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Photoelectron angular distributions in bichromatic atomic ionization induced by circularly
polarized VUV femtosecond pulses
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We investigate two-pathway interferences between nonresonant one-photon and resonant two-photon ionization
of atomic hydrogen. In particular, we analyze in detail the photoionization mediated by the fundamental frequency
and the second harmonic of a femtosecond VUV pulse when the fundamental is tuned near an intermediate atomic
state. Following our recent study [Phys. Rev. A 91, 063418 (2015)] of such effects with linearly polarized light,
we analyze a similar situation with circularly polarized radiation. As a consequence of the richer structure in
circularly polarized light, characterized by its right-handed or left-handed helicity, we present and discuss various
important features associated with the photoelectron angular distribution.
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I. INTRODUCTION

The control of quantum phenomena represents a crucial
challenge, from both experimental and theoretical standpoints.
One possible way to achieve “coherent control” at the quantum
level [1–3] is to manipulate two-pathway interferences by
tuning a parameter that is directly responsible for the inter-
ference phenomenon. As a result, the probability for finding
the affected quantum system in a definite final state can be
varied in a predictable manner.

In two-pathway coherent control of photoionization, one
may adopt a scheme in which the photoelectron is emitted
from absorption of an odd number of photons through one
path and an even number of photons through another path, as
for instance in ω + 2ω processes. The resulting interference in-
duces noticeable effects only if the two paths have comparable
probability amplitudes. The latter condition might be fulfilled
by tuning the fundamental frequency near an optically allowed
intermediate state, thus enhancing the probability for two-
photon absorption. However, the interference phenomenon
does not affect the total ionization yield (unless an external
electric field is applied [4,5]), but instead manifests itself in the
photoelectron angular distribution (PAD) [6–11]. Therefore,
the phase difference between two distinct ionizing pathways
can, in principle, be used to manipulate the PAD.

The study of two-pathway interferences in photoionization
is not limited to the domain of coherent control, but it
is also essential in order to model certain experimental
conditions. Recent advances in high-harmonic generation
(HHG) and x-ray free-electron lasers (XFELs) have enabled
experimentalists to reach the extreme ultraviolet (XUV) and
x-ray wavelength domain on the femtosecond (fs) and even
attosecond (as) time scales. Radiation from XFELs usually
carry at least a tiny fraction of the second harmonic, which
cannot always be filtered out completely. Hence it is important
to understand the effects of two superimposed harmonics [12]
in ionization experiments for different light polarizations. An
additional promising idea consists in being able to deconvolve
the PAD in order to determine the phase difference, or the
time delay, between the fundamental and the second harmonic

of a VUV pulse. Finally, counterrotating circularly polarized
laser fields have recently attracted significant attention, since
it was demonstrated that one can generate electron vortices
in photoionization by circularly polarized attosecond pulses
in helium [13], as well as isolated elliptically polarized
attosecond pulses in neon [14].

In a recent study [15], we considered two-pathway inter-
ferences induced by linearly polarized light. In this case, a
“left-right” asymmetry is created along the direction of the
electric field as a result of interference between partial waves
with opposite parities. The theoretical treatment involved
solving the time-dependent Schrödinger equation (TDSE)
numerically using the split-operator algorithm or the matrix
iteration method [16,17]. Furthermore, the time-dependent
calculations were complemented by predictions obtained from
a perturbative formalism at sufficiently low field intensities.

For the present work, we modified our time-dependent code
in order to handle light of arbitrary polarization. As a natural
next step, we now consider atomic photoionization processes
in a circularly polarized bichromatic field, i.e., an electric field
of the form

E(t) = F (t)[cos(ωt + φ1)x̂ − sin(ωt + φ1) ŷ

+ η{cos(2ωt + φ2)x̂ + H sin(2ωt + φ2) ŷ}], (1)

with fundamental frequency ω and second harmonic 2ω. The
same envelope function F (t) is used for both the fundamental
and the second harmonic, while the ratio of the amplitudes is
specified by the real parameter η (η > 0). The corresponding
carrier-envelope phases (CEPs) are denoted by φ1 and φ2,
respectively. The geometry of the process is shown in Fig. 1.
Equation (1) defines the X and Y axes in terms of the
electric-field vector direction at t = 0. The unit vectors x̂ and
ŷ specify the plane of circular light in which the fundamental is
chosen to have negative helicity, whereas the parameter H =
±1 indicates the positive or negative helicity of the second
harmonic. Consequently, the cases H = ±1 correspond to
resulting fields for which the harmonics have opposite or equal
helicity, respectively. As will be discussed below, the PADs for
the cases of both beams left-circularly polarized or both beams
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FIG. 1. (a) Bichromatic ionization by left-handed (negative he-
licity) circularly polarized light propagating along the Z axis. (b)
Level scheme of the ω + 2ω process. The dashed arrow indicates 2ω

ionization with positive light helicity.

right-circularly polarized will be different. The field in Eq. (1)
is obtained, with negligible envelope effects for multicycle
pulses, from E(t) = −c−1∂A(t)/∂t , with A(t) denoting the
vector potential and c the speed of light. The latter procedure
was performed to avoid unphysical pulse-shape effects, as
recently discussed in Ref. [18].

For a linearly polarized bichromatic radiation beam, the
PAD exhibits an asymmetry with respect to the plane perpen-
dicular to the electric field, while the axial symmetry along
the field direction survives. On the other hand, for circularly
polarized light the axial symmetry with respect to the light
propagation direction, i.e., the Z axis in Fig. 1(a), is broken
as a result of interferences, as discussed in detail in [19].
Consequently, circularly polarized light might offer the possi-
bility to manipulate the orientation of the principal direction
of photoelectron emission in the XY plane. Additionally,
switching from equal to opposite helicity between the two
harmonics offers a new degree of freedom to investigate.

