φ�

′ ; r)Pi(r)

=
∫ ∞

0

rk
<

rk+1
>

Pi(r
′)φ�

′ (r ′) dr ′ Pi(r), (25)

where r< and r> is the lesser and the greater of the r and r ′.
To solve Eqs. (10) and (11) with the nonlocal part of

electron-electron interaction we applied a technique described
in Ref. [23]. We introduced the function

Yk(Pi,φ�
′ ; r) = r yk(Pi,φ�

′ ; r), (26)

which satisfies the following differential equation:

d2Yk(Pi,φ�
′ ; r)

dr2
= k(k + 1)Yk(Pi,φ�

′ ; r)

− 2k + 1

r
Pi(r) φ�

′ (r) (27)

with boundary conditions

Yk(Pi,φ�
′ ; r) = Ak rk+1 (r → 0), (28)

Yk(Pi,φ�
′ ; r) = Ak r−k (r → ∞). (29)
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FIG. 1. The 3p G2PICS for the transition to the εf (1D) channel
calculated in the LOPT approximation in present work and in the
paper [12] in the length (L) and velocity (V) forms of the dipole
transition operator and for the linearly polarized incoming radiation.

Thereby, the nonlocal integrodifferential equations (10) and
(11) are transformed to a system of local differential equations.
The numerical solution of the system is noniterative, stable,
and converges at each energy including the resonance regions.

B. Advantage of the noniterative method of the CF calculation

In this section we present the results of our calculation of
the 3p G2PICS of Ar, performed within the LOPT [processes
(Ia) and (Ib) are considered only] and they will be compared
with preceding calculations in order to check the quality and
stability of the algorithms.

In Ref. [12] the transition amplitudes (2) were calculated
using direct numerical integration. To obtain the required
accuracy Pindzola and Kelly [12] selected a particular cutoff
radius Rmax and a number of mesh points in the numerical
radial integration.

In Fig. 1 the partial G2PICS for the εf (1D) final-state
channel calculated in Ref. [12] and in the present work
are compared. Only LOPT process and linearly polarized
incoming radiation were considered. A good overall agreement
between results of both calculations exists. However, the
data of [12] display nonphysical beats, whereas our data are
smoother in the out-of-resonance region.

In Fig. 2(a) partial G2PICS for the εp(1S) channel calculated
in Ref. [13] (dash-dotted curve) are compared with our
calculation (solid line). The length form of the electric dipole
operator and the CF method were applied in both calculations,
and the process (Ia) was taken into account only. The G2PICS
computed by us and by Starace and Jiang [13] are in very good
agreement if we set the computed energy of the 3p54s(1P )
resonance to its experimental value 11.62 eV (see Table III
from [13]). For this purpose we changed the HF value of the 3p

ionization potential, E(i)
3p = 1.182 Ry, by the 
E

(i)
3p = −0.045

Ry (note that the HF value is ε4s = −0.283 Ry). With this
value of E

(i)
3p the denominator in Eq. (8) becomes equal to zero

at ω = 11.62 eV. The HF and experimental energy positions of
the intermediate 3p54s(1P ) resonance are marked in Fig. 2(a)
as vertical lines.
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 LOPT (Ia only), L
 Starace [13], L 

ωHF
4s
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-5
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4  s
)
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ωexpt.
4s

Ar

(a)
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(b)

Ar

 LOPT, L
 LOPT, V
 Pan [14], L 
 Pan [14], V 

Photon energy (eV)

ω4s

FIG. 2. The 3p partial G2PICS for the transition to the εp(1S)
channel and for the linearly polarized incoming radiation calculated
in the LOPT. (a) Length form (L) of the dipole transition operator:
our calculation performed using the experimental position of the
3p54s(1P ) resonance, and data from [13]. The HF and experimental
values of intermediate discrete 3p54s(1P ) resonance are marked by
vertical lines. (b) Length (L) and velocity (V) forms of the dipole
transition operator: our calculation (LOPT) and data from [14].
The experimental ionization potential E

(i)
3p = 1.158 Ry was used in

the calculation. The respective position of the intermediate discrete
3p54s(1P ) resonance is marked by a vertical line.

In Ref. [13] it was noticed that the applied Dalgarno-Lewis
algorithm [16] for the CF calculation was found to be divergent
at the region of intermediate discrete resonances. Therefore,
in Fig. 2(a) the G2PICS dependency shows breaks. The same
situation appeared in our work when the nonlocal exchange
potential (25) was included via an iteration procedure. Within
the noniterative numerical scheme of CF calculation (see
Sec. III A) we successfully computed the CF and G2PICS
at any energy including the regions of the resonances until
ER ± 2.5 meV, where ER is the exact energy of the resonance.

