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Double ionization of helium by 2-keV electrons in equal- and unequal-energy configurations
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We present theoretical and experimental fully differential cross sections, in coplanar scattering geometry, for
the double ionization of helium by electron impacting at 2 keV. The observed structures for both equal and unequal
sharing of the excess energy are analyzed. Although the incident energy could, in principle, be regarded as high
enough for the applicability of the first Born approximation in the projectile-target interaction, the experimental
cross sections, measured with a COLTRIMS apparatus, show that further orders’ effects can be appreciated. The
theoretical cross sections are calculated with the generalized Sturmian functions method, which exactly solves
the three-body problem that stems from a first-order projectile-target perturbative treatment.
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I. INTRODUCTION

The long-range characteristic of Coulomb interactions
creates an interesting challenge for theoreticians studying few
particle quantum dynamics. With as few as four bodies, as
is the case in the double ionization of helium by charged
particles, the required solution of the Schrödinger equation
cannot be obtained in an exact manner. Whenever the incoming
and scattered projectile is fast, the problem is significantly
simplified to a more tractable stage: A three-body scattering
problem in which exchange effects between the projectile and
the target electrons do not come into play.

In the so-called (e,3e) experiments, fully differential cross
sections (FDCSs) have been measured for helium at high
incident energies of 5.6 keV [1,2], 2 keV [3–5], and 1 keV
[6]. Under such kinematical conditions, first-order Born
mechanisms with respect to the projectile-target interaction
can be expected to be the most important contribution to
the cross section. The Orsay group measured FDCSs [7] at
lower incident energy, 600 eV, and demonstrated the effect
of second-order mechanisms. Their importance was also put
in evidence through fourfold differential cross sections [8]. A
much lower projectile energy has been considered in Ref. [9],
where near-threshold ionization is analyzed.

The experimental FDCSs reported in Refs. [1,2] have
the great merit of being on an absolute scale. The data
are also those with the most energetic projectiles and are
therefore expected to be be well reproduced by first-order Born
calculations. Moreover, the momentum transfer was restricted
to small values (0.24 a.u. in one kinematical configuration
and 0.22 in another one), thus within what is known as
dipolar regime (due to the functional similarity of the tran-
sition matrix with its photoionization counterpart). The other
measurements [3–6] were not presented on absolute scales, but
allowed for FDCS shape comparisons to identify and interpret
the involved collision mechanisms. The experiments ranged
from intermediate momentum transfers (≈0.5 a.u.) [3,6] to
high transfers (≈2 a.u.) [4,5], the latter case entering what is
known as the impulsive regime.

While it is clear that for the intermediate energies of
Refs. [7,8] second-order Born processes are very important,

these effects are, in principle, expected to play a minor role
shaping the cross sections for the higher projectile energies, say
1 keV and upwards. Notwithstanding, a first Born model failed
to provide a perfect match for the shape of the experimental
cross sections in Ref. [6], corresponding to 1.1-keV projectiles.
A higher momentum transfer was considered in [4,5], but with
2-keV projectiles. The agreement between experimental and
theoretical [convergent close coupling (CCC)] cross sections
was clearly acceptable, both for equal and unequal energy
sharing. In another study, Dorn et al. [3] used 2-keV projectiles
but registered collision events with a low-to-intermediate
momentum transfer (0.5 a.u.) and undertook only the study
of equal-energy configurations.

Overall, there is a lack of studies devoted to unequal
energy sharing configurations: The present contribution aims
to partially fill this gap. We present and analyze theoretical and
relative scale experimental results for the double ionization of
helium by 2-keV incident electrons, with momentum transfers
of 0.5 and 2.0 a.u. and in coplanar geometry. The experimental
data were collected by a COLTRIMS apparatus [5], while
the theoretical FDCSs were obtained with the generalized
Sturmian functions (GSFs) method [10,11]. This is an ab
initio approach that has been used so far to solve two- and
three-body problems in a numerically exact fashion. In this
article we apply it to solve the dynamics of the helium system
once it has received a single impact from the projectile,
i.e., within a first-order Born projectile-target frame and in
a time-independent picture. The complete solution of the
continuum three-body Schrödinger equation yields a wave
function containing the whole array of allowed processes and
internal collisions between the target components. In terms of
the multiple scattering expansion by Berakdar et al. [12], the
GSF formulation contains only the processes which involve a
single projectile-target collision, but intratarget collisions are
described to all orders. We emphasize here that within the
GSF method, the scattering amplitude, and thus the FDCS,
is extracted directly from the asymptotic behavior of the
continuum three-body scattering solution. Such technique has
been recently [13,14] applied to the two (e,3e) experimental
kinematic conditions of Refs. [1,2] (small momentum transfers
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and equal energy sharing), achieving the first reported shape
and magnitude agreement between two theories. In this
contribution, the GSF method is used in configurations with
larger momentum transfers and with two electrons ejected with
both equal and unequal energies.