The present study shares some similarities with our previous
work on linearly polarized light [15]. The asymmetry still
occurs as a result of a nonzero time-average cube 〈E3

x 〉 �= 0
and 〈E3

y 〉 �= 0 of the electric field components, whereas the time
average of the field itself vanishes, i.e., 〈E〉 = 0. We consider
again the “multiphoton regime” of ionization for compara-
tively weak fields (1011–1013 W/cm2) and pulses containing
many optical cycles. Stronger fields and shorter pulses may
lead to asymmetries already for one-color ionization [20].

Below we investigate in detail the effects of interfering
one-photon and two-photon pathways with circularly polarized
light, using ionization of atomic hydrogen for the benchmark
study and extending our recent results [19]. We concentrate
on the photoionization of the hydrogen atom from its 1s

ground state, using 2p as the intermediate state, as shown
schematically in Fig. 1(b) for either positive or negative
helicity of the second harmonic. We also point out the
similarities and differences with the same process for linearly
polarized light.

This paper is organized as follows. In Sec. II, we present the
theoretical formalism of the PADs for ω + 2ω ionization. We
also briefly describe the required implementation to compute
the solution of the TDSE for circular light polarization, as
well as the nonstationary perturbation theory (PT) approach.
In Sec. III, we present our numerical results for the hydrogen
atom and compare the TDSE with the PT results. We also
analyze and discuss the shape of the PADs. The final section
is devoted to our conclusions.

Unless indicated otherwise, atomic units (a.u.) are used
throughout this manuscript.

II. THEORY

A. Time-dependent Schrödinger equation

Since the general procedure to solve numerically the TDSE
was described at length in [21], we only summarize here
the necessary modifications to treat circularly polarized light.
We consider the propagation of the wave packet with a
Hamiltonian H (r,t) expressed in the length gauge and the
electric dipole approximation as

H (r,t) = −∇2

2
− 1

r
+

√
4π

3
r

∑
q=±1

E∗
q (t)Y1q(θ,ϕ). (2)

Here we introduced the spherical coordinates (r,θ,ϕ) of the
electron with the Z axis oriented along the light propagation
direction [cf. Fig. 1(a)]. The elements Eq , q = ±1, represent
the spherical components of the electric field, expressed in
terms of its Cartesian components as E±1 = ∓(Ex ± iEy)/

√
2.

When the solution of the TDSE is expanded in partial waves
as

	(r,t) = 1

r

∑
lm

ξm
l (r,t)Ylm(θ,ϕ), (3)

the radial terms ξm
l (r,t) are solutions of the following set of

coupled equations:

i
∂ξm

l (r,t)

∂t
=

[
− 1

2

∂2

∂r2
+ l(l + 1)

2r2
− 1

r

]
ξm
l (r,t)

+ r
∑
q=±1

∑
l′m′

E∗
q (t)I1q

lm,l′m′ξ
m′
l′ (r,t), (4)

with Ikμ

lm,l′m′ defined in terms of Clebsch-Gordan coefficients
(l1m1,l2m2|lm) as

Ikμ

lm,l′m′ = (−1)m
′
l̂ l̂′k̂−2(l0,l′0 | k0)(lm,l′ − m′ | kμ), (5)

where â ≡ √
2a + 1. The initial condition is ξm

l (r,0) =
δl0δm0P1s(r), where P1s(r) is the ground-state radial orbital

033402-2



PHOTOELECTRON ANGULAR DISTRIBUTIONS IN . . . PHYSICAL REVIEW A 93, 033402 (2016)

of atomic hydrogen. The most general form of the PAD is
given by

dW

d�
= W0

4π

⎛
⎜⎜⎜⎝1 +

∑
k>0

0�μ�k

|βμ

k |P μ

k (cos θ ) cos(μϕ + ψ
μ

k )

⎞
⎟⎟⎟⎠,

(6)

where d� is the solid angle corresponding to an elec-
tron emitted in the (θ,ϕ) direction and W0 is the angle-
integrated ionization probability. The anisotropy parame-
ters β

μ

k = |βμ

k | exp (iψμ

k ) in Eq. (6), defined for k > 0 and
0 � μ � k, are complex quantities expressed as

β
μ

k = N
μ

k

∑
lm

∑
l′m′

il−l′ei(σl′ −σl )Zm∗
El Z

m′
El′I

k−μ

lm,l′m′ . (7)

In the above equation, E is the photoelectron energy, σl =
arg �(l + 1 − i(2E)−

1
2 ) is the Coulomb phase, and the factor

N
μ

k takes the value

N
μ

k =
⎧⎨
⎩

k̂2W−1
0 if μ = 0,

2k̂2
√

(k−μ)!
(k+μ)!W

−1
0 if μ > 0.

(8)

The partial-wave photoionization amplitudes Zm
El are given by

Zm
El = lim

t→∞

∫ ∞

0
PEl(r)ξm

l (r,t)dr, (9)

where PEl(r) are energy-normalized Coulomb wave functions.
In addition, the angle-integrated ionization probability takes
the simple form

W0 =
∑
lm

|Zm
El|2. (10)

Note that Eqs. (6) and (7) are general and apply to arbitrary
light polarization. As an example, the coefficients β0

k reduce to
the well-known anisotropy parameters for the case of linearly
polarized light with electric field vector aligned along the Z

axis. Although not explicitly specified in the above equations,
β

μ

k , as well as ψ
μ

k , are energy-dependent parameters on the
photoelectron line.