The generalized two-photon ionization cross section for
the transition to the εp(1S) channel calculated in the HF
approximation by us and in paper [14] are presented in Fig. 2(b)
in the length and velocity form of the dipole transition operator.
In both calculations the HF value of E

(i)
3p was used. In our

calculation we used the noniterative CF method. In the paper
[14] the variationally stable procedures on a basis of Slater
orbitals was applied which also made it possible to avoid
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FIG. 3. The 3p partial G2PICS for the transition to the εp(1S)
channel and for linearly polarized incoming radiation calculated in
LOPT and with taking into account many-electron correlations (corr).
Both length (L) and velocity (V) forms are presented.

the divergence of the calculation in the “close-to-resonance”
region.

Comparing our G2PICSs with [14] we draw attention to the
following:

(i) The G2PICS calculated in Ref. [14] in length form are
approximately 12% smaller than our G2PICS in the 8–11.5 eV
photon energy range.

(ii) Our G2PICS (dashed line) displays in velocity form
a very sharp peak at the ω4s with the width not exceeding
0.01 eV [in Fig. 2(b) this resonance is blended by the vertical
line ω4s]. It is much broader in the calculation of [14].

(iii) The results of [14] reproduce the energy position of
the 3p54s(1P ) intermediate resonance ω4s = 11.90 eV worse
than our calculation which is even more evident for the
velocity form of the calculated G2PICS: the shift comprises
approximately 0.08 eV [see dash-double-dotted curve in
Fig. 2(b)].

These discrepancies are most likely due to a limited set of
Slater functions applied in Ref. [14] in the variationally stable
procedure.

C. Influence of many-electron correlations

Now we discuss all transitions (I)–(VI) that were taken into
account in calculating the G2PICS. We note that we chose the
experimental potential of double ionization of the Ar 3p4(3P2)
level E

(i)
3p2 = 3.189 Ry [30] not only in the calculation of the

(VIa) and (VIb) amplitudes but also for the (III)–(V) processes
whereas in Ref. [14] the approximation E

(i)
3p2 = 2E

(i)
3p was

applied for the latter cases.
The strongest influence of many-electron correlations is

seen in the G2PICS of the εp(1S) channel (Fig. 3). The LOPT
G2PICS in length form (dash-dotted curve) at the threshold
is almost four times larger than in the velocity form (dash-
double-dotted curve). After inclusion of many-electron effects
[processes (II)–(VI)] this difference is reduced down to 20%
(solid and dashed curves respectively). The influence of many-
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FIG. 4. The 3p total G2PICS in length (L) and velocity (V)
form for the linearly polarized incoming radiation calculated in
LOPT and with taking into account many-electron correlations (corr).
Vertical lines: the energies of the intermediate 3p5n�(1P ) resonances
calculated using the experimental value of 3p ionization potential
E

(i)
3p = 1.158 Ry.

electron effects on the computed values of G2PICSs for the
εp(1D) and εf (1D) is less pronounced (see Sec. III D).

The influence of many-electron correlations on the total
G2PICSs of the 3p shell of Ar for the linear polarization
of exciting radiation is presented in Fig. 4. The changes are
similar to the case of εp(1S) channel. If one takes into account
the LOPT processes only [(Ia) and (Ib)] the total G2PICS
computed in the length form (dash-dotted curve) exceeds at the
threshold almost twice that in the velocity form (dash-double-
dotted curve). After accounting for many-electron effects
[processes (II)–(VI)] the difference is decreased to 8% at
the 8–11-eV photon energy region (solid and dashed curves
respectively).

In Fig. 5 the presently calculated total cross sections and
those of [14] with inclusion of many-electron effects are
presented for the case of linearly polarized incident radiation.
The results are quite close to each other. However, again a small
energy difference of the intermediate 3p54s(1P ) resonance
obtained in [14] with respect to ours might be caused by the
limited number of Slater functions in Ref. [14].

D. Atomic core polarization due to the photoelectron

Atomic core polarization was considered by implementa-
tion of an ab initio core polarization potential V CP (r) [25]
in the HF operator hl′ or hl′′ entering Eqs. (10), (11), (A5),
(A8), (A9), (A10), and (A13). In addition, the matrix elements
of Coulomb interaction, describing the correlations (II)–(VI),
have been reduced by a factor of 1.25. By this scaling we took
into account the correlation effects of higher orders as it was
described in Refs. [20,25,31].