We have structured the present article as follows. First we
describe the experimental setup and the theoretical method.
Then we present FDCSs for different excess energies shared
equally between the target electrons. Finally, we examine the
cross sections under unequal-energy sharing configurations
with momentum transfers of 0.5 and 2.0 a.u.

Atomic units (� = e = me = 1) are used throughout.

II. EXPERIMENTAL SETUP

The experiment was performed with a multielectron recoil-
ion momentum spectrometer (“reaction microscope”) which
has been adapted to the study of electron scattering processes.
Details of the experimental method can be found in [5]. It
is based on the coincident measurement of the momentum
vectors of two slow ejected electrons k2 and k3 and the
momentum vector of the recoiling ion Kion emitted in an (e,3e)
reaction. Applying momentum conservation, the momentum
kf of the fast scattered electron or respectively the momentum
q transferred by the scattered projectile is determined,

q = ki − kf = k2 + k3 + Kion, (1)

where ki is the momentum of the incoming projectile. The
momentum resolution with the present extraction fields is
about �k ≈ 0.05 a.u. for electrons and �kion ≈ 0.3 a.u. for the
doubly charged helium ions. The resulting angular resolution
for electrons is about 5◦ for 5-eV electrons. The apparatus
encompasses a conventional electron gun to produce a pulsed
primary beam with a repetition rate of 500 kHz and a pulse
length of �t = 1 ns. The helium target was provided by a
supersonic jet. The helium gas expanded through a 30-μm
nozzle and was collimated by two skimmer apertures to form a
well localized (2.0 mm diameter) and dense (1011 atoms/cm3)
target at the intersection point with the electron beam. Ions
and low-energy electrons produced in (e,3e) collisions were
extracted to opposite directions by a uniform 2.7 V/cm electric
field applied along the apparatus axis and are detected by
two-dimensional position sensitive multichannel plates. A
solenoidal magnetic field produced by a pair of Helmholtz coils
is forcing the slow electrons with nonzero transverse momenta
to spiral trajectories. In this way, electrons with energies below
30 eV—and essentially all ions—are detected with the full
solid angle of 4π . From the times of flight (TOF) and the mea-
sured positions on the detectors the trajectories of the particles
can be reconstructed and their initial longitudinal and trans-
verse momentum components are obtained. The 80-mm active
diameter electron detector is equipped with a fast delay-line
readout and a multihit time-to-digital converter (TDC). Thus,
positions as well as arrival times of both electrons emitted in a
double ionization event are determined. Due to the combined
detector and TDC dead time of about 15 ns, the second
electron is registered with reduced efficiency if their flight-time
difference falls below 15 ns. This results in a loss of momentum
space in the final state for electrons having similar momenta
in the longitudinal direction towards the electron detector. In

the experimental cross-section diagrams presented in Sec. IV
the regions with reduced detection efficiency are indicated.

III. THEORY

A perturbative formulation in terms of the projectile-target
interaction has been proposed for (e,3e) processes [15]. It
was applied to the helium double ionization by electron
impact, first within a Temkin-Poet version [15] and then to
the complete problem [13,14]. In brief, the solution to the full
four-body Schrödinger equation is expressed as a perturbative
series, the perturbation being the projectile-target interactions.
Retaining up to the first order is equivalent to a first-order
Born approximation to the projectile-target interactions. The
proposal of a plane-wave combination for the projectile,
times a—to be determined—function for the target dynamics,
�+

sc(q,r2,r3) leads to the driven equation

[hHe − Ea]�+
sc(q,r2,r3)