In the present treatment of circularly polarized light, the
symmetry of the PAD depends on the symmetry character
of the various terms entering the sum in Eq. (6). To be more
specific, we now turn to the concept of the number of absorbed
photons, although when solving the TDSE this concept is
not always directly applicable for fields of arbitrary strength.
For one-photon ionization alone, only β0

2 contributes, whereas
for two-photon ionization alone, both β0

2 and β0
4 contribute.

Therefore, in either case, the PADs (6) exhibit even parity π

[since π = (−1)k], have axial symmetry around the Z axis
(due to μ = 0), and are symmetric against reflection with
respect to the XY plane (due to k + μ = even). Considering
the case for which both one-photon and two-photon absorption
processes are combined, however, contributions from odd
k and odd μ, especially β1

1 , β1
3 (equal helicities), and β3

3
(opposite helicities), should be accounted for. The latter
terms, originating from the interference of amplitudes of
the two ionization paths, are responsible for breaking both

the inversion and axial symmetries, whereas the reflection
symmetry with respect to the XY plane is preserved. The
latter symmetry is a consequence of the dipole approximation.

A quantitative description of the axial asymmetry breaking
of the PAD can be achieved by introducing a doubly differential
angular asymmetry of the form

A(θ,ϕ) = I (θ,ϕ) − I (θ,π + ϕ)

I (θ,ϕ) + I (θ,π + ϕ)
, (11)

where I (θ,ϕ) ∝ dW/d� is the intensity of the electron flux
into the solid-angle element d� defined by the angles (θ,ϕ).
In particular, it will be instructive to consider the asymmetry
in the XY -polarization plane, i.e., the values of A(90◦,ϕ).
Further considerations regarding the characterization of the
asymmetry for circularly polarized light will be guided by the
results of the perturbative approach presented in Sec. II B.

The anisotropy parameters β
μ

k and, therefore, the differ-
ential asymmetry (11), are functions of the pulse parameters,
i.e., the fundamental frequency, the pulse intensity, the pulse
envelope, the second harmonic intensity and helicity, and
the CEPs. In this study, we consider pulses of the form (1)
covering an integer number N (N � 1) of optical cycles T =
2π/ω, with a pulse envelope F (t) = F0 sin2 �t (� = ω/2N ,
0 � t � NT ) and F (t) = 0 otherwise. For N � 1, it can be
shown by applying the rotating-wave approximation (RWA)
that all significant observables depend only on φ = φ2 − 2φ1

but not on the individual carrier-envelope phases φ1 or φ2. The
latter fact was confirmed numerically for a pulse with N = 40
optical cycles, which we used in the TDSE calculations.
Therefore, we set φ1 = 0 below and only vary φ = φ2.

Additional details on the method employed to solve the
TDSE can be found in [21]. The extension of the code, required
to treat light of any polarization in space, is computationally
demanding and necessitates the use of parallel architectures,
as provided by modern supercomputers like Stampede [22] or
SuperMIC [23]. The accuracy of the code in its previous form
was tested many times over the years [17,24,25]. The present
version was also checked in numerous ways. An important test
of accuracy was to reproduce, for linearly polarized light of
random orientation in space, earlier results for light polarized
along the Z axis.

B. Perturbative approach

In the weak-field regime, the amplitudes can be evaluated
within the lowest-order time-dependent perturbation theory.
The approach is particularly useful in the case of arbitrarily
polarized radiation, in light of the computational complexity
associated with solving the TDSE. Furthermore, the PT
approach can provide considerable insight by predicting
analytically the dependence of physical observables over a
wide range of laser parameters. On the other hand, the validity
of the PT approach should be tested in order to avoid potential
pitfalls in drawing conclusions in an inappropriate parameter
regime.

Let us denote by |El,m〉 the hydrogen eigenstates and
by UEl,m ≡ 〈El,m|Û (NT )|1s〉 the ionization amplitude, with
Û (t) representing the time-evolution operator. In this case, the
anisotropy parameters in Eq. (7) can be expressed in terms of
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UEl,m as

β
μ

k = N
μ

k

∑
lm

∑
l′m′

U ∗
El,mUEl′,m′Ik−μ

lm,l′m′ , (12)

where Ikμ

lm,l′m′ is defined by Eq. (5). The ionization amplitudes
in Eq. (12) can be evaluated within the lowest-order PT,
bearing in mind a number of considerations. As a result of
direct photoionization of the 1s ground state of hydrogen
by the second harmonic of the circularly polarized light, a
p photoelectron is emitted, with either positive or negative
magnetic quantum number m = ±1, depending on the field
helicity H = ±1. On the other hand, only d photoelectrons
with m = −2 are produced from ionization by the fundamental
via a two-photon absorption process with an intermediate
real or virtual p state with m = −1, as shown in Fig. 1(b).
Note a characteristic difference in comparison with the case of
linearly polarized light, as no s photoelectron is produced. As a
consequence, the resulting interferences are constructed from
p and d waves only. In the RWA (which is well satisfied for
N � 1) the only nonvanishing first-order ionization amplitude
from the 1s state, at a given helicity H = ±1, is expressed as

U
(1)
Ep,±1 ≡ 〈Ep, ± 1 | Û (1)(NT ) | 1s〉

= −i〈Ep, ± 1 | D̂ | 1s〉
∫ NT

0
ei(E−E1s )t ′E∗

±1(t ′)dt ′

= −iD
(1)
EpT

(1)
H =±1, (13)

whereas the only nonvanishing second-order amplitude is

U
(2)
Ed,−2 ≡ 〈Ed, − 2|Û (2)(NT )|1s〉

= i2
∫∑
En

〈Ed, − 2|D̂|Enp, − 1〉〈Enp, − 1|D̂|1s〉

×
∫ NT

0
ei(E−En)t ′E∗

−1(t ′)