The scaling factor was obtained by taking into account the
correlation corrections to the matrix element V (ImI ,KmK )
of the Coulomb interaction between the configurations I and
K [mI and mK are total and inner (intermediate) angular
momenta of electrons of the I and K configurations]. The
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FIG. 5. The 3p total G2PICS in the length (L) form for linearly
polarized incoming radiation calculated with taking into account
many-electron correlations. The results of our calculation (corr)
and those of [14] are compared. Vertical lines: the energies of the
intermediate 3p5n�(1P ) resonances calculated using the experimental
value of 3p ionization potential E

(i)
3p = 1.158 Ry.

correction 
V to the matrix element V (ImI ,KmK ) was
calculated applying the second-order perturbation theory
formula similar to Eq. (2):


V (ImI ,KmK ) =
∑
XmX

〈ImI |V |XmX〉〈XmX|V |KmK〉
E(I ) − E(X)

,

(30)
where the summation runs over the discrete and continuum
states of the configuration X, and E(I ) and E(X) are mean
HF energies of the I and X configurations, respectively. The
correction 
V , usually, has the opposite sign with respect
to the matrix element V . Therefore, taking into account this
correction can be treated as the effective decrease of the
interaction between the I and K states. The scaling factor
for this interaction was computed using the “Dyson-type”
equation, supposing that scaling is the same for all interactions
entering Eq. (30):

V (ImI ,KmK )

k
= V (ImI ,KmK ) + 
V (ImI ,KmK )

k
. (31)

The latter approximation appeared to be a very reasonable
[20,25,31].

In Fig. 6 the core polarization increases the calculated
partial G2PICS for the εp(1S) channel by 17% for the length
form (dash-dotted and solid curves) and by 11% for the
velocity form (dash-double-dotted and dashed curves). It
also shifts the calculated energy position of the intermediate
resonances to lower photon energies. The reason is that
the photoelectron distorts the core electrons. Therefore, the
core-electron potential is changed and it leads to a stronger
localization of the photoelectron AO.

In Fig. 7 the influences of correlation and polarization
effects are demonstrated for the εp(1D) channel in the length
form. Many-electron correlations [processes (II)–(VI)] shifted
the computed first minimum in the G2PICS by 0.7 eV to the
threshold and decreased at the threshold by 28% (cf. dashed
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FIG. 6. The 3p partial G2PICS for the εp(1S) channel in length
(L) and velocity (V) form for linearly polarized incoming radiation
calculated with taking into account many-electron correlations (corr)
and, in addition, polarization of the atomic core by the photoelectron
(corr + CP).

and dash-dotted curves). The polarization of the atomic core
induces an additional shift of the theoretical minimum by
0.2 eV (cf. dash-dotted and solid curves), but the threshold
G2PICSs remained almost unchanged. Similar to the case of
the εp(1S) channel the core polarization shifted the calculated
energy position of the intermediate resonances by the same
value towards lower photon energies.

In Fig. 8 the same effect is presented for the εf (1D) chan-
nel. The many-electron correlations decrease the computed
G2PICSs by 17% at the threshold and by 36% at the ω = 11 eV
(dashed and dash-dotted curves). Besides, the prominent res-
onance profile that corresponds to the intermediate 3p54s(1P )
state becomes apparent. The origin of that profile is connected
to the intermediate-state interchannel correlation (II). The
same result was obtained in Ref. [14]. The core polarization
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FIG. 7. The 3p partial G2PICS for the εp(1D) channel in length
(L) form for linearly polarized incoming radiation calculated in
LOPT, with taking into account many-electron correlations (corr)
and, in addition, polarization of the atomic core by the photoelectron
(corr + CP).
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FIG. 8. The 3p partial G2PICS for the εf (1D) channel in length
(L) form for linearly polarized incoming radiation calculated in
LOPT, with taking into account many-electron correlations (corr)
and, in addition, polarization of the atomic core by the photoelectron
(corr + CP).

provided an increase of the theoretical G2PICSs by 16% in the
8–11 eV photon energy range (cf. dash-dotted and solid curves)
and a shift of the intermediate discrete state resonances, as in
the case of the εp(1S) and εp(1D) channels.

In Fig. 9 the core polarization effect is demonstrated for
the total 3p G2PICSs of Ar which are increased in length (cf.
dash-dotted and solid curves) and velocity (cf. dash-double-
dotted and dashed curves) forms by 18% and 15% respectively
at ω = 9.5 eV. The main effect of the core polarization is a
shift of computed energy positions of the intermediate discrete
resonances to the low-energy side. In Fig. 9 the vertical
lines mark the experimental energies of the 3p5

3/2nl′[3/2]1

resonances [30]. In Fig. 10 the total G2PICSs are presented in
logarithmic scale. One can see an excellent agreement between
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FIG. 9. The 3p total G2PICS in the length (L) and velocity
(V) form for linearly polarized incoming radiation calculated with
taking into account many-electron correlations (corr) and, in addition,
polarization of the atomic core by the photoelectron (corr + CP).
Vertical lines: experimental energy positions of the intermediate
resonances [30].
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FIG. 10. The same as in Fig. 9 but in logarithmic scale for
G2PICS.

the measured and calculated energy positions of resonances
after accounting for core polarization.