= −4π

q2

1

(2π )3
(Z − eiq·r2 − eiq·r3 )�i(r2,r3), (2)

where hHe is the helium three-body Hamiltonian, �i(r2,r3) is
the helium ground state (Z = 2), and Ea is the energy shared
by the two ejected electrons of coordinates r2 and r3. The
scattering solution to Eq. (2) contains all the processes which
can occur to the target electrons, i.e., energy and momentum
redistribution among the target components via collisions.
A particular emission geometry is directly stimulated or
suppressed in �+

sc(q,r2,r3) via the driven term [14].
Equation (2) is solved in a numerically exact fashion with

the GSF approach. Since the formulation together with relevant
computational aspects can be found in Ref. [14], only a
succinct review is provided hereafter for the sake of providing
a self-contained work. The scattering function is expanded in
partial waves, i.e., eigenstates of the total angular momentum.
As the angular part can be treated analytically, most of the
numerical calculations are related to the radial coordinates of
both electrons. It is at this stage that the GSF approach comes
into play, through an expansion in a GSF set,

�+
sc(q,r2,r3) =

∑
L,M

∑
l2,l3

∑
n2,n3

aν�ν(r2,r3), (3)

where the outgoing-type behavior at large values of the
coordinates r2 and r3 is enforced via the three-body basis
elements defined as

�ν(r2,r3) = YLM
l2l3

(̂r2 ,̂r3)
Sn2l2 (r2)

r2

Sn3l3 (r3)

r3
, (4)

where the index ν collectively denotes the quantum numbers
{L,M,l2,l3,n2,n3} and YLM

l2l3
(̂r2 ,̂r3) are the familiar bipolar

harmonics. The Sn2l2 (r2) and Sn3l3 (r3) are two-body GSFs
which satisfy the equation,[

−1

2

d2

dr2
+ l(l + 1)

2r2
+ U(r) − Es

]
Snl(r)

= −βnlV(r)Snl(r), (5)

with outgoing behavior at large distances [10] and an energy Es

fixed to match the total available for the two emitted electrons,
Ea (see Ref. [16]). The auxiliary potential U(r) is taken equal
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FIG. 1. Theoretical fully differential cross sections, q = 0.5 a.u.
and Ea = (25 + 25) eV with the binary, recoil, and back-to-back
structures labeled by, respectively, A and A′, B and B ′, and C and
C ′. The momentum transfer is in the direction θq = 36.61◦ (x mark).

to the helium core potential, while the generating potential
V(r) is one inside the calculation domain (box of radius R)
and zero outside. The eigenvalues of Eq. (5) are the βnl , which
act as weights of the generating potential. In essence, Eq. (5)
is a generalized version of the common radial Schrödinger
equation. The three-body basis functions (4) remove the
differential operators from the driven equation (2); their linear
combination (3) approximates very well the hyperspherical
outgoing behavior of the expected solution [16] (an alternative
approach, which is under development, uses hyperspherical
GSFs [15,17]).

The function �i(r2,r3) in (2) stands for an—in principle
exact—helium ground-state description. Within our frame-
work it is conveniently calculated with a GSF basis of
negative energy that has been demonstrated as sufficiently

precise and computationally efficient [18,19]. In the present
contribution we worked with a helium ground-state energy of
−2.903 48 a.u. It was observed in Ref. [14] that refining the
ground state from −2.902 77 to −2.903 34 a.u. provided only
a marginal modification to the calculated FDCS.

We now turn to the computational side of our approach: A
projection onto every basis element (4) transforms differential
equation (2) into algebraic linear systems for the coefficients
aν , which are neatly put together as the elements of a vector a:

[H − (Ea − 2Es)S]a = b. (6)

The vector b contains the projection of the right-hand side
of (2) onto each continuum basis element (4). Explicitly, its
components are

bν ′ = − 1

(2π )3

4π

q2

∫
dr2dr3 �ν ′ (r2,r3)

×(Z − eiq·r2 − eiq·r3 )�i(r2,r3), (7)

while the matrix elements for H and S read

Hν ′,ν =
∫

dr2dr3 �ν ′(r2,r3)

×
[
−βn2l2V(r2) − βn3l3V(r3) + 1

r23

]
�ν(r2,r3), (8a)

Sν ′,ν =
∫

dr2dr3 �ν ′(r2,r3)�ν(r2,r3). (8b)

The calculation of �+
sc(q,r2,r3) benefits from the separabil-

ity of (2) into eigenstates angular momentum sum of electrons
2 and 3, so that one deals with a matrix problem (6) separately
for each set of numbers {L,M}.