×
∫ t ′

0
ei(En−E1s )t ′′E∗

−1(t ′′)dt ′′dt ′

= −
∫∑
En

D
(2)
Ed (En)T (2)

En
. (14)

The time dependence of the field is contained in the factors
T

(1)
H =±1 and T

(2)
En

. The radial dipole matrix elements in (13)
and (14) are given, respectively, by

D
(1)
Ep ≡ 〈Ep, ± 1|D̂|1s〉

= −i eiσp
1√
3

∫ ∞

0
PEp(r)rP1s(r)dr (15)

and

D
(2)
Ed (En) ≡ 〈Ed, − 2|D̂|Enp, − 1〉〈Enp, − 1|D̂|1s〉

= −eiσd

√
2

15

∫ ∞

0
PEd (r)rPEnp(r)dr

×
∫ ∞

0
PEnp(r)rP1s(r)dr. (16)

Here PEnp(r) denotes the radial orbitals of the intermediate
states |Enp, − 1〉 with energy En. The time-dependent factor
in Eq. (13) takes the form

T
(1)
H =±1 = ∓e−iφ F0√

2

∫ NT

0
sin2(�t ′)e−2iωt ′ei(E−E1s )t ′dt ′.

(17)

The ionization amplitude in (13) is thus seen to be proportional
to the factor e−iφ . The time-dependent factor of the second-
order amplitude (14) is of the form

T
(2)
En

= F 2
0

2

∫ NT

0
sin2(�t ′)e−iωt ′ei(E−En)t ′

×
∫ t ′

0
sin2(�t ′′)e−iωt ′′ei(En−E1s )t ′′dt ′′dt ′. (18)

We now introduce the reduced symbols ∓U (1)
p ≡ U

(1)
Ep,±1

and U
(2)
d ≡ U

(2)
Ed,−2 for brevity in the following expressions.

The nonvanishing real anisotropy parameters [Eq. (12), μ=0],
which are independent of the field helicity, then take the form

β0
2 = −W−1

0

[
η2

∣∣U (1)
p

∣∣2 + 10
7

∣∣U (2)
d

∣∣2]
, (19)

β0
4 = 3

7W−1
0

∣∣U (2)
d

∣∣2
. (20)

Here the ionization probability is given by

W0 = ∣∣U (2)
d

∣∣2 + η2
∣∣U (1)

p

∣∣2
, (21)

and the (dimensionless) probability for ionizing the hydrogen
atom during the entire pulse is P = ∫

W0dE. The relation

β0
2 + β0

4 = −1 (22)

holds, where − 10
7 � β0

2 � −1, and 0 � β0
4 � 3

7 . Considering
the case of equal helicities, i.e., H = −1, one obtains
two additional nonvanishing complex quantities, β1

1 and β1
3 ,

while for opposite helicities (H = +1) one obtains a single
additional nonvanishing complex quantity β3

3 . The latter three
parameters are proportional:

β1
1 = −6β1

3 = 12β3
3 = 6√

5
ηW−1

0

(
U

(2)∗
d U (1)

p

)
. (23)

Thus the PAD is characterized by only three independent real
quantities and Eq. (6) may be presented, for example [19], as

dW

d�
= W0

4π

(
1 +

∑
k=2,4

β0
k Pk(cos θ )

+ 15

2

∣∣β1
3

∣∣ sin3 θ cos(μϕ + ψ)

)

= W0

8π
sin2 θ

(
10 + 7β0

2 − 35

4

(
1 + β0

2

)
sin2 θ

+ 15
∣∣β1

3

∣∣ sin θ cos(μϕ + ψ)

)
. (24)

Here μ = ±1 for equal and μ = ±3 for opposite helicities,
respectively. The upper (lower) sign corresponds to negative
(positive) helicity of the fundamental, and

ψ = arg
(
U

(2)∗
d U (1)

p

)
. (25)
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The PADs determined by Eq. (24) depend on whether
both fields have positive or negative helicities. This fact may
seem surprising because usually only the relative helicity is
important. Since the two frequencies of interest are related
by a factor of two, the same configuration of the electric
field appears again and again. For example, if both beams
are right-circularly polarized, then the maximal field strength
1 + η is achieved at each period in the direction ϕ1 − ϕ2. On
the other hand, if both fields are left-circularly polarized, then
this direction is characterized by the angle ϕ2 − ϕ1.

The above equations provide an elegant way to characterize
the PADs and the asymmetry in both cases of opposite
and equal helicities of the fundamental and the second
harmonic. It is seen that the PADs (24) possess a perpendicular
symmetry plane intersecting the XY plane at angles ψ or ψ/3,
with respect to the X axis, for equal or opposite helicities,
respectively. In addition, the maximum photoelectron emission
in each case corresponds to either ϕ = −ψ or ϕ = −ψ/3.

In light of these considerations, it is convenient to introduce
a polar asymmetry, defined along the line of intersection
between the plane perpendicular to the radiation beam and the
symmetry plane of the PAD. Therefore, the polar asymmetry
is given by evaluating the asymmetry in Eq. (11) at either
A(90◦,ϕ = −ψ) or A(90◦,ϕ = −ψ/3), depending on the field
helicity. The polar asymmetry in both cases has the same value

A = 15

2

∣∣β1
3

∣∣
1 − β0

2/2 + 3β0
4/8

= 60
∣∣β1

3

∣∣
5 − 7β0

2

. (26)

It is non-negative, i.e., 0 � A � 1. After replacing |β1
3 | by its

real and imaginary parts, Re[β1
3 ] and Im[β1

3 ], Eq. (26) yields
the asymmetry along the X and Y axes, respectively. In contrast
to (26), these asymmetries are defined along fixed-in-space
directions and, therefore, may change sign.