In our calculation of the ionization transition amplitudes the
radiation widths of the intermediate resonances were not taken
into account because of their dependence on the incoming laser
radiation intensity [32]. Applying equations from the paper
[32] we have estimated the accuracy of our approximation in
the energy region of the 3p54s( 1P ) resonance. If the duration
of the laser impulse is more than 1.5 fs and the intensity is less
than 1012 W/cm2 our approximation in the G2PICS calculation
is accurate within less than 5% outside the photon-energy
range ω4s ± 0.25 eV which remains Fig. 9 unchanged.

IV. ANGULAR-DISTRIBUTION OF PHOTOELECTRONS

The expression for the differential G2PICS is

dσq(ω)

d�

= σq(ω)

4π

[
1 + β

q

2 (ω)P2(cos θ ) + β
q

4 (ω)P4(cos θ )
]
, (32)

where β
q

λ are the angular distribution parameters for pho-
toelectrons, Pλ is the Legendre polynomial, θ is the angle
between the momentum of photoelectron and electric-field
vectors for the linearly polarized incident radiation (q = 0)
or between the momentum of photoelectron and the direction
of propagation vectors of the circularly polarized incoming
radiation (q = ±1).

The expression for the photoelectron angular distribution
parameters was obtained using a method similar to that
described in Ref. [15]:

β
q

λ (ω) = 8π3αa5
0

cσq(ω)
ω±2

∑
��′LL′

(−1)L−2q+L′+Lc

×[λ]([�][�′][L][L′])1/2ei(δ�−δ�′ )

×
(

λ � �′
0 0 0

)(
λ L L′
0 −2q 2q

){
λ L L′
Lc �′ �

}
×Tq,ω(L,�) T ∗

q,ω(L′,�′). (33)
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FIG. 11. Angular distribution parameters for photoelectrons for
the 3p-two-photon ionization of Ar in the length (L) and velocity
(V) form for the linearly polarized incoming radiation calculated in
the LOPT and with taking into account many-electron correlations
and core polarization (corr + CP). Vertical lines: experimental energy
positions of the intermediate resonances [30].

In Eq. (33) [x] ≡ 2x + 1, Lc is the orbital momentum of the
Ar 3p5 ionic core (in this case Lc = 1). The only difference
between Eq. (33) and Eq. (10) in Ref. [15] is that in our work
the standard phase system for the spherical harmonics [26] was
applied (the rank of the operator is enclosed in brackets). The
interrelation with the spherical harmonic in the pseudostandard
phase system applied in Ref. [15] is

Y (�)
m = i�Y�m. (34)

In addition, in Eq. (33) it was considered that after absorption
of two photons having polarization q the projection of the
final-state 3p5ε�(1L) total momentum M equals 2q.

The β2 and β4 parameters calculated in the LOPT [processes
(Ia) and (Ib) are only considered] for the case of linear
polarization of incoming radiation are plotted in Fig. 11
(dash-dotted curve and dash-double-dotted curve for the
length and velocity form, respectively). The total influ-
ence of many-electron correlations [processes (II)–(VI)] and
core polarization on the β parameters is also depicted in the
same figure (solid and dashed lines for the length and velocity
form, respectively).

Taking into account many-electron effects and core polar-
ization results in much better agreement between β parameters
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FIG. 12. Angular distribution parameters for photoelectrons for
the 3p-two-photon ionization of Ar in the length (L) form for the
linearly polarized incoming radiation calculated in the LOPT, with
taking into account many-electron correlations (corr) and, in addition,
polarization of atomic core by the outgoing photoelectron (corr +
CP).

computed in the length and velocity forms. It is especially
apparent for the β2 parameter.

An individual influence of many-electron effects and core
polarization on the calculated β parameters is presented in
Fig. 12 for the case of linearly polarized incoming radiation
in the length form. The many-electron correlations (II)–
(VI) change considerably the parameters computed in the
LOPT (dash-dotted and dashed line, respectively). The core
polarization provides an opposite effect, returning the β2

parameter back to the LOPT values. However, as in the case
of G2PICS, the main influence of the core polarization is the
shift of the β(ω) dependencies towards the threshold, which is
particularly noticeable for the β4 parameter.

One should note that we also studied the manifestation of
many-electron correlations and core polarization for circularly
polarized incoming radiation (q = ±1). We do not present
those results, to avoid the excessive bulkiness of the paper,
and restrict to a short comment. The mentioned manifestation
was found to be less pronounced due to forbidden transition
to the εp(1S) channel. The changes of the computed G2PICS
and β parameters are similar to those for linearly polarized
incoming radiation but they are somewhat weaker. The energy
shifts of the intermediate discrete resonances due to the core
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TABLE II. The values of the a1 and b2 coefficients entering
Eq. (A1).

� �′ �′′ a1 b2

p s d 4
3 − 2

5

p d s 2
3 − 1

5

f d s 2
3 − 1

5

polarization are of cause the same for both linear and circular
polarizations.