Once �+
sc(q,r2,r3) is determined, we can extract the colli-

sion information from the two-electron continuum asymptotic
behavior, which was thoroughly discussed by Kadyrov et
al. [20],

�+
sc(q,r2,r3) −→

ρ→∞ (2πi)1/2κ
3
2 Tk̃2,k̃3

ei[κρ−λ0 ln(2κρ)−σ0]

ρ
5
2

, (9)

FIG. 2. Fully differential cross sections, q = 0.5 a.u. and Ea = (5 + 5) eV: (a) theory and (b) experiment (the hatched area corresponds to
reduced detection efficiency). The momentum transfer is angled at θq = 55.92◦.
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FIG. 3. Fully differential cross sections, q = 0.5 a.u. and Ea = (10 + 10) eV: (a) theory and (b) experiment (the hatched area corresponds
to reduced detection efficiency). The momentum transfer is angled at θq = 51.62◦.

where ρ =
√
r2

2 + r2
3 is the hyperradius, κ = √

2Ea the hy-
permomentum, σ0 a Coulomb phase, and λ0 a hyperangle-
dependent asymptotic Sommerfeld parameter. The coordinate-
dependent momenta are defined as k̃i = κ

ρ
ri for (i =

2,3) [20,21]. For two electrons escaping with energies E2

and E3 in the solid angles d
2 and d
3, the FDCS—for our
first-order Born calculation—is defined as

d5σ

d
2d
3d
f dE2dE3
= (2π )4 kf k2k3

ki

∣∣Tk̃2,k̃3

∣∣2
, (10)

where the projectile—whose energy Ef = k2
f /2 is deter-

mined by total energy conservation—scatters into the solid
angle d
f .

Throughout this paper we used radial domains with R =
50 a.u. for both electronic radii. From the amplitudes extracted
at hyperradii ρ ≈ 47 a.u. via Eq. (9) we then calculated the

FDCS via (10). We add that, in all cases considered below, we
have verified that convergence with respect to the number of
partial waves was achieved.

IV. FULLY DIFFERENTIAL CROSS SECTIONS

We find it convenient to split the comparisons between
theoretical and experimental results in two sections: the first
one devoted to the equal-energy sharing condition and the
second one to unequal energy sharing. Indeed, some aspects
become appreciable only when the electrons share the excess
energy unequally.

We shall display the FDCSs through contour plots, as a
function of ejection angles θ2 and θ3. Within a first-order
Born approximation, the FDCS should be symmetrical with
respect to the direction θq . Generally, the cross sections
present three appreciable types of structure, namely binary,

FIG. 4. Fully differential cross sections, q = 0.5 a.u. and Ea = (25 + 25) eV: (a) theory and (b) experiment (the hatched area corresponds
to reduced detection efficiency). The momentum transfer is angled at θq = 36.61◦.
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FIG. 5. Fully differential cross sections, q = 0.5 a.u. and Ea =
(E2 + E3) = (5 + 10) eV: (a) theory, (b) experiment, and (c) exper-
iment with superimposed theory (the hatched area corresponds to
reduced detection efficiency). The momentum transfer is angled at
θq = 53.80◦.

FIG. 6. Fully differential cross sections, q = 0.5 a.u. and Ea =
(E2 + E3) = (5 + 25) eV: (a) theory, (b) experiment, and (c) exper-
iment with superimposed theory (the hatched area corresponds to
reduced detection efficiency). The momentum transfer is angled at
θq = 47.04◦.
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FIG. 7. (a) Squared modulus of the momentum transferred to the core (K2
ion); (b) theoretical FDCS (5 + 10) eV with the K2

ion contours
superimposed.

recoil, and back-to-back peaks; three tags—A, B, C—and
their symmetric counterparts—A′, B ′, C ′—are placed on
their corresponding structures in the explanatory Fig. 1 for
an equal-energy-sharing case. Note that in nonsymmetric
energy-sharing configurations, the A′, B ′, C ′ features are no
longer mirrored copies of A, B, C.