The polar asymmetry (26) possesses several interesting
properties that are worth mentioning. First, the results of
Eqs. (19) and (23) indicate that the polar asymmetry depends
neither on the field helicity nor on the value of the relative
phase φ between the second and first harmonic. The validity
of this result was checked using both the TDSE and PT
methods in the expected domain of validity of perturbation
theory. Nevertheless, one might question the appropriateness
of Eq. (26) outside the domain of applicability of the PT
approach, since the definition of the polar asymmetry itself
depends explicitly on the value of ψ , as derived in the PT
approach. One should, however, note that the form of the
expressions (19)–(26) is in fact more general than might be
thought at first sight. Recalling the general expression of
the asymmetry parameters (12), considering the RWA, and
assuming that the process is dominated by emission of p- and
d-electron waves and their interference, the final expressions
for the asymmetry parameters β

μ

k and ψ still remain valid to
high precision if one substitutes more accurate values of the
matrix elements of the time-evolution operator. On the other
hand, at large field intensity, when higher-order terms become
important, the PAD should differ from expression (24). In
particular, the symmetry of the PAD with respect to the plane
perpendicular to the XY plane will disappear. In Sec. III,
it will be shown that at the largest intensity considered in
our study, i.e., 1013 W/cm2, breaking of the symmetry plane

remains negligible. Consequently, Eq. (26) still represents an
appropriate way to describe the asymmetry.

When evaluating U
(2)
d numerically according to Eqs. (14),

(16), and (18), we included nine intermediate discrete Enp

states (n = 2, 3, . . . , 10) in Eq. (14). Further increasing the
number of intermediate states to 15 did not change the
predicted anisotropy parameters for photon energies in the
vicinity of the 1s-2p transition within the thickness of the lines.

Finally, as in our earlier work [15], we applied perturbation
theory with infinitely long “pulses” (N = ∞), i.e., continuous
radiation of constant amplitude F ′

0 = √
3/8F0. In this case

U (1)
p and U

(2)
d reduce to

U (1)
p = −i

F ′
0√
2
e−iφD

(1)
Ep, (27)

U
(2)
d = i

F ′2
0

2

∫∑
En

D
(2)
Ed (En)

En − E1s − ω + i0
. (28)

Details of the variationally stable procedure for calculations
of the second-order PT amplitude in hydrogen may be found
in [26,27].

Equations (19), (20), and (23) can be used to show that,
within the model containing the single 2p intermediate state
and for continuous radiation, the anisotropy parameters take
the parametric forms

β0
2 = −

(
1 + 3

7

1

1 + ε2

)
, (29)

β0
4 = 3

7

1

1 + ε2
, (30)

β1
1 = −6β1

3 = 12β3
3 = Cε

ε2 + 1
. (31)

Here

ε = �ω
1
2�β

, (32)

�β =
√

2F ′
0

η

∣∣D(2)
Erd

(E2p)
∣∣∣∣D(1)

Erp

∣∣ , (33)

C = 6i√
5
ei(σp−σd−φ), (34)

with �ω = ω − (E2p − E1s). Furthermore, Er = 2E2p − E1s

is the photoelectron energy at the resonance (Er = 0.250 a.u.).
The values of D

(2)
Erd

(E2p) and D
(1)
Erp

are constants. The lack of
the two-photon ionization s channel for circularly polarized
radiation makes Eqs. (29) and (30) actually look simpler than
the corresponding equations for the anisotropy parameters in
the case of linearly polarized radiation [cf. Eqs. (25) and (26)
of [15]].

The asymmetry (26) takes the form

A = 2|ε′|
1 + ε′2 , (35)

where ε′ = 2√
5
ε. Thus the resonance profile of the asymmetry

A as function of the photon energy is slightly broader than the
profiles of the anisotropy parameters (29)–(31). The widths of
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FIG. 2. Results for η = 0.225. (a) Ionization probability integrated over the main photoelectron line as a function of the photon energy;
TDSE (N = 40). The other panels show (b) anisotropy parameters β0

2 , β0
4 , and real and imaginary parts of β1

3 (for φ = 0), averaged over
the main photoelectron line, for 1012 W/cm2; (c) angle ψ for 1012 W/cm2 for different relative phases between the harmonics φ; (d) polar
asymmetry A. In panels (b), (c), and (d): TDSE, N = 40 (solid line); PT, N = 40 (dashed line); PT, N = ∞ (chain line). See text for details.

the resonant structures in the asymmetry and the anisotropy
parameters are independent of the relative phase of the
harmonics φ and also of the interference between the first-order
and second-order ionization amplitudes.

The angle ψ defined in (25) undergoes a jump by π when
the photon energy crosses the resonance:

ψ = arctan(2
√

2E)−1 − φ +
{

+π
2 , E < Er,

−π
2 , E > Er.

(36)

When deriving Eq. (36) we used the recurrence relation for the
Coulomb phases (for negative unit charge) [28], σl+1 − σl =
− arctan[(l + 1)

√
2E]−1, and the fact that the signs of integrals

on the right-hand side of Eqs. (15) and (16) are well defined,
and all three are positive.