V. CONCLUSIONS
In the present paper we created a method and computer

code for the calculation of the cross sections and angular
distribution of photoelectrons for the two-photon ionization
processes. The method is based on the application of the
noniterative correlation-function technique to computing both
the two-photon transition amplitudes and the many-electron
correlations. The generalized cross sections, G2PICS, and
the photoelectron angular distribution parameters for the
two-photon ionization of the 3p shell of Ar were calculated.
The exciting-photon energy range is limited from 8 to 15 eV
and covers several intermediate discrete resonances. This
method has no restrictions noted in the preceding papers
[12–14] and provides reliable two-photon photoionization
cross sections at all photon energies in this region including
the close-to-resonance parts. The created method allowed
us to take into account the atomic core polarization in the
two-photon ionization of the 3p shell of Ar by including
an ab initio polarization potential to the CF equations [25].
Taking core polarization into account resulted in an increase of
the computed two-photon photoionization total cross section
by approximately 17% at the threshold, and in a very good

TABLE III. The ck coefficients entering Eq. (A7).

� �′ �′′ c1 c3

p s s 1
3 0

p s d 2
3 0

p,f d s 1
3 0

p,f d d 19
15 − 9

35

agreement between computed and measured energies of the
intermediate resonances. The method can be easily adopted for
taking into account the main relativistic effects in Pauli-Fock
approximation and is planned to be applied for the calculation
of the two-photon ionization cross sections of heavy atoms
which are already measured and available in the literature.
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APPENDIX

In this Appendix the expressions for the radial parts of
correlation transition amplitudes (II)–(VI) are presented. The
methods of their calculations are also discussed.

1. Intermediate-state interchannel correlation process (II)

The radial part of the transition amplitude is

t (II)
ω (L,�,�′,�′′) =

∑
ε′,ε′′>F

〈ε�|d|ε′�′〉[a1〈ε′�′|y1(3p,ε′′�′′)|3p〉 + b2〈ε′�′|y2(3p,3p)|ε′′�′′〉]〈ε′′�′′|d|3p〉
(ω − E

(i)
3p − ε′)(ω − E

(i)
3p − ε′′)

. (A1)

In Eq. (A1) yk operators are determined in accord with Eqs. (24) and (25). The matrix element including the yk function is
expressed by Slater integrals:

〈n3�3|yk(n1�1,n2�2)|n4�4〉 = Rk(n1�1,n3�3; n2�2,n4�4) =
∫ ∞

0
drPn3�3 (r)Pn4�4 (r)yk(n1�1,n2�2,r). (A2)

Coefficients a1 and b2 entering equation (A1) were determined using the effective operators method [27,33]. The quantities
of the coefficients are listed in Table II.

Amplitude (A1) was calculated using two CFs. The first CF φ�′′ is the solution of Eqs. (10) and (11) rewritten for φ�′′ . With
this CF equation (A1) takes the form

t (II)
ω (L,�,�′,�′′) =

∑
ε′>F

〈ε�|d|ε′�′〉[a1〈ε′�′|y1(3p,φ�′′ )|3p〉 + b2〈ε′�′|y2(3p,3p)|φ�′′ 〉]
(ω − E

(i)
3p − ε′)

. (A3)
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The second CF φ�′(r) is determined as

φ�′(r) =
∑
ε′>F

Pε′�′(r)[a1〈ε′�′|y1(3p,φ�′′ )|3p〉 + b2〈ε′�′|y2(3p,3p)|φ�′′ 〉]
(ω − E

(i)
3p − ε′)

. (A4)

The φ�′(r) CF is determined via solving the following inhomogeneous integrodifferential equation:

(h�′ − ω + E
(i)
3p)φ�′(r) = −a1

[
y1(3p,φ�′′)P3p(r) −

∑
n′<F

Pn′�′(r)〈n′�′|y1(3p,φ�′′ )|3p〉
]

−b2

[
y2(3p,3p)φ�′′ (r) −

∑
n′<F

Pn′�′(r)〈n′�′|y2(3p,3p)|φ�′′ 〉
]

(A5)

where h�′ is the HF operator for the ε′�′ electron in the 3p5ε′�′(1P ) configuration.
As a result, the expression for the transition amplitude (A1) becomes

t (II)
ω (L,�,�′,�′′) = 〈ε�|d|φ�′ 〉. (A6)

2. Ground-state correlation processes (IIIa) and (IIIb)

Transition amplitudes for the processes (IIIa) and (IIIb), T (corr)
q,ω , have identical numerators but different energy denominators.