The binary peak (labeled A and A′) characterizes, as its
name suggests, a binary collision between the impacted target
electron and its partner, which sends them both off to the
continuum, the sum of the two ejected electrons’ momenta
pointing in the q direction. The recoil structure (tagged B and
B ′) has the momenta sum point towards −q. One way for this
to occur is that the impacted target electron recoils off the
nucleus and then hits the other one. The recoil emission can
also be attained after a pure binary collision, with the addition
of a recoil off the core by both electrons. One can expect the
recoil process to be more relevant when the electrons have a
small excess energy. The back-to-back geometry (labeled C

and C ′ hereafter) implies the emission of the target electrons

in opposite directions. Under the dipolar regime and equal
energy sharing, this is greatly suppressed, but if appreciable,
they align with the ±q directions. This is related to the dot
products q · r2 and q · r3.

A. Equal energy sharing

We begin presenting the FDCSs for three equal-energy con-
figurations for q = 0.5 a.u. Our experimental and theoretical
results are plotted in Figs. 2, 3, and 4.

The theoretical first Born results are, by construction,
perfectly symmetric. In order to reduce the statistical error
of the experimental data, we exploited the fact that for equal
energy sharing between the ionized electrons the cross section
is symmetric with respect to a line θ2 = θ3. We have thus
accumulated the recorded data in the lower right part of the
diagram and mirrored the result along the diagonal of the
diagram. An overall good experiment-theory correspondence
is observed: The binary peaks A and A′, in particular,
show an excellent agreement, suggesting that second-order

FIG. 8. (a) Squared modulus of the momentum transferred to the core (K2
ion); (b) theoretical FDCS (5 + 25) eV with the K2

ion contours
superimposed.
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FIG. 9. (a) |q̂ · (k̃2 + k̃3)|; (b) theoretical FDCS (5 + 10) eV with the (a) contours superimposed (blue lines).

contributions to the binary emission are negligible. Our results
show the peaks A, A′ and B, B ′ aligned as expected from the
exponentials in the driven term of Eq. (2). The experimental
results hint that, to a degree, further Born mechanisms are
playing a role in the collision dynamics. This is evidenced
by the B and B ′ peaks being displaced from their symmetric
position described in Fig. 1.

As the excess energy increases, two tendencies can be
inferred from both the theoretical and experimental FDCSs
presented in Figs. 2, 3, and 4. First, the B,B ′ structures
lose relative height with respect to A,A′. Second, B and
B ′ become more diffuse, merging with a still small but
appreciable back-to-back emission. This can be understood
with a classical argument, recalling the Rutherford expression
for the deflection angle θi (i = 2,3) using a very crude model
with an effective core charge Zeff :

θi = 2 arctan

(−Zeff

2Eibi

)
. (11)

A larger energy value Ei increases the variation of θi with
respect to the impact parameter bi , which is, in turn, related

to the initial position the electron is extracted from. The
distribution that characterizes the initial position is given by
the target bound state.

At the lowest ejection energies (Fig. 2) we find that the
recoil peak is actually higher than the binary one. The slow
electrons of this configuration have a longer time to be affected
by the core attractive potential and thus to interact further with
it. Picturing it classically, the recoil requires the electrons to
perform an orbit around the core before escaping, and this is
more likely for lower energies. There is an alternative scenario
leading to the same type of structure: First, one of the target
electrons receives the energy and momentum imparted by the
projectile and, then, it recoils around the core before colliding
with the other target electron. Numerically, the GSF solves—
in principle exactly—the three-body dynamics to all orders,
and thus both aforementioned processes are included and can
contribute to the recoil emission.

From Figs. 2, 3, and 4 we can assert that—for faster
emitted energies—there is a strong tendency towards a
binary emission. Related to the previous classical approach,
it can be viewed as if the core attraction is more likely

FIG. 10. (a) |q̂ · (k̃2 + k̃3)|; (b) theoretical FDCS (5 + 25) eV with the (a) contours superimposed (blue lines).
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FIG. 11. Fully differential cross section, q = 2.0 a.u. and Ea =
(E2 + E3) = (5 + 25) eV: (a) theory, (b) experiment, and (c) experi-
ment with superimposed theory. The momentum transfer is angled at
θq = 74.76◦.

to play a spectator role, not enforcing any recoil of the
electrons.