Although Eqs. (29)–(36) are only valid in a restricted
domain of pulse parameters, these analytical results provide a
foundation for the qualitative understanding of the features
associated with ω + 2ω ionization in the vicinity of an
intermediate resonance.

III. RESULTS AND DISCUSSION

In order to allow for a direct comparison with
our previous study on linearly polarized light [15], we

considered a pulse with similar characteristics. Therefore, the
calculations were performed for peak intensities spanning a
range from 1011 W/cm2 to 1013 W/cm2, with pulse duration
corresponding to N = 40 cycles of the fundamental frequency,
i.e., approximately 6 fs (FWHM of the intensity). As we
span different fundamental frequencies while keeping a fixed
number of cycles, the pulse durations change slightly, but the
effect is not important in our analysis.

We checked the migration of population as a function of
time and obtained results similar to ω + 2ω ionization by
linearly polarized radiation (see the discussion and Fig. 2
in [15]). Thus we expect that the PT approach will be
appropriate for 1011 W/cm2, while it would likely fail for
1013 W/cm2.

The ionization probability in the ω + 2ω scheme, obtained
by solving the TDSE near the 1s-2p transition frequency,
is presented as a function of ω in Fig. 2(a), for intensi-
ties of the fundamental of 1012 W/cm2 and 1013 W/cm2,
respectively. The curves represent the ionization probability
P = ∫

P (E) dE, where P (E) is the probability density for
ionization yielding a photoelectron with energy E and the
integral is taken over the main photoelectron line. The
parameter η, which specifies the relative strength of the second
harmonic with respect to the fundamental, is chosen to obtain
almost equal values of the intensity of the photoelectron line
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generated by each harmonic separately, thereby allowing
for the maximum interference effect. The same value as
in Ref. [15], i.e., η = 0.225, was used, with the associ-
ated second-harmonic intensity corresponding to 5% of the
fundamental intensity. Although the frequency dependencies
depicted in Fig. 2(a) appear similar to the linearly polarized
case [15], the ionization probability can differ by more
than 20% at some frequencies. The value of the ionization
probability confirms the fact that the PT approach is not
adequate for 1013 W/cm2. When increasing the intensity by
a factor of 10, second-order PT for two-photon absorption
predicts an ionization probability 100 times larger, thus
overestimating the TDSE results by approximately a factor
of three.

Generally, due to issues related to the experimental reso-
lution, only an averaged value of the anisotropy parameters
over the photoelectron line can be measured. For this reason,
we actually calculate β

μ

k = P −1
∫

β
μ

k (E)P (E)dE and will
present results for such averaged quantities below. In Fig. 2(b),
we plot β0

2 , β0
4 , and β1

3 calculated in the TDSE and PT
approaches, as a function of the fundamental frequency, for
1012 W/cm2. We only present results for the two negative
helicities, since the results for opposite helicities are either
the same (for the asymmetry A) or can be deduced by a
rescaling factor (for the anisotropy parameters β), as indicated
in Eq. (23). The TDSE and the PT results for N = 40 are
close, showing the applicability of the PT approach. The
relation (22), derived in the PT, is still seen in the TDSE results
with high accuracy. The resonance profiles of the anisotropy
parameters for N = 40 are broadened in comparison with the
profiles for the continuous radiation due to the spectral width
of the pulse. According to Eq. (31), for continuous radiation in
the single-resonance approximation, both Re[β1

3 ] and Im[β1
3 ],

which represent the interference effects, change sign at the
resonance position. Applying shorter pulses and allowing for
other intermediate states leads to separation of the zeros in the
real and imaginary parts of the asymmetry parameters (31).
This splitting is clearly seen in Fig. 2(b).

As discussed above, the polar asymmetry (26) is defined
with respect to the direction that makes an angle ψ with the
X axis in the XY plane. This is the line of intersection of the
symmetry plane of the PAD with the XY plane. Calculations
of the angle ψ with both the TDSE and PT approaches are
exhibited in Fig. 2(c) for different relative phases φ between
the harmonics. The symmetry plane, and therefore the PADs,
rotate rapidly near the resonance. The frequency dependence of
the angle ψ [Fig. 2(c)] closely follows Eq. (36), except that the
jump by π is smoothed out due to the finite duration of the pulse
in the case N = 40. In the limit of continuous radiation, this
rotation is “infinitely fast” at the resonance energy. It actually
means dropping the polar asymmetry to zero [Fig. 2(d)] and
simultaneously changing the direction of the symmetry axis to
the opposite.

In Fig. 2(d) we observe relatively good agreement between
the PT and TDSE predictions for 1012 W/cm2. The polar
asymmetry is large in the vicinity of the resonance and drops
significantly at higher frequencies. The characteristic energy
dependence of the asymmetry near the resonance energy with
the local minimum is explained by Eq. (35). In the TDSE and
PT calculations for N = 40 this expression is convoluted with

the frequency spectrum of the pulse. For the longer pulse the
local minimum would be deeper, reaching zero in the limit of
continuous radiation, as discussed above. Although the polar
asymmetry is defined as a non-negative number, A in Fig. 2(d)
crosses zero in the high-energy wing of the resonance. We
permitted this in the interest of better visibility, and hence
we do not show the jump of ψ by +π in Fig. 2(c) at the
corresponding energies either. In our case the polar asymmetry
A crosses zero when Ud = 0. Within the PT, the vanishing of
the two-photon amplitude out of the resonance is a result of
mutual compensation of contributions from the lower-lying
2p intermediate state and higher lying intermediate p states,
including the p continuum. Therefore, the position of this zero
is highly sensitive to the inclusion of the latter continuum [29].