After summation of those amplitudes and bringing the fractions to a common denominator the resulting expression for the radial
part of the transition amplitude of two processes (IIIa) and (IIIb) t (IIIa,b)

ω takes the form

t (IIIa,b)
ω (L,�,�′,�′′) =

∑
ε′,ε′′>F

〈ε�|d|ε′�′〉〈3p|d|ε′′�′′〉∑
k ck〈ε′�′|yk(ε′′�′′,3p)|3p〉

(ω − E
(i)
3p − ε′)(E(i)

3p − E
(i)
3p2 − ω − ε′′)

, (A7)

where E
(i)
3p2 is the double-ionization potential of the Ar 3p shell. The experimental ionization potential E

(i)
3p2 = 3.189 Ry was

used in the calculation.
One should note that Eq. (A7) becomes identical to Eq. (23) from [14] if we assume E

(i)
3p2 = 2E

(i)
3p. Coefficients ck entering

Eq. (A7) were determined using the effective operators method [27,33]. They are tabulated in Table III.
The transition amplitude (A7) was calculated using two CFs. First, φ�′′ , is the solution of the following equations for the length

and velocity form, respectively:

(h�′′ + ω + E
(i)
3p2 − E

(i)
3p)φ�′′(r) = −P3p(r) r +

∑
n′′<F

〈3p|r|n′′�′′〉Pn′′�′′(r), (A8)

(h�′′ + ω + E
(i)
3p2 − E

(i)
3p)φ�′′(r) = −

(
dP3p(r)

dr
∓ �max

r
P3p(r)

)
+

∑
n′′<F

〈3p|d|n′′�′′〉Pn′′�′′(r), (A9)

where h�′′ is the HF operator for the ε′′�′′ electron in the 3p5ε′′�′′(1P ) configuration.
According to the notes to Eq. (8) the sign + in the latter equation corresponds to the �′′ = 0 case and − corresponds to the

�′′ = 2.
The second CF, φ�′ , is the solution of the following equation:

(h�′ − ω + E
(i)
3p)φ�′(r) = −

∑
k

ck

[
yk(φ�′′,3p)P3p(r) −

∑
n′<F

Pn′�′(r)〈n′�′|yk(φ�′′ ,3p)|3p〉
]
, (A10)

where h�′ is the HF operator for the ε′�′ electron in the 3p5ε′�′(1P ) configuration.
Finally, the expression for the transition amplitude (A7) is

t (IIIa,b)
ω (L,�,�′,�′′) = 〈ε�|d|φ�′ 〉. (A11)

3. Ground-state correlation process (IIIc)

The radial part of the transition amplitude of this process is

t (IIIc)
ω (L,�,�′,�′′) =

∑
ε′,ε′′>F

〈3p|d|ε′�′〉〈ε′�′|d|ε′′�′′〉∑
k ck〈ε′′�′′|yk(ε�,3p)|3p〉

(E(i)
3p − E

(i)
3p2 − ω − ε′)(E(i)

3p − E
(i)
3p2 − 2ω − ε′′)

. (A12)
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TABLE IV. The ck coefficients entering Eq. (A12).

1L � �′ �′′ c0 c2 c4

1S p s,d p 5 − 2
5 0

1D p s,d p −1 11
25 0

1D p d f 0 54
25 0

1Da f s p 0 1
5 0

1D f d p 0 1
25 0

1D f d f 0 123
175 − 4

21

aFor this case the coefficients fq in Eq. (18) should be taken from
Table I for �′ = 2.

The coefficients ck entering Eq. (A12) cannot be derived
using the effective operator technique: they turned out to be

TABLE V. The ck coefficients entering Eq. (A16).

1L � c0 c2

1S p −5 2
5

1D p 1 − 11
25

1D f 0 − 1
5

dependent on the total orbital angular momentum L of the
final state. The expressions for the geometrical factors in the
Coulomb and dipole matrix elements in the amplitude (A12)
were derived applying the methods of [26]. The coefficients
ck , tabulated in Table IV, were obtained by summation of the
product of those three expressions over the quantum numbers
of intermediate states.

To simplify Eq. (A12) the two CFs are defined: the φ�′ CF is the solution of Eqs. (A8) and (A9) rewritten for the φ�′ and the
φ�′′ is the solution of the following equation:

(h�′′ + 2ω + E
(i)
3p2 − E

(i)
3p)φ�′′(r) = −

∑
k

ck

[
yk(ε�,3p)P3p(r) −

∑
n′′<F

Pn′′�′′(r)〈n′′�′′|yk(ε�,3p)|3p〉
]
, (A13)

where h�′′ is the HF operator for the ε′′�′′ electron in the 3p5ε′′�′′(1P ) configuration.
As a result, the amplitude (A12) becomes

t (IIIc)
ω (L,�,�′,�′′) = 〈φ�′ |d|φ�′′ 〉. (A14)

4. Intermediate-state shake-up correlation process (IV)

In order to decouple the denominators in the expression of this correlation amplitude we took into account the orthonormality
condition for the continuum states similar to work [14]:

〈ε′�′|ε′′�′〉 = δ(ε′ − ε′′). (A15)

Then, the expression for the radial part of this transition amplitude becomes

t (IV)
ω (L,�,�′) =

∑
ε′,ε′′>F

〈3p|d|ε′�′〉〈ε′�′|ε′′�′〉〈ε′′�′|d|3p〉∑kck〈ε�|yk(3p,3p)|3p〉
(E(i)

3p − E
(i)
3p2 − ω − ε′)(ω − E

(i)
3p − ε′′)

. (A16)

The geometrical factors ck in the amplitude (A16) cannot
be derived using the effective operator technique. They were
obtained using the methods of [26] and are listed in Table V.
One should note that they were found to be independent of
the �′ quantum number. In the radial part (A16) the quantum
number �′′ is absent. Therefore, in Eq. (18) the sum over the
�′′ is also absent.