Let us now comment on the differences observed between
the experimental and theoretical FDCSs. The recoil structures
look slightly displaced towards the back-to-back emission on
the ±q directions. One of the electrons is redirected to the
forward direction, while the other one is nearly reflected from
the upper half plane to the lower half plane (making about
the same angle with respect to the incident direction). The
(5 + 5)-eV case (Fig. 2) makes it evident because the recoil
structures are more clearly delimited. Figures 2, 3, and 4
(somewhat less clearly) and even the unequal-energy case (see
Fig. 5 later on) show that the experimental recoil structure
has one of the electrons shifted towards the forward direction
(i.e., 0◦ or 360◦). Since the theoretical FDCSs incorporate the
first Born interaction between the projectile and the target,
the aforementioned difference can be ascribed to second- or
higher-order terms. Therefore, for incident energies as high as
2 keV, second-order effects do have appreciable influence over
the FDCS. This statement agrees with the analysis presented
in Ref. [3], where similar energy and q regimes were explored
for equal-energy sharing.

B. Unequal energy sharing

We now turn to situations in which the ejected electrons
depart with different energies, sharing unequally the available
excess energy. In this case, the cross sections are no longer
expected to be symmetric under a θ2,θ3 reflection, and the
structures A,B,C (binary, recoil, back-to-back) need not be
coincident with A′,B ′,C ′, respectively. Our theoretical and
experimental FDCSs are shown in Figs. 5 and 6 and, again,
an overall good correspondence is observed. More intriguing
are the theory-experiment comparisons of the recoil and, if
present, back-to-back peaks.

In Fig. 5 we can observe that the experimental recoil
structures are not coincident with those of the first-order
Born calculation. In fact, the way the experimental peaks
are displaced is similar to the previously viewed situation for
equal-energy configurations. Second-order effects are likely to
be responsible for these theory-experiment discrepancies. In
turn, back-to-back emission (C,C ′ peaks) does not seem to be
relevant at this energy and momentum transfer configuration,
in neither the theoretical nor the experimental cross sections.

The theoretical FDCS presents a C peak that is severely
damped, nearly nonexistent. The most obvious candidate
accounting for this peak would be the shake-off mechanism.
However, it was disregarded in [5] as a viable option to
the experimental appearance of the C structure since it
would require a more drastically asymmetric energy sharing.
Therefore, the presence of the C and C ′ peaks has then to be
due to pure—abrupt—collisions and not to soft relaxations.

For a more pronounced unequal-energy sharing, depicted in
Fig 6, we find that there is a back-to-back structure appearing
in the theoretical FDCS: an important C ′ peak but a nonexistent
C one. This, although counterintuitive, may be expected from
the following theoretical arguments. After interacting abruptly
with the projectile, one of the electrons acquires momentum
from it. For a back-to-back emission, we would require a
number of interactions between the electrons and the core;
indeed, a simple head-on interelectronic collision (with or
without a previous recoiling off the core) would only make
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FIG. 12. (a) Squared modulus of the momentum transferred to the core (K2
ion); (b) theoretical FDCS (5 + 25) eV with the K2

ion contours
superimposed.

them swap their momenta, preventing the emission of one of
them in the ±q direction. The core would have to absorb part
of the momentum transferred to the target. However, a very
simple—and classical—evaluation of Kion = q − k̃2 − k̃3 for
the kinematics of Figs. 5 and 6 with the fast electron parallel
to q would result in an almost zero momentum transfer
to the nucleus (see Figs. 7 and 8). Therefore, this type of
back-to-back emission is improbable—small or absent peak
C—for the energy and momentum regimes considered. The
converse situation, a fast electron emitted towards −q, does,
however, incorporate an appreciable amount of momentum
transferred to the core and therefore is not prohibited. The
binary peaks, on the other hand, do not require a significant
participation of the nucleus and therefore can exist in (θ2,θ3)
directions which imply almost no momentum acquired by the
parent core.

There is another argument at play behind the back-to-back
phenomenon in Fig. 6, stemming from the dipolar term in
the exponentials that appear in Eq. (2). With the position-

dependent momenta we obtain for the dipolar limit

(Z − eiq·r2 − eiq·r3 ) ≈ −i(q · r2 + q · r3)

= −i
ρ

κ
q · (k̃2 + k̃3). (12)

Figures 9 and 10 show that the back-to-back peak with the fast
electron parallel to q lies accross two bands where the process
is poorly stimulated in the driven equation (2) and, therefore,
loses predominance within the FDCS structures. The C peak,
in turn, does not cross these bands.