The asymmetries along the X and Y axes (not shown),
described by the real and imaginary parts of β1

3 , change
sign rapidly near the resonance, as follows from the curves
for Re[β1

3 ] and Im[β1
3 ] in Fig. 2(b). Hence the individual

asymmetries along each axial direction behave similarly to
the ones for linearly polarized light [15].

The polar asymmetry for 1013 W/cm2 [Fig. 2(d)] reveals
a somewhat erratic and more surprising behavior. It exhibits
a deep minimum at the resonance, a sharp local maximum at
ω = 0.39 a.u., and is becoming largest at lower frequencies.
Note, however, that the maximum at ω = 0.39 a.u. and the
largest absolute values at lower frequencies were also predicted
for the linearly polarized light for 1013 W/cm2 [15], thus show-
ing consistency of the results. Although the validity of the polar
asymmetry framework may be questionable for 1013 W/cm2,
we will show that three-dimensional representations of the
PAD corroborate the relevance of the polar asymmetry, even
at such high intensity.

Another aspect to consider is the behavior of the PAD as a
function of the relative phase between the two harmonics. Ex-
perimentally, such a relative phase can, for instance, be created
by introducing a time-delay τ between the two harmonics. For
simplicity, let as assume that the first harmonic is of the form
cos(ωt + φ1), with 0◦ � φ1 � 360◦ as a randomly distributed
carrier-envelope phase (CEP). If we further assume that a time
delay τ has been introduced, the second harmonic is described
by the nonlinear term cos2(ωt + φ1), leading to the form
cos(2 ωt + φ2), with φ2 = 2 ωτ + 2φ1. Using the PT formal-
ism and the RWA, we see from Eqs. (13), (14), (17), and (18)
that in the general case U (1)

p ∝ e−φ2 and U
(2)
d ∝ e−2φ1 . As a

result, the interference terms in Eqs. (23) and (25) depend on
2φ1 − φ2 = −2 ωτ , which plays the role of the relative phase
φ. If the time-delay τ varies randomly, the interference effect
would cancel out on average. On the other hand, if τ is locked at
some specific value, one can efficiently control the interference
terms. For more details, see [30] and references therein.

Figure 3 depicts the behavior of some of the quantities
discussed above as a function of the relative phase between
the harmonics φ at the resonance frequency. We do not show
the results of the PT calculations in this figure, because
they are very close to the TDSE results. The even-rank
anisotropy parameters β0

2 and β0
4 keep a constant value, since

they are not involved in the ω + 2ω interference effects. In
addition, the polar asymmetry also remains constant. This is a
somewhat unexpected result since the left-right asymmetry for
linearly polarized light oscillates as a function of the relative

033402-7



NICOLAS DOUGUET et al. PHYSICAL REVIEW A 93, 033402 (2016)

0 30 60 90 120 150 180
φ (degrees)

-1.0

-0.5

0.0

0.5

1.0

ψ (rad)

Re[β3]

β4

β2

A

1

o

o

Im[β3]
1

FIG. 3. TDSE results for equal helicities for the anisotropy
parameters β0

2 (dashed red line), β0
4 (dashed green line), Re[β1

3 ] (chain
magenta line), and Im[β1

3 ] (chain indigo line), as well as the polar
asymmetry A (black thick line) and its corresponding symmetry angle
ψ (thin blue line). The photon energy is in resonance with the 1s-2p

excitation, the peak intensity is 1012 W/cm2, and N = 40. See text
for details.

phase between harmonics (see, for example, [7,8,10,15]). The
result can be understood, however, by recalling that the polar
asymmetry A is defined with respect to a direction that, itself,
rotates with the angle φ. As mentioned above, it is defined by
the absolute values of the anisotropy parameters, independent
of φ. The angle ψ , which characterizes this direction and the
orientation of the symmetry plane of the PAD, is a linear
function of the relative phase, ψ(φ) = ψ(0◦) − φ, as expected

from Eq. (17). At the same time, the real and imaginary parts
of β1

3 oscillate as functions of φ, as shown in Fig. 3.
Although the polar asymmetry and its associated angle ψ

provide a quantitative description of the asymmetry generated
by interfering one-photon and two-photon pathways with cir-
cularly polarized light, they only contain limited information
on the PAD. For this reason, it is desirable to directly visualize
the three-dimensional PAD [19]. Figure 4 exhibits the PADs for
1012 W/cm2 and φ = 0 for different fundamental frequencies,
i.e., on the left and right wing of the resonance (ω = 0.330 a.u.
and 0.410 a.u.), and at the resonance energy (ω = 0.375 a.u.).
In addition, the PADs are shown for equal (upper panels)
and opposite (lower panels) helicities. As anticipated from
the values of the asymmetry parameters in Fig. 2, valid for
both cases H = ±1, the asymmetry of the 3D PADs is large
on the left wing [panels (a) and (d)] and almost vanishes,
resembling a donut-like shape, on the right wing [panels (c)
and (f)] of the resonance. Since the TDSE and PT results are in
very good agreement, only the TDSE results are shown here.
The maximum asymmetry is observed near the resonance. It is
combined with a rapid rotation of the PADs by approximately
90◦ from ω = 0.330 a.u. to 0.375 a.u. and by 180◦ when
scanning from the left to the right wing of the resonance.
This result is in agreement with Eq. (36) and the computed
values of ψ in Fig. 2(c).