To compute the transition amplitude (A16) the two CFs
were applied. The φ�′ CF is the solution of differential

equations (A8) and (A9) with replacing �′′ and φ�′′ by �′ and
φ�′ ; the φ�′ CF is the solution of differential equations (10)
and (11).

Finally, the expression for the transition amplitude (A16)
takes the form

t (IV)
ω (L,�,�′) = 〈φ�′ |φ�′ 〉

∑
k

ckR
k(ε�,3p; 3p,3p). (A17)

5. Intermediate-state electron-scattering correlation process (V)

The radial part of the correlation transition amplitude (V) is

t (V)
ω (L,�,�′,�′′) =

∑
ε′,ε′′>F

〈3p|d|ε′′�′′〉∑k[ak〈ε′′�′′|yk(ε�,ε′�′)|3p〉 + bk〈ε′′�′′|yk(ε�,3p)|ε′�′〉]〈ε′�′|d|3p〉
(E(i)

3p − E
(i)
3p2 − ω − ε′′)(ω − E

(i)
3p − ε′)

. (A18)

The coefficients ak and bk entering Eq. (A18) were deter-
mined using the effective operator method and are tabulated
in Table VI.

To compute the amplitude (A18) the CFs φ�′ were deter-
mined by solution of the differential equations (10) and (11).
The CFs φ�′′ were computed using Eqs. (A8) and (A9).
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TABLE VI. The values of the ak and bk coefficients entering
Eq. (A18).

� �′ �′′ a1 b0 b2 b4

p s s 2
3 −1 0 0

p s d 4
3 0 − 2

5 0

p d s 2
3 0 − 2

5 0

p d d 4
3 −1 − 1

5 0

f d s 2
3 0 − 1

5 0

f d d 4
3 0 − 2

35 − 4
21

Since the CFs φ�′ and φ�′′ were determined the transition
amplitude (A18) became

t (V)
ω (L,�,�′,�′′)

=
∑

k

[akR
k(φ�′′,ε�; 3p,φ�′ )+bkR

k(φ�′′ ,ε�; φ�′ ,3p)]. (A19)

6. Final-state electron-scattering correlation
processes (VIa) and (VIb)

Similar to the cases (IIIa) and (IIIb) transition amplitudes
of the processes (VIa) and (VIb) have identical numerators.
Their sum is expressed by Eq. (18) where the radial part of the
amplitude is

t (VIa,b)
ω (L,�,�′,�′′)

=
∑

ε′,ε′′>F

∑
k

[ak〈ε�|yk(3p,ε′′�′′)|ε′�′〉

+ bk〈ε�|yk(3p,ε′�′)|ε′′�′′〉]〈ε′′�′′|d|3p〉〈ε′�′|d|3p〉

×
{

1

(2ω − E
(i)
3p2 − ε′ − ε′′)(ω − E

(i)
3p − ε′)

+ 1

(2ω − E
(i)
3p2 − ε′ − ε′′)(ω − E

(i)
3p − ε′′)

}
. (A20)

Coefficients ak and bk entering Eq. (A20) were determined
using the effective operator method and are tabulated in
Table VII.

The first factor in the denominator of terms standing in
the curly braces of Eq. (A20) contains both the ε′ and ε′′
intermediate state energies. Therefore, the amplitude (A20)
cannot be expressed via CFs.

In Ref. [14] in the calculation of the sum of two amplitudes
(VIa) and (VIb) the experimental double-ionization potential

TABLE VII. The ak and bk coefficients entering Eq. (A20).