So far we have described the theoretical FDCS and
discussed some arguments behind a particular feature. We
now turn to the experimental cross sections depicted in
Figs. 5(b) and 6(b). The (5 + 10)-eV FDCS presents a shape
that resembles the (5 + 5)- and (10 + 10)-eV ones. There are
two clear binary peaks (A,A′) which coincide in localization
with their theoretical counterparts. The theory suggests that
the other structures observable in Fig. 5(a) are due to recoil
emission (B,B ′ peaks). When the energy is shared in a more

FIG. 13. (a) |q̂ · (k̃2 + k̃3)|; (b) theoretical FDCS (5 + 25) eV with the (a) contours superimposed (blue lines).
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unequal fashion, the theory-experiment agreement for the
binary peaks remains intact. The theory predicts an important
C ′ contribution, and relatively small—but appreciable—B,B ′
peaks. The C-type emission is minor in the theoretical FDCS.
Both experimental recoil and back-to-back structures appear
displaced with respect to the first Born ones, with one of the
electrons displaced towards the forward direction (i.e., 0◦ or
360◦). The experimental C ′ peak in Fig. 6(b) seems to be a
superposition of displaced first Born peaks C ′ and B ′ due to
second-order Born interactions.

For comparison, we explored also the larger momentum
transfer configuration considered in [5], where the two elec-
trons share 30 eV unequally with a momentum transfer of q =
2 a.u. (impulsive regime). The present theoretical calculations
are shown in Fig. 11, together with the experimental data
(Fig. 3(b) of [5]). Figure 12 compares the FDCS with the
K2

ion contours. When the momentum transfer is increased,
the C peak suffers a less important suppression, but at least
from the theoretical standpoint it is also damped at the exact
point (θ2 = θq + 180◦,θ3 = θq). In this impulsive regime, we
observe the same type of suppression of the back-to-back peak
with the fast electron emitted parallel to q. The first-order
calculation this time does contemplate the presence of the
back-to-back structure C and the more pronounced C ′.

Since at q = 2 a.u. we are clearly beyond the dipolar
regime, using expansion (12) is out of its strict validity range.
Nevertheless, the interpretation for q = 0.5 is still present,
though to a lesser degree (see Fig. 13). Our theoretical FDCS
does not agree with the theoretical CCC calculation (see
Fig. 4(b) of Dorn et al. [5]). In view of the present evidence,
it is possible that the second-order interaction is responsible
for the experimental C peak not to be damped as it was seen
in our first-order calculations. Second order effects were
observed to shift the back-to-back and recoil peaks towards
the incidence direction (for one of the ejected electrons).

V. SUMMARY

In this contribution we present a theory-experiment FDCS
comparison for the helium double ionization by electron with a
relatively high incident energy, 2 keV. While the experimental
data sets have a relative scale, they allow for an interesting

shape comparison that enables one to determine the relevance
of second-order Born effects.

We analyzed first three equal-energy-sharing configura-
tions, with ejection energies of (5 + 5) eV, (10 + 10) eV,
and (25 + 25) eV. The binary structures appear completely
unaffected by Born orders beyond the first. Theoretically,
as the excess energy increases, we expect in the first-order
Born a minor appearance of back-to-back emission. The recoil
peaks in the three equal energy experimental FDCSs appear
to be displaced, having one of the electron’s momentum
shifted towards 0◦ (or equivalently 360◦), presumably due to
second-order projectile-target interactions.

Turning to unequal-energy sharing, we considered two
configurations. A (5 + 10) eV sharing and a more unequal
(5 + 25) eV case. In both situations the experimental binary
peaks are located in accordance with first Born calculations.
In the (5 + 10) eV configuration, the displaced recoil peaks
suggested by the theory are also observed in the experiments.
In the theoretical results, there is a mild expected back-to-back
emission, with the slow electron emerging parallel to q, but as
it turns out, it is within the level of noise for the experimental
results.

The more unequal sharing situation, (5 + 25) eV, makes for
a pronounced theoretical back-to-back emission. This peak
implies an important emission of the slow (fast) electron
parallel (antiparallel) to q.

We discuss two analytical arguments that support our
findings. One of them consists of the evaluation of the
momentum transferred to the nucleus for all emission angles.
The other one considers the dipolar term of the driven equation
that defines the wave function.
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