Figure 5 exhibits the PADs at the largest intensity studied
in this work, 1013 W/cm2. The shapes of the PADs confirm
that the latter still effectively possess a symmetry plane. The
survival of this symmetry plane was discussed above. It is
explained by the fact that, even at this large laser intensity,
the photoelectron line is still dominated by p- and d-wave
emission. We see that the asymmetry of the PAD is small at the
resonance, as predicted from the computed polar asymmetry

  ωω  ==  00..337755

kω

  ωω  ==  00..333300

k2ω

  ωω  ==  00..441100

kω

k2ω

  ωω  ==  00..333300   ωω  ==  00..337755   ωω  ==  00..441100

FIG. 4. Three-dimensional PADs calculated in the TDSE approach for 1012 W/cm2, N = 40, and relative phase φ = 0. The PADs have
been averaged over the photoelectron line and rescaled to improve visualization. Calculations for equal helicities are shown in panels (a), (b),
and (c), while results for opposite helicities are depicted in panels (d), (e), and (f). The fundamental frequency is given in atomic units.
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kω

 ω = 0.330

k2ω

 ω = 0.375  ω = 0.390  ω = 0.410

FIG. 5. Same as the upper row in Fig. 4 for 1013 W/cm2.

[cf. Fig. 2(d)]. We also plotted the PAD at the predicted local
maximum of the polar asymmetry (ω = 0.390 a.u.).

Figure 6 demonstrates how the asymmetry A and the
associated angle ψ evolve with the pulse duration in the
vicinity of the 1s-2p resonance. These 3D plots were generated
from the PT predictions, which should be a very good
approximation to the TDSE results but are computationally
much easier to obtain. For long (N ∼ 1000) pulses, A and
ψ behave as predicted by Eqs. (35) and (36), respectively,
for continuous radiation. Small deviations from the symmetric
shape prescribed by Eq. (35) are caused by contributions from
additional intermediate states np (n > 2) and small variations
of the radial amplitudes (15) and (16) within the narrow
interval of photon frequencies. When the pulse duration is
decreased and, correspondingly, the spectral width of the
pulse is increased, the sharp resonance-like structure in A

is smeared out. This leads to a single broad maximum for
N ∼ 10, but at N = 40 a local minimum is still visible [see
Fig. 2(d)]. Similarly, the sharp jump in ψ for N ∼ 1000
transforms into a shallow variation for N ∼ 10. For the short
pulses, the influence of the neighboring 3p resonance can
explicitly be seen in the high-energy wing of the 2p resonance
structure.

Another interesting point concerns the determination of
the phase φ between the harmonics of the XFEL, based on
measurements of the PADs. This can be discussed within the
domain of applicability of the PT for infinite pulses, where

analytical expressions can be developed much further than
in the more elaborate computational approaches. A recipe
suggested in our recent paper [15] with the use of only
linearly polarized radiation is, unfortunately, not valid [31].
The relation between the phase offsets, Eq. (40) in the above
paper, is incorrect. Furthermore, since the pulse parameters
of XFELs are usually not known precisely, the observed
quantities to extract the relative phase of the harmonics should
not be very sensitive to these parameters. With circularly
polarized light, the angle ψ [Figs. 2(c) and 6(b)] is, in this
respect, a good candidate. It is defined by Eq. (36) and can
be used in cases where the atomic wave functions are not
known in analytic form. In the latter case the scattering phase
difference σd − σp can be accurately calculated (for example,
for He) far from the autoionizing resonances, providing finally
the value of φ from measurements of the angle ψ .

IV. SUMMARY AND OUTLOOK

Extending previous studies for linearly polarized radiation,
we have presented a detailed investigation of two-pathway
interferences between nonresonant one-photon and resonant
two-photon ionization of atomic hydrogen by circularly polar-
ized photons. General formulas for arbitrary light polarizations
were derived and specified for circularly polarized radiation
beams. The validity of the predictions based on perturbation
theory was analyzed by comparing those predictions with

FIG. 6. Polar asymmetry A (a) and associated angle ψ (b) as functions of the energy of the first harmonic and pulse duration (expressed in
the number of optical cycles N ), calculated in PT for the peak intensity 1012 W/cm2.
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results obtained by solving numerically the time-dependent
Schrödinger equation.

Allowing for more general polarizations opens up a rich
field of further investigations. This was demonstrated with
predictions for coherent control of the photoelectron angular
distribution that would be achievable by employing circularly
polarized radiation fields with equal or opposite helicities. An
angle defining the symmetry plane of the PAD and the polar
asymmetry of the angular distribution with respect to a variable
direction were introduced. Although expressions for these
quantities in terms of the channel amplitudes were derived
within the perturbation theory, the concepts of the symmetry
plane and the polar symmetry keep their meaning far beyond
the domain of applicability of the perturbation theory. Finally,
analytical dependencies of the parameters that determine the
PAD were derived in the vicinity of an isolated intermediate
resonance within perturbation theory for continuous radiation
as functions of energy.

Given the experimental challenges associated with the
preparation of atomic hydrogen targets, it is likely that such
experiments would first be performed for systems that are
more convenient from a practical point of view. Targets that
come to mind are the light noble gases, such as helium, neon,
and possibly argon. In fact, initial experiments on helium and
neon were recently performed at the FERMI free-electron

laser facility in Trieste (Italy) [30,32]. Several more studies
are planned within the upcoming months [33]. While the
current experimental laser parameters, namely relatively long
and strong pulses, as well as experimental details such as
the pulse form varying from shot to shot and the need
for focal averaging over the interaction region, will make
a quantitative comparison between experiment and theory
virtually impossible at the present time, it has already become
evident that studies like the present one are essential to
qualitatively predict possibly interesting effects and thereby
help in the planning of such highly sophisticated and very
expensive experimental endeavors.
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