� �′ �′′ a1 b1 b3

p s s 2
3 − 1

3 0

p s d 4
3 − 2

3 0

p d s 2
3 − 1

3 0

p d d 4
3 − 1

15 − 9
35

f d s 2
3 0 − 1

7

f d d 4
3 − 2

5 − 4
35

E
(i)
3p2 of Ar was used. In this case, in order to apply the implicit

functions obtained by the variationally stable procedures
method, the authors employed an additional approximation
in Eq. (A20): in the first factor of the first fraction in curly
braces, containing 2ω, they offered ε′ = ε′′ and in the first
factor of the second fraction in curly braces, containing 2ω,
they took ε′′ = ε′. After this assumption the expression for the
transition amplitude (A20) became

t (VIa,b)
ω (L,�,�′,�′′)

=
∑

ε′,ε′′>F

∑
k

[ak〈ε�|yk(3p,ε′′�′′)|ε′�′〉

+ bk〈ε�|yk(3p,ε′�′)|ε′′�′′〉]〈ε′′�′′|d|3p〉〈ε′�′|d|3p〉

×1

2

{
1

(ω − 0.5E
(i)
3p2 − ε′′)(ω − E

(i)
3p − ε′)

+ 1

(ω − 0.5E
(i)
3p2 − ε′)(ω − E

(i)
3p − ε′′)

}
. (A21)

In the calculation of transition amplitudes via Eq. (A21) the
four CFs, φ�′ ,φ�′′ and φ�′ ,φ�′′ were applied. CFs φ�′ ,φ�′′ are used
for computing the first term in curly braces and CFs φ�′,φ�′′

for the second one. The φ�′ and φ�′′ CFs are the solutions of
the inhomogeneous equations (10) and (11), whereas φ�′ and
φ�′′ are the solutions of the same equations with E

(i)
3p replaced

by 0.5E
(i)
3p2 . Finally, the transition amplitude (A21) is

t (VIa,b)
ω (L,�,�′,�′′)

= 1

2

∑
k

{ak[Rk(ε�,3p; φ�′ ,φ�′′ ) + Rk(ε�,3p; φ�′ ,φ�′′)]

+ bk[Rk(ε�,3p; φ�′′ ,φ�′) + Rk(ε�,3p; φ�′′ ,φ�′)]}.
(A22)

Another approximation stems from the supposition E
(i)
3p2 =

2E
(i)
3p. In this case two terms in the curly braces of (A20) can

be summed. The result is

t (VIa,b)
ω (L,�,�′,�′′) =

∑
ε′,ε′′>F

∑
k[ak〈ε�|yk(3p,ε′′�′′)|ε′�′〉 + bk〈ε�|yk(3p,ε′�′)|ε′′�′′〉]〈ε′′�′′|d|3p〉〈ε′�′|d|3p〉

(ω − E
(i)
3p − ε′′)(ω − E

(i)
3p − ε′)

. (A23)
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TABLE VIII. Summed amplitudes of the processes (VIa) and
(VIb) for the transition to the εp(1D) channel calculated in different
approximation at ω = 8 eV (in 10−25 cm2 s1/2).

Approx. Length Velocity

Eq. (A20)a −0.1440 −0.4826
Eq. (A21)a −0.1340 −0.4455
Eq. (A21)b −0.1345 −0.4470
Eq. (A23)a −0.2388 −0.7699
Eq. (A23)b −0.2399 −0.7731

aMethod of direct integration.
bMethod of correlation function.

In this case both CFs φ�′ and φ�′′ have the same expression
(9) and are the solutions of the same inhomogeneous equation
(10) or (11) for the length or velocity form, respectively.
Finally, the transition amplitude (A23) is

t (VIa,b)
ω (L,�,�′,�′′) =

∑
k

[akR
k(ε�,3p; φ�′ ,φ�′′)

+ bkR
k(ε�,3p; φ�′′ ,φ�′)]. (A24)

In the present paper we investigated the inaccuracy caused
by replacing the exact expression (A20) by (A21) or (A23).
For this purpose the radial part of the transition amplitude

(A20) to the 3p5εp(1D) channel was calculated using the
direct integration method as it was made in Ref. [12]. Similar
to that work, the cutoff Rmax = 20.365 a.u. was applied and
the basis set of ε′�′ and ε′′�′′ functions computed in the
3p5(ε′�′/ε′′�′′)(1P ) configuration contained 6 discrete and 56
continuum wave functions in the 0–24.6-Ry energy range.

The results of the calculation at the near-threshold energy
ω = 8 eV are tabulated in Table VIII and compared with the
approximated data discussed above. Comparison of the data
of line 2 with line 3 as well as line 4 with line 5 affirms a good
accuracy of the direct integration method in the near-threshold
region: the difference of the method does not exceed 0.5% for
both length and velocity forms. Therefore, the results listed
in the first line can be treated as a reliable one. From the
comparison of the data of first, second, and fourth lines it is
obvious that the expression (A21) provides better agreement
to the exact values from (A20) than the approximation (A23).
In the first case the error is 7–8% only whereas in the second
case it rises up to 60–70%.

Based on this study, we calculated the summed amplitude
of the processes (VIa) and (VIb) applying Eq. (A21). The
question may arise of why we did not use the method of direct
integration in the calculation of the radial transition amplitude
(A20) in the whole photon energy range. The reason is that
this method becomes unstable and less reliable at the photon
energies ω > 12 eV, as it was noted in the paper [12].